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The idea of the course is to provide notions of topology and geometry to mathematical physi-
cists, as well as present concrete applications of such notions to pure algebraists and geometers.
The idea would be not to fall in a too abstract presentation, and to anchor it into examples
taken from physics. I propose to start from the basics and grow in complexity to reach higher
grounds which are much more intricate.

I propose to advance at a steady pace following a physically informed mathematical path.
I would not focus on the logico-deductive process of mathematical proofs but rather on the
physical ideas that led to the invention of these notions. Mathematical physicists often find
their inspiration in problems and objects set up by theoretical physicists, on which they draw
to develop interesting and useful mathematical objects. The latters may be somewhat ‘gen-
eralizations’ of the formers, but they need not encode exactly the physics that inspired them.
Theoretical physics is a playground for mathematical physicists who use nice and insightful re-
sults to develop fruitful mathematical theories. This course will follow the same line of reasoning:
drawing on physical examples to present useful mathematical objects.

A particular attention will be paid to the translation between physics language and mathe-
matical language. In particular, physicists often work in coordinates (this emphasize the local
property of their theories) and which facilitates raw computations, whereas mathematicians are
more interested in maps, and relationships between objects, spaces, etc. That is why mathemati-
cians favor a coordinate-free approach of geometry. The latter has the advantage of shedding
light on geometrical aspects that the picture in coordinates could not provide. During the course,
I will try to give an explicit dictionary that shows how one pass from one formulation to the
other.

To build this course, I mostly relied on various lectures notes (mostly in the chapter about
Poisson Geometry) and on the following sources:
[Baez and Muniain, 1994] Baez, J. and Muniain, J. P. (1994). Gauge Fields, Knots and Gravity,

volume 4 of Series on Knots and Everything. World Scientific, Singapore
[Henneaux and Teitelboim, 1994] Henneaux, M. and Teitelboim, C. (1994). Quantization of

Gauge Systems. Princeton University Press, Princeton
[Laurent-Gengoux et al., 2013] Laurent-Gengoux, C., Pichereau, A., and Vanhaecke, P. (2013).

Poisson Structures. Grundlehren Der Mathematischen Wissenschaften. Springer-Verlag, Berlin
Heidelberg
[Lee, 2003] Lee, J. M. (2003). Introduction to Smooth Manifolds. Graduate Texts in Mathe-

matics. Springer-Verlag, New York
[Lee, 2009] Lee, J. M. (2009). Manifolds and Differential Geometry. Number 107 in Graduate

Studies in Mathematics. American Mathematical Society, Providence
∗lavau@math.univ-lyon1.fr
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[Rothe and Rothe, 2010] Rothe, H. J. and Rothe, K. D. (2010). Classical and Quantum Dynamics
of Constrained Hamiltonian Systems, volume 81 of World Scientific Lecture Notes in Physics.
World Scientific
Notice that reference [Lee, 2003] is the first (2003) edition. The second (2012) edition has been
widely revised and the chapters have been shuffled so that the references to the first edition do
not correspond to the same in the second edition.

Notations: we will use Einstein summation convention on sums over space-time coordinates:
when an index appears twice (only) in a term, and is such that it appears once as an exponent,
and once as a bottom index, then one may get rid of the sum sign, and understand that the sole
presence of the repeated indices symbolizes the summation. For exemple, when we write gijej
(where gij symbolizes a metric and ej is a covector), it mathematically means

∑
1≤j≤n gije

j . We
would not use this convention for summation other than space-time coordinates which are such
that there is one index up and one index down. The kronecker delta will always have one index
up and one index down, as in δij . We also widely use the rationalized Planck units, where:

c = 4πG = ~ = ε0 = kB = 1

Acknowledgments: I would like to thank Nikita Belousov, Casey Blacker, Leonid Ryvkin
and Gerard Lavau for their insightful comments and ideas. Their help has been invaluable to
improve the quality of the notes and detect the unavoidable mistakes (there are certainly some
surviving in the text).
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1 Mathematical background in linear algebra

The idea of the first chapter is to work over finite dimensional vector spaces and define several
objects that will be later generalized to manifolds. Let E be a (real) vector space of dimension
n. Then it is isomorphic to Rn. A basis of E is a set of n vectors – say e1, . . . , en – that are
linearly independent and that generate the whole vector space.

1.1 The tensor algebra, the symmetric algebra and the exterior algebra

The tensor algebra of E – denoted T (E) – is an infinite family of vector spaces T 0(E), T 1(E), T 2(E), . . .
defined recursively as:

T 0(E) = R and, for all m ≥ 0 Tm+1(E) = E ⊗ TmE

with the convention that R⊗E = E⊗R = E. The symbol ⊗ symbolizes a sort of multiplication,
not between scalars but between vectors – or more generally tensors, hence the name. More
precisely, this tensor product possesses the associativity and distributivity properties of the
multiplication operator:

x1 ⊗ (x2 ⊗ x3) = (x1 ⊗ x2)⊗ x3 = x1 ⊗ x2 ⊗ x3

x1 ⊗ . . .⊗ (xi + y)⊗ . . .⊗ xm = (x1 ⊗ . . .⊗ xi ⊗ . . .⊗ xm) + (x1 ⊗ . . .⊗ y ⊗ . . .⊗ xm)

for every 1 ≤ i ≤ m and every vectors x1, . . . , xm, y ∈ E. Notice however that the tensor product
⊗ is not commutative, contrary to the usual multiplication on scalars. Since we are working on
vector spaces, we assume that it is linear in every variable, that is, given any scalar λ ∈ R:

λ(x1 ⊗ . . .⊗ xm) = (λx1)⊗ . . .⊗ xm = x1 ⊗ . . .⊗ (λxi)⊗ . . .⊗ xm = x1 ⊗ . . .⊗ (λxm)

Thus, elements of the m-th tensor power of E – denoted Tm(E) or sometimes E⊗m – are literally
products of vectors of E. This has to be contrasted (and not to be confused) with the cartesian
product E × . . .× E where multiplication by a scalar satisfies:

λ(x1, . . . , xm) = (λx1, λx2, . . . , λxm)

and where distributivity over addition is not satisfied:

∀ 1 ≤ i ≤ m (x1, . . . , xi + y, . . . , xm) = (x1, . . . , xi, . . . , xm) + (0, . . . , y, . . . , 0)

This comes from the fact that the cartesian product E × . . . × E actually corresponds to the
direct sum E⊕m = E ⊕ . . . ⊕ E (m-times). This discussion shows that Tm(E) is of dimension
nm, whereas E⊕m is of dimension n×m. A basis of Tm(E) is explicitely given by the following
tensor products: {

ei1 ⊗ . . .⊗ eim
∣∣∣ 1 ≤ i1, . . . , im ≤ n

}
(1.1)

Additionally, associativity of the tensor product implies that:

T k(E)⊗ T l(E) ⊂ T k+l(E) (1.2)

An algebra that is a graded vector space and whose product satisfies a similar condition as
Equation (1.2) is called a graded algebra:
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Definition 1.1. A graded vector space is a family of vector spaces E = (Ei)i∈Z, indexed over
Z (not all Ei need be non-zero). The indices are integers and called degrees, and are denoted
|x| = i for any homogeneous element x ∈ Ei. We say that E is non-negatively graded (resp.
non-positively graded) if E = (Ei)i≥0 (resp. E = (Ei)i≤0).

A graded algebra is a graded vector space A =
⊕

i∈ZAi equipped with a R-bilinear operation
· : A×A −! A which satisfies:

Ai ·Aj ⊂ Ai+j

Example 1.2. A vector space E is a graded vector space where every Ei = 0 for i 6= 0 but
E0 = E.
Example 1.3. The tensor algebra is a graded algebra, in which the grading corresponds to the
length of the basis elements. This graded algebra is non-negatively graded.

The tensor algebra T (E) contains two particular subspaces1: the one formed by linear com-
binations of fully symmetrized basis elements of T (E) – it is the symmetric algebra S(E), and
the one formed by linear combinations of fully anti-symmetrized basis elements of T (E) – it is
the exterior algebra

∧•(E). Both will be graded algebra, with respect to their product.
Remark 1.4. When we write a bullet • as an index or an exponent we want to emphasize that
the space is graded, e.g.

∧•(E) =
∧0(E)⊕

∧1(E)⊕ . . .⊕
∧n(E).

Both the symmetric algebra and the exterior algebra are actually graded sub-vector spaces
of T (E), that is to say: they both decompose as a family of vector spaces S(E) =

⊕∞
m=0 S

m(E)
and

∧•(E) =
⊕n
m=0

∧m(E), which are such that Sm(E),
∧m(E) ⊂ Tm(E), for every m ≥ 0. The

graded space S(E) is the subspace of T (E) that is invariant under the action of any permutation
σ on the labels of the basis vectors. More precisely, for everym ≥ 1, the space Sm(E) is generated
(as a vector subspace of Tm(E)) by the following elements:

ei1 � ei2 � . . .� eim = 1
m!

∑
σ∈Sm

eiσ(1) ⊗ eiσ(2) ⊗ . . .⊗ eiσ(m) (1.3)

The symmetrized product � symbolizes that the tensor ei1 � ei2 � . . . � eim is invariant under
the action of any permutation of m elements σ ∈ Sm. In particular, invariance under the
permutation (1 2) reads:

ei1 � ei2 = ei2 � ei1
Hence the symmetric product is commutative. Any other combination of permutations leaves the
product unchanged. The graded space S(E) equipped with the product � is a (commutative)
graded algebra because it satisfies a similar condition as Equation (1.2):

Sk(E)� Sl(E) ⊂ Sk+l(E)

Counting the number of ways one can choose m elements (with possible repetitions) among n
basis vectors in order to construct the basis elements defined in Equation (1.3), one can check
that one obtains all the basis elements by restricting oneself to 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n:{

ei1 � . . .� eim
∣∣∣ 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n

}
(1.4)

Then, the dimension of the space Sm(E) is
(n+m−1

m

)
, thus one can see that it increases with m.

The symmetric algebra is thus infinite dimensional, as is the tensor algebra.
1Actually the symmetric algebra and the exterior algebra are quotient of the tensor algebra, but there exists

a canonical isomorphisms between those and the subspaces of E that we describe.
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The exterior algebra, on the other hand, is generated (as a vector space) by elements of T (E)
invariant under signed permutations. Let us explain what it means. For every m ≥ 1, the space∧m(E), whose elements are called m-vectors or multivectors, is generated (as a vector subspace
of Tm(E)) by the following elements:

ei1 ∧ ei2 ∧ . . . ∧ eim =
∑
σ∈Sm

(−1)σeiσ(1) ⊗ eiσ(2) ⊗ . . .⊗ eiσ(m) (1.5)

where (−1)σ is the signature of the permutation σ. Using the Levi-Civita symbol εσ(1)...σ(m) =
(−1)σε1...m, set with the convention that ε1...m = 1, one obtains the alternative, more physicists
oriented, formula:

ei1 ∧ ei2 ∧ . . . ∧ eim =
∑
σ∈Sm

εσ(1)...σ(m) eiσ(1) ⊗ eiσ(2) ⊗ . . .⊗ eiσ(m)

In particular the first few elements are:

for m = 0
0∧

(E) ' R

for m = 1
1∧

(E) ' E
for m = 2 ei ∧ ej = ei ⊗ ej − ej ⊗ ei
for m = 3 ei ∧ ej ∧ ek = ei ⊗ ej ⊗ ek + ej ⊗ ek ⊗ ei + ek ⊗ ei ⊗ ej

− ei ⊗ ek ⊗ ej − ek ⊗ ej ⊗ ek − ej ⊗ ei ⊗ ek

There exists another convention, which is such that x ∧ y = 1
2(x ⊗ y − y ⊗ x) but this is not

convenient for geometrical purposes, but which is the natural product when the exterior algebra
is obtained through a quotient of the tensor algebra. These subtleties are discussed at large in
Chapter 12 of [Lee, 2003] (Chapter 14 in the 2012 edition).

The wedge product ∧ is defined so that the tensor ei1 ∧ ei2 ∧ . . . ∧ eim is invariant under any
signed permutation (−1)σσ of m elements. For any permutation σ ∈ Sm, the general formula is
the following:

ei1 ∧ . . . ∧ eim = (−1)σeiσ(1) ∧ . . . ∧ eiσ(m)

or, using the Levi-Civita symbol:

ei1 ∧ . . . ∧ eim = εσ(1)...σ(m)eiσ(1) ∧ . . . ∧ eiσ(m)

where here, the Einstein summation convention is not used! To illustrate these rather abstract
formulas, let us pick up the transposition (1 2) (of signature −1). Then, invariance of the
bivector ei1 ∧ ei2 under the action of the signed permutation −(1 2) reads:

ei1 ∧ ei2 = −ei2 ∧ ei1 (1.6)

The minus sign on the right hand side is the signature of the transposition (1 2). Another
example σ is the circular permutation (1 2 3) (of signature +1), which is such that ei1 becomes
ei2 , ei2 becomes ei3 and ei3 becomes ei1 . This (signed) permutation leaving the trivector ei1 ∧
ei2 ∧ ei3 invariant means that:

ei1 ∧ ei2 ∧ ei3 = ei2 ∧ ei3 ∧ ei1 (1.7)

More generally, the rule of calculus in the exterior algebra is that, when permuting two
elements, a sign appears only when the signature of the chosen transposition is −1. In particular,
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since it is often difficult to known the signature of a permutation, and since any permutation
can be obtained from a sequence of transpositions (permutation of two elements), permuting
elements two by two while multiplying by −1 until reaching the image of the desired (signed)
permutation is a good technique to obtain the correct sign. Let us illustrate by looking up at
the permutation (1 3 2) = (1 3)(3 2) (its parity is even so its signature is +1). By first using
the transposition (3 2), and then (1 3) one obtains:

ei1 ∧ ei2 ∧ ei3 = −ei1 ∧ ei3 ∧ ei2 = ei3 ∧ ei1 ∧ ei2

We can now study the (signed) action of the cycle (1 2 3 4) = (1 2)(2 3)(3 4) (of signature −1)
on ei1 ∧ ei2 ∧ ei3 ∧ ei4 , which can be obtained through three transpositions:

ei1 ∧ ei2 ∧ ei3 ∧ ei4 = −ei1 ∧ ei2 ∧ ei4 ∧ ei3 = ei1 ∧ ei3 ∧ ei4 ∧ ei2 = −ei2 ∧ ei3 ∧ ei4 ∧ ei1 (1.8)

Since the permutation (1 2 3 4) is such that ei1 becomes ei2 , ei2 becomes ei3 , ei3 becomes ei4 and
ei4 becomes ei1 , one observe that the sign in the right hand side of Equation (1.8) tells us that
the parity of (1 2 3 4) is odd. Additionally, we see that the action of the signed permutation
−(1 2 3 4) leaves ei1 ∧ ei2 ∧ ei3 ∧ ei4 invariant.

Another efficient way of managing cyclic permutations – instead of decomposing them – is to
take the leftmost element, and make it go right through all the terms, so that at each transpo-
sition with its neighbor, one adds a minus sign. At each step, we use Equation (1.6) so that we
ensure that all expressions are equal. For example the signed action of (−1)k−1(1 2 . . . k− 1 k)
leaves the multivector ei1 ∧ . . . ∧ eim invariant, and that can be shown by making ei1 goes right
through the k − 1 vectors on its right:

ei1 ∧ ei2 ∧ . . . ∧ eik ∧ . . . ∧ eim = −ei2 ∧ ei1 ∧ ei3 ∧ . . . ∧ eik ∧ . . . ∧ eim
= ei2 ∧ ei3 ∧ ei1 ∧ . . . ∧ eik ∧ . . . ∧ eim
= (−1)k−2ei2 ∧ . . . ∧ eik−1 ∧ ei1 ∧ eik ∧ . . . ∧ eim
= (−1)k−1ei2 ∧ . . . ∧ eik ∧ ei1 ∧ eik+1 ∧ . . . ∧ eim

The general rule is that for cyclic permutations of the form (1 2 . . . k − 1 k) the parity is the
same as the parity of the integer k− 1. It is as if the vector ei1 had jumped over k− 1 elements
to get in the right place. This strategy could have been used in Equations (1.6), (1.7) and (1.8),
where we obtain that the parity of a transposition is odd, the parity of a circular permutation
of three elements is even, whereas the parity of a circular permutation of four elements is odd.

The properties of the wedge product implies in particular that for every x ∈ E, the bivector
x ∧ x is zero (in the vector space

∧2(E)). Thus, as soon as the same element of E appears
twice in a multivector, then it is automatically zero. For example, let x1, . . . , xm be m linearly
independent vectors of E (so in particular 1 ≤ m ≤ n), then:

x1 ∧ x2 ∧ . . . ∧ xm 6= 0

In the case that one of the xi is a linear combination of the others, say xi =
∑
j 6=i αjxj , then

the m-vector is zero, since:

x1 ∧ . . . ∧ xm =
∑
j 6=i

αj x1 ∧ . . . ∧ xi−1 ∧ xj ∧ xi+1 ∧ . . . ∧ xm︸ ︷︷ ︸
= 0

This has a tremendous consequence: contrary to the symmetric algebra, the exterior algebra is
bounded above. A multivector cannot be composed by more than m vectors, for otherwise it
vanishes. Hence, contrary to the symmetric algebra, the exterior algebra is of finite dimension.
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Due to the fact that the wedge product of two identical elements vanish, one can check that all
the basis elements of

∧m(E) are obtained by restricting oneself to 1 ≤ i1 < i2 < . . . < im ≤ n,
that is to say a basis is formed by the following multivectors:{

ei1 ∧ . . . ∧ eim
∣∣∣ 1 ≤ i1 < i2 < . . . < im ≤ n

}
(1.9)

Then one deduces that the dimension of the vector space
∧m(E) is

(n
m

)
. One can check that

such a dimension is minimal and equal to 1 for m = 0 (i.e. when
∧0(E) = R) and for m = n

(i.e. when
∧n(E) is the one-dimensional vector subspace of T (E) generated by the element

e1 ∧ e2 ∧ . . . ∧ en). The direct sum
∧•(E) =

⊕n
m=0

∧m(E) is then finite dimensional of total
dimension 2n.

Additionally, the definition of the wedge product has been made so that we have the following
property:

(ei1 ∧ . . . ∧ eip) ∧ (eip+1 ∧ . . . ∧ eim) = ei1 ∧ . . . ∧ eim (1.10)

In particular, the product is associative. This allows us to compute the wedge product of a
k-multivectors and l-multi vectors. Notice that the wedge product satisfies Equation (1.10)
precisely because of the absence of any scaling factor on the right hand side of Equation (1.5).
The wedge product then defines a graded algebra structure on the exterior algebra (hence
justifying the name), that is:

k∧
(E) ∧

l∧
(E) ⊂

k+l∧
(E)

More precisely, for any α ∈
∧k(E) and any β ∈

∧l(E), then one has α ∧ β ∈
∧k+l(E), and it

satisfies the following identity:
α ∧ β = (−1)klβ ∧ α

We say that the product is graded commutative, and the exterior algebra is thus a (graded)
commutative graded algebra.
Exercise 1.5. The proof is left as an exercise.

Recall that the dual of the vector space E is the space denoted E∗ of all linear forms on E,
i.e. all the linear maps ϕ : E −! R. While elements of E are called vectors, elements of E∗ are
called covectors. Given a basis e1, . . . , en of E there is a privileged choice of a basis on E∗: the
set of linear maps e1, . . . , en : E −! R, that are such that:

ei(ej) = δij (1.11)

where here δij denotes the Kronoecker symbol2. Such a choice of basis on E∗ can always be made.
Notice the localization of the labels i, j: as indices on vectors, as exponents on covectors. This
has some importance, and is related to Einstein summation convention: for example, imagine
you have a vector v = viei and a covector ϕ = ϕje

j . In particular ϕ ∈ E∗ and can be understood
as a linear form ϕ : E −! R which can act on v and define a real number (we assume Einstein
summation convention throughout):

ϕ(v) = ϕje
j(viei) = ϕjv

i ej(ei) = ϕjv
iδji = ϕiv

i

We passed from the second term to the third by linearity of the dual basis. In the last implicit
sum on the right-hand side, we say that the upper and lower indices have been contracted. The

2Some author use the notation gij instead. Moreover, some authors consider that the real Kronecker symbol is
the one with one index up and one index down. In that case, when they write δij they mean gij . We will try to
use this convention in the present paper.
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result should be an object which does not carry any index, which is precisely the case of the real
number ϕ(v).

One can define the tensor algebra of the dual E∗ and since we are in finite dimension,
T (E∗) '

(
T (E)

)∗. The dual basis of this dual vector space can be obtained from the dual basis
e1, . . . , en and the definition of the tensor product. The action of the dual element ei ⊗ ej on
ek ⊗ el is given by the following:

ei ⊗ ej(ek ⊗ el) = δikδ
j
l

This is equal to +1 if and only if k = i and l = j. From this we deduce that the dual basis to
the basis of T (E) (see Equation (1.1)) is made of the following tensor products:{

ei1 ⊗ . . .⊗ eim
∣∣∣ 1 ≤ i1, . . . , im ≤ n

}
(1.12)

That is to say:
ei1 ⊗ . . .⊗ eim(ej1 ⊗ . . .⊗ ejm) = δi1j1 . . . δ

im
jm

(1.13)

One can also define a symmetric algebra and an exterior algebra associated to the dual E∗,
and we have the following isomorphisms because E is finite dimensional: S(E∗) '

(
S(E)

)∗ and∧•(E∗) ' (∧•(E)
)∗. Notice however that the most obvious basis of S(E∗) and

∧•(E∗) are not
the dual basis of (1.4) and (1.9). Indeed, using the definition of the symmetric product (see
Equation (1.3)) on the dual basis e1, . . . , en of E∗, one obtains a basis of S(E∗), denoted by
vectors of the form ei1 � . . .� eim for 1 ≤ i1 ≤ . . . ≤ im ≤ n. However this basis is not dual to
the basis of S(E) given in Equation (1.4), for:

ei � ej(ek � el) = ei ⊗ ej + ej ⊗ ei

2
ek ⊗ el + el ⊗ ek

2 = (δikδ
j
l + δilδ

j
k)

2

which is equal to 1
2 when k = i and l = j. Thus the element of S2(E∗) that would be considered

to be dual to ei � ej is 2 ei � ej . More generally a dual basis to the basis (1.4) is given by:{
m!(ei1 � . . .� eim)

∣∣∣ 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n
}

This also forms a basis of S(E∗), but one has to remember the factor. The same phenomenon
occurs for

∧•(E∗). Using the definition of the symmetric product (see Equation (1.5)) on the
dual basis e1, . . . , en of E∗, one obtains a basis of

∧•(E∗), denoted by vectors of the form
ei1 ∧ . . . ∧ eim for 1 < i1 < . . . < im < n. However this basis is not dual to the basis of

∧•(E)
given in Equation (1.9), for:

ei ∧ ej(ek ∧ el) = (ei ⊗ ej − ej ⊗ ei)(ek ⊗ el − el ⊗ ek) = 2 (δikδ
j
l − δ

i
lδ
j
k) (1.14)

which is equal to 2 when k = i and l = j. Thus the element of
∧2(E∗) that would be considered

to be dual to ei ∧ ej is 1
2e
i ∧ ej . More generally a dual basis to the basis (1.4) is given by:{ 1
m! (e

i1 ∧ . . . ∧ eim)
∣∣∣ 1 ≤ i1 < i2 < . . . < im ≤ n

}
Let us now conclude this subsection by discussing the role of T (E∗), S(E∗) and

∧•(E∗). The
main point is that the tensor algebra of the dual, denoted T (E∗), can be considered to be the
vector space of multi-linear forms on E. Linear forms on E form the dual space T 1(E∗) = E∗.
Bilinear forms on E are those functions B : E ×E −! R such that on the one hand it is linear
in the first variable B(λx + µy, z) = λB(x, z) + µB(y, z) (for every λ, µ ∈ R and x, y, z ∈ E),
and on the other hand a similar identity holds for the second variable. Bilinear forms on E
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are precisely the elements of T 2(E∗) = E∗ ⊗ E∗ ' (E ⊗ E)∗. A priori bilinear forms may not
be symmetric nor antisymmetric. More generally, a m multilinear form on E is an element
Θ : E × E × . . .× E −! R which is linear in each of its variables:

Θ(x1, x2, . . . , λ xk + µ y, . . . , xm) = λΘ(x1, x2, . . . , xk, . . . , xm) + µΘ(x1, x2, . . . , y, . . . , xm)

Although the following result is computational, it is important, and the proof is useful to un-
derstand how vectors and covectors interact.

Proposition 1.6. There is a canonical isomorphism between m multilinear forms on E and the
elements of Tm(E∗).

Proof. Let Θ be a m multilinear form. Then evaluating it on a set of basis vectors ei1 , . . . , eim
gives a real number Θ(ei1 , . . . , eim) that we denote by Θi1...im . Repeting the process for every
combination of m basis vectors of E, one obtains a family of real numbers. Then, the object
Θi1...im e

i1 ⊗ . . .⊗ eim (Einstein summation convention implied) is an element of Tm(E∗).
Conversely, let Θ be an element of Tm(E∗), and let us decompose it on the basis (1.12):

Θ = Θi1...im e
i1 ⊗ . . .⊗ eim

where Θi1...im ∈ R and where the Einstein summation convention has been used. Then, picking
up m vectors x1 = xj11 ej1 , x2 = xj22 ej2 , . . . , xm = xjmm ejm ∈ E (Einstein summation convention
implied on repeated indices) one can write, using Equation (1.13):

Θi1...im e
i1 ⊗ . . .⊗ eim(x1 ⊗ . . .⊗ xm) = Θi1...imx

j1
1 . . . xjmm ei1 ⊗ . . .⊗ eim(ej1 ⊗ . . .⊗ ejm)

= Θi1...imx
j1
1 . . . xjmm δi1j1 . . . δ

im
jm

= Θi1...imx
i1
1 . . . x

im
m

We define this real number to be Θ(x1, . . . , xm). One can check that the assignment (x1, . . . , xm) 7−!
Θ(x1, . . . , xm) is linear in each of its variable. Thus, Θ can be seen as a m multilinear form on
E.

Now recall that – although it is not mathematically totally rigorous – we consider the sym-
metric algebra and the exterior algebra as subspaces of the tensor algebra. How do they fit
in the picture? It turns out that Sm(E∗) is the space of m multilinear forms that are fully
symmetric, that is to say, those Ξ ∈ Tm(E∗) such that, for any choice of permutation σ ∈ Sm:

Ξ(xi1 , xi2 , . . . , xim) = Ξ(xσ(i1), xσ(i2), . . . , xσ(im))

By Proposition 1.6, the action of a symmetric m multilinear form on a set of m vectors x1, . . . , xm
can be written as follows:

Ξ(x1, . . . , xm) = Ξ(x1 ⊗ . . .⊗ xm) (1.15)

when, on the right hand side, we understand that Ξ has been developed on the basis (1.12) of
Tm(E∗) and Equation (1.13) is used. On the other hand, the space

∧m(E∗) is the space of m
multilinear forms that are fully anti-symmetric, that is to say, those Ω ∈ Tm(E∗) such that, for
any choice of permutation σ ∈ Sm:

Ω(xi1 , xi2 , . . . , xim) = (−1)σΩ(xσ(i1), xσ(i2), . . . , xσ(im))

where (−1)σ is the signature of σ. For example, given a bilinear form B : E × E −! R, the
bilinear form A defined by:

A(x, y) = B(x, y)−B(y, x)

10



is fully antisymmetric because A(x, y) = −A(y, x). By Proposition 1.6, the action of a fully
antisymmetric m multilinear form Ω ∈

∧m(E∗) on a set of m vectors x1, . . . , xm can be written
as follows:

Ω(x1, . . . , xm) = Ω(x1 ⊗ . . .⊗ xm) (1.16)

when, on the right hand side, we understand that Ξ has been developed on the basis (1.12) of
Tm(E∗) and Equation (1.13) is used. We often call the fully anti-symmetric multilinear forms
on E alternating tensors.
Exercise 1.7. Given a trilinear form T ∈ T 3(E∗), check that the trilinear form R defined by:

R(x, y, z) = T (x, y, z) + T (y, z, x) + T (z, x, y)− T (x, z, y)− T (z, y, x)− T (y, x, z)

is fully antisymmetric.

Last but not least, let us give a formula to compute the value of an alternating tensor, when
fed with a bunch of vectors. For every 1 ≤ m ≤ n, it is only defined on decomposable elements
of
∧m(E∗), i.e. those of the form ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕm, for some ϕi ∈ E∗. Here, in particular, the

index is not a coordinate index. Pick up such a decomposable element, then one has:

ϕ1∧ϕ2∧. . .∧ϕm(x1, . . . , xm) = det


ϕ1(x1) ϕ1(x2) . . . ϕ1(xm−1) ϕ1(xm)
ϕ2(x1) ϕ2(xm)
. . . . . . . . .

ϕm−1(x1) ϕm−1(xm)
ϕm(x1) ϕm(x2) . . . ϕm(xm−1) ϕm(xm)

 (1.17)

for every x1, . . . , xm ∈ E. This formula coincides with Equation (1.16) when Ω = ϕ1 ∧ . . .∧ϕm.
Applying this formula to a decomposable alternating 2-tensor ϕ1 ∧ ϕ2, one has:

ϕ1 ∧ ϕ2(x1, x2) = ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1) (1.18)

This equation, when ϕ1 ∧ ϕ2 = ei ∧ ej , and when x1 = ek and x2 = el, gives:

ei ∧ ej(ek, el) = δikδ
j
l − δ

i
lδ
j
k (1.19)

which is precisely one half of Equation (1.14). Thus it gives +1 when k = i and l = j. This
shows that looking at elements of

∧•(E∗) as alternating multilinear forms on E is a well-defined
and even legitimate thing to do. See Chapter 15 of the book [Bamberg and Sternberg, 1988]
for a good presentation on this topic, and Chapter 12 in [Lee, 2003] (Chapter 14 in the 2012
edition) for a detailed, mathematically oriented one (beware of the notations that are different
than here!).
Exercise 1.8. Show that for every alternating tensors Ω ∈

∧m(E), then its evaluation on identical
vectors is zero:

Ω(x1, . . . , x, . . . , x, . . . , xm) = 0

From this result, deduce that for any choice of vectors x1, . . . , xm, if one of the xi is a linear
combination of the others, then Ω(x1, . . . , xm) = 0.

1.2 Scalar product and Hodge star operator

Now suppose that E is additionally equipped with a pseudo-Riemaniann metric, that is to say:

Definition 1.9. A pseudo-Riemaniann metric on a vector space E is a map g from E × E to
R which is:

11



1. bilinear, e.g. for the first term g(λx+ µy, z) = λg(x, z) + µg(y, z) for every λ, µ ∈ R and
x, y, z ∈ E (and the same occurs for the second term)

2. symmetric, i.e. g(x, y) = g(y, x) for every x, y ∈ E

3. non-degenerate, i.e. if g(x, y) = 0 for every y ∈ E then x = 0

All three items are independent of the choses basis of E. Given the definition of the symmetric
algebra, one can see the metric as a bilinear map g : E � E −! R. One can always define a
metric on a vector space since one can check that, given a basis e1, . . . , en, it is sufficient to
define g from its action on the basis vectors ei by:

g(ei, ei) = 1 and g(ei, ej) = 0 when i 6= j, (1.20)

and then to formally extend it to all of E by assuming it is bilinear. Notice however that
there exist alternative choices of scalar product that do not satisfy Equation (1.20), and more
generally one writes3:

gij = g(ei, ej)

The metric can then be represented, in a given basis e1, . . . , en, as an n×n symmetric matrix
G, whose components we write gij . Since the metric is symmetric, i.e. gij = gji, then there are
only n(n+1)

2 independent coefficients in the matrix (the diagonal and the upper triangular part,
or the diagonal and the lower triangular part). Being symmetric, the matrix can be diagonalized:
the number p of positive eigenvalues determines what is called the signature of the metric, which
is denoted by (p, q), the number q being the number of negative eigenvalues. Notice that another
convention uses the reverse order (q, p). Sylvester’s law of inertia ensures that the signature of
the metric tensor g is invariant under any change of basis. There are no null eigenvalue because
the metric is non-degenerate. In particular, the matrix G is invertible. Using these data, one
can write the metric explicitly, as a bilinear symmetric form on E × E:

g = gij e
i � ej ∈ S2(E∗)

where we have used the Einstein summation convention. Using the characterization of symmetric
multilinear forms as elements of T (E∗) (see Equation (1.15)), an explicit computation then shows
that:

g(ek, el) = gij e
i � ej(ek, el) = 1

2gij (ei ⊗ ej + ej ⊗ ei)(ek ⊗ el) = 1
2gij(δ

i
kδ
j
l + δilδ

j
k) = gkl

because gkl = glk. The result is precisely what we should expect.
Remark 1.10. From now on, given a metric g, when we say orthonormal basis, we think of a
basis e1, . . . , en satisfying:

g(ei, ei) = 1 for every 1 ≤ i ≤ p
g(ei, ei) = −1 for every p+ 1 ≤ i ≤ n
g(ej , ek) = 0 for every j 6= k

where p is the number of negative eigenvalues of g. In other words, we put the eigenvectors
with positive eigenvalues (normed to 1) first in order. This is somewhat consistent with some
conventions in Minkowski space whose metric’s signature we set to (3, 1) = (− + ++): we
often consider the time like coordinate to be either the fourth coordinate or the zeroth one. In
any case, the first, second and third coordinates are space-like, and correspond to the positive
eigenvalue +1. Obviously for a pseudo-Riemannian metric there is not negative eigenvalue, as
for an Euclidean metric.

3This notation is used in general relativity: space-time is a four dimensional manifold and the metric gµν is a
notation for g(∂µ, ∂ν).
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The metric induces a morphism of vector space g̃ : E −! E∗:

g̃ : E −−−−−! E∗

x 7−−−−−! g(x, ·) : y 7−! g(x, y)

where we have used the Einstein summation convention. In particular, this definition tells us
that acting on a basis vector with g̃ reads:

g̃(ei) = gij e
j

Moreover, the nondegeneracy of the metric is equivalent to the injectivity of this map, and
hence, of its bijectivity (because E is finite dimensional).
Exercise 1.11. The proof is left as an exercise.

The inverse map is denoted g̃−1 : E∗ −! E and it can be used to define a metric g−1 on
E∗ induced from g, which is such that the maps g̃−1 and g̃ are isometries4. Following the same
lines of argument as above, the scalar product g−1 gives rise to an isometry g̃−1 : E∗ −! E,
which actually is such that g̃−1 = g̃−1. That is to say, we shall have:

g−1(g̃(x), g̃(y)
)

= g(x, y) and g
(
g̃−1(ϕ), g̃−1(χ)

)
= g−1(ϕ, χ)

for every x, y ∈ E and ϕ, χ ∈ E∗. This is equivalent to the commutativity of the following
diagram:

E � E

R

E∗ � E∗

g

g̃ � g̃ g̃−1 � g̃−1

g−1

There is an n×n matrix H associated to the metric g−1 and the basis e1, . . . , en. We adopt
the convention that its components are written gij , with exponents, so that:

g−1(ei, ej) = gij

The metric g−1 then corresponds to a bilinear symmetric operator on E∗ expressed as:

g−1 = gij ei � ej ∈ S2(E)

One can show that the matrix H is the inverse of the matrix G. This implies that the signature
of the metric g−1 is the same as the one of g.
Exercise 1.12. Using the symmetry of G and the fact that it is invertible, prove that H = G−1.

4This is a particular form of the Riesz representation theorem in mathematics, which actually applies to infinite
dimensional Hilbert spaces.
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The maps g̃ and g̃−1 satisfy:

g̃(ei) = gij e
j ∈ E∗ and g̃−1(ek) = gkl el ∈ E

where the Einstein summation convention has been used. These equations explain what people
mean by saying that the metric raises and lowers the indices. For example, take a vector
x = xiei ∈ E, where the xi ∈ R are the coordinates of x with respect to the basis (ei)1≤i≤n.
In physics in general one is only interested in the coordinates xi, then lowering the indices i
amounts to applying g̃ to x:

g̃(x) = xigije
j = xje

j

where we have defined xj := gijx
i, which in the present context are thus the coordinates of g̃(x)

with respect to the basis (ei)1≤i≤n of E∗. Sometimes, the maps g̃ and g̃−1 are called musical
isomorphisms, and are denoted Z (flat) and \ (sharp), respectively:

Z : E −! E∗ and \ : E∗ −! E

They are inverse to one another. This notation is useful because it lightens the notation, by
writing xZ instead of g̃(x), and ϕ

\ instead of g̃−1(ϕ). Then, while x = xiei, we have xZ = xje
j ,

with xj = gjkx
k. That is why we say that Z lowers the indices (of the coordinates!) while the

map \ raises them.
In particular, given a tensor Ai1...ik j1...jl one can raise and lower the indices using the musical

isomorphisms, for example:

A j0 j1...jl
i1...ir−1 ir+1...ik

≡ gj0irAi1...ik
j1...jl (1.21)

where the Einstein summation convention has been used. This has the following mathematical
meaning: A = Ai1...ik

j1...jl ei1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl is a mixed tensor belonging to T k(E∗)⊗
T l(E). The left-hand side of Equation (1.21) is precisely the tensor obtained when one has
applied \ = g̃−1 on the r-th covariant leg of A. In other words (with Einstein summation
convention):

A j0 j1...jl
i1...ir−1 ir+1...ik

ei1 ⊗ . . .⊗ eir−1 ⊗ ej0 ⊗ eir+1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl
=
(

idE∗ ⊗ . . . idE∗︸ ︷︷ ︸
r−1 terms

⊗\⊗ idE∗ ⊗ . . . idE∗︸ ︷︷ ︸
k−r terms

⊗ idE ⊗ . . . idE︸ ︷︷ ︸
l terms

)
(A)

is an element of T r−1(E∗)⊗ E ⊗ T k−r(E∗)⊗ T l(E).
The metric g can be extended to the exterior algebra

∧•(E) by using the Gram determinant.
For every 1 ≤ m ≤ n, we will define it first on decomposable multivectors, i.e. those elements
of
∧m(E) that are of the form x1 ∧ . . . ∧ xm for x1, . . . , xm ∈ E, and then extend it to all of∧m(E) by linearity in each argument. More precisely, let α, β ∈

∧m(E) be two decomposable
multivectors, so that they can be written as α = x1 ∧ . . . ∧ xm and β = y1 ∧ . . . ∧ ym. Then we
define the scalar product of α and β as:

〈α, β〉 = det


g(x1, y1) g(x1, y2) . . . g(x1, ym−1) g(x1, ym)
g(x2, y1) g(x2, ym)
. . . . . . . . .

g(xm−1, y1) g(xm−1, ym)
g(xm, y1) g(xm, y2) . . . g(xm, ym−1) g(xm, ym)


The determinant on the right hand side ressembles what is called the Gram determinant.
Exercise 1.13. Prove that the so-called scalar product 〈α, β〉 is symmetric and bilinear.
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Exercise 1.14. Prove that if e1, . . . , en is an orthonormal basis of E (see Remark 1.10 for a
definition), the scalar product satisfies:

〈ei1 ∧ . . . ∧ eim , ej1 ∧ . . . ∧ ejm〉 = gi1j1gi2j2 . . . gimjm (1.22)

Then, since anym-multivector can be written as the linear sum of decomposablem-multivectors
– such as the basis (ei1 ∧ . . . ∧ eim)1≤i1<...<im≤n of

∧m(E) – one can extend the inner product
to the whole of

∧m(E) by enforcing linearity on each argument. For example, let α =
∑
i αi

and βj =
∑
j βj be two m-multivectors written as linear combinations of the decomposable

multivectors αi and βj ; then we set:

〈α, β〉 =
∑
i,j

〈αi, βj〉

We apply the same idea at every level 1 ≤ m ≤ n− 1 (for m = 0 and m = n the space
∧m(E)

is one-dimensional) so that the scalar product is defined on the entirety of the exterior algebra∧•(E). It can be shown that the left hand side does not depend on the decomposition of α and β
in terms of decomposable multivectors (see a proof in the Appendix of Chapter 18 of [Bamberg
and Sternberg, 1988]). This definition also work on

∧•(E∗) as well, when one takes g−1 instead
of g.

Proposition 1.15. The so-called scalar product 〈α, β〉 is non-degenerate so it indeed bears well
its name.

Proof. One can suppose that 1 ≤ m ≤ n−1 and that the basis of E is orthonormal with respect
to the metric g. Let α be an m-multivector such that:

〈α, β〉 = 0 for every β ∈
m∧

(E) (1.23)

The element α admits the following decomposition on the basis of
∧m(E):

α = αi1...imei1 ∧ . . . ∧ eim

where the Einstein summation convention has been used, and where we assumed i1 < . . . < im.
Apply Equation (1.23) to ei1 ∧ . . . ∧ eim , for some chosen i1 < . . . < im. Then by Equation
(1.22), one obtains 0 = 〈α, ei1 ∧ . . .∧ eim〉 = αi1...im . Doing this for every basis vector of

∧m(E),
one proves that α = 0.

Then, since dim(
∧m(E)) = dim(

∧n−m(E)) =
(n
m

)
, one can use the inner product on the

exterior algebra to identify
∧m(E) and

∧n−m(E), via what is called the Hodge star operator.
Let (ei)1≤i≤n be a basis of E and denote by

ω = 1√
|det(G)|

e1 ∧ . . . ∧ en (1.24)

the standard volume element of E, which also generates the one-dimensional space Λn(E).
The normalization is such that 〈ω, ω〉 = (−1)q, which depends on the number q of negative
eigenvalues of the metric.
Exercise 1.16. The proof is left to the reader.
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Then, the Hodge star operator is a linear map5 ? :
∧•(E) −!

∧n−•(E) which is defined on∧m(E) (for every 1 ≤ m ≤ n) by the following identity:

α ∧ (? β) = 〈α, β〉ω (1.25)

for every two m-multivectors α, β ∈
∧m(E)6. Notice that a choice of orientation for E has a

direct consequence on the sign of the volume form, and thus on the definition of the Hodge
star operator. This indirect definition can be made more explicit by looking at the effect of
? on a basis of

∧m(E). For any ordered subset J = {j1, . . . , jm} of {1, . . . , n} (i.e. such that
1 ≤ j1 < . . . < jm ≤ n), let us call Jc = {1, . . . , n} − J the ordered set corresponding to the
remaining integer that do not belong to J . We denote the n−m elements of Jc as jm+1, . . . , jn;
they are such that jk < jl for m < k < l. Then, we denote:

eJ = ej1 ∧ . . . ∧ ejm and eJc = ejm+1 ∧ . . . ∧ ejn

Moreover, let σJ be the permutation of n elements that sends the ordered set {1, . . . , n} to
{j1, . . . , jm, jm+1, . . . , jn}, i.e. it is such that σJ(k) = jk. Thus, under the action of σJ , the
n-form e1 ∧ . . . ∧ en becomes eJ ∧ eJc . Then, by fixing an ordered set I = {i1, . . . , im} of m
elements 1 ≤ i1 < . . . < im ≤ n and by computing every term of the form eJ ∧ ?(eI) for every
ordered set J = {j1, . . . , jm} ⊂ {1, . . . , n}, one obtains the following formula:

? (eI) =
∑

J⊂{1,...,n}
J ordered

(−1)σJ 〈eJ , eI〉√
|det(G)|

eJc (1.26)

where 〈eJ , eI〉 is a notation for 〈ej1 ∧ . . . ∧ ejm , ei1 ∧ . . . ∧ eim〉, which is a minor of the Gram
matrix.
Exercise 1.17. Using Equation (1.25), show that in R3 with standard basis e1, e2, e3 and with a
metric g = gij e

i � ej :

? ei = 1√
|det(G)|

(
g1i e2 ∧ e3 − g2i e1 ∧ e3 + g3i e1 ∧ e2

)
? (ei ∧ ej) = 1√

|det(G)|

(
det

(
g2i g2j
g3i g3j

)
e1 − det

(
g1i g1j
g3i g3j

)
e2 + det

(
g1i g1j
g2i g2j

)
e3

)

and check that these formulas are indeed those corresponding to Equation (1.26).

Finding an orthonormal basis with respect to the metric (see Remark 1.10 for the definition)
is equivalent to diagonalizing the associated matrix G, and rescale the diagonal values so that
they become either 1 or −1. The determinant is then the product of the diagonal values gii,
and its absolute value is 1. For any ordered m-index I = {i1, . . . , im} ⊂ {1, . . . , n}, one sets
λI = gi1i1gi2i2 . . . gimim the product of the m diagonal values. Then, assuming the basis e1, . . . , en
is orthonormal, one has:

? (eI) = (−1)σIλI eIc = ± eIc (1.27)

For an explicit formulation using coordinates, see the nCatLab.
Let us illustrate Equation (1.26) on several examples. First, the following two identities:

? (1R) = ω and ? ω = (−1)q 1R
5This notation means that for every 1 ≤ m ≤ n the Hodge star operator sends

∧m(E) to
∧n−m(E).

6Notice that in general the Hodge star is usually defined on covectors. In that case the one shall use ei instead
of ei, and the normalization factor

√
|det(G)| instead of

√
|det(G−1)|.
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are valid in every case, where 1R is the generator of
∧0(E) = R, i.e. 1R = 1. When E = R2

with the standard Euclidean metric and standard orientation,
∧1(E) is two-dimensional as well

and can be identified with E, so that the Hodge star operator can be seen as an endomorphism
of E and coincides with a rotation by π

2 . This can be checked on any orthonormal basis {e1, e2}
of E =

∧1(E), since we have:

? e1 = e2 and ? e2 = −e1

When E = R3 with the standard Euclidean metric and standard oriention, the two spaces∧1(E) ' E and
∧2(E) are both three-dimensional and the Hodge star operator draws a rela-

tionship between the wedge product and the cross product:

?(x× y) = x ∧ y and ? (x ∧ y) = x× y

Exercise 1.18. Can you compute the effect of the Hodge star operator on Minkowski space ?
The Minkowski metric has signature (3, 1).

Last but not least: the Hodge star operator is not an involution of the exterior algebra, but
almost:

? ? α = (−1)m(n−m)+q α (1.28)

for any m-multivector α, and where q is the number of negative eigenvalues in the signature (p, q)
of the metric. This implies that, the inverse to the hodge star operator ? :

∧m(E) −!
∧n−m(E),

is the operator ?−1 :
∧n−m(E) −!

∧m(E) defined by:

?−1 = (−1)m(n−m)+q ? (1.29)

The final identity worth noticing is:

〈?α, ? β〉 = (−1)q〈α, β〉 (1.30)

This equation proves that the Hodge star operator is almost an isometry of the exterior algebra,
up to a sign.
Exercise 1.19. Using Exercise 1.17, prove that in R3 with the given metric g,

? ? ei = (−1)q ei and ? ? (ei ∧ ej) = (−1)q ei ∧ ej

Exercise 1.20. Using Equation (1.27) and the fact that (−1)σcI = (−1)σI+m(n−m), prove Equation
(1.28), that in turns implies Equation (1.30).

Finally notice that usually the Hodge star operator is defined on the exterior algebra of
covectors

∧•(E∗). Pay heed to the differences that this implies: in particular one should use
G−1 instead of G, and use exponents (resp. indices) in place of indices (resp. exponents).
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2 Differential calculus on Rn

This chapter is dedicated to the study of smooth functions, vector fields and differential forms
on the euclidean vector space E = Rn. A function f : Rn −! R that is infinitely differentiable is
called smooth and the set of all such functions is denoted C∞(Rn). It is an infinite dimensional
real vector space, and since the product of two smooth functions is always smooth, it is actually
an algebra over R. Vector fields are derivations of this algebra, while differential 1-forms are
their dual objects.

2.1 Tangent vectors and vector fields on Rn

In this section we generalize the notion of tangent vector to a curve. The idea is the following:
assume n = 3 and that we represent the trajectory of a physical object in space by a parametrized
(differentiable) curve γ : [0, 1] −! R3. For every t0 ∈ [0, 1], the velocity vector γ̇(t0) is often
represented as a tangent vector to the curve which has the following properties:

1. it is a 3-dimensional vector based at γ(t0);

2. it is tangent to the curve and points towards the future, i.e. towards the points γ(t1), for
small t1 > t0;

3. its norm is the velocity ‖γ̇(t0)‖ of the physical object at time t0.

The direction and the norm of the tangent vector are somewhat ”internal” informations because
they can be represented by an abstract vector XΓ(t0) based at the origin of an abstract 3-
dimensional space, and which points in the same direction as γ̇(t0) and has the same norm. The
base point at which the velocity vector is defined however is an external information since it
depends on the curve γ.

Hence, an abstraction of the velocity vector and of the data contained in the three items
above can be equivalently represented by a couple (γ(t0), Xγ(t0)) of the product space R3 ×R3.
The first R3 is the ”position space” (or configuration space): it is the space in which the trajectory
γ of the physical object takes values. The second R3 is the ”velocity space”: for any given point
x ∈ R3 (of the position space), The curve γ : t −! R3 encoding the trajectory of a physical
object defines a path in the position space. When t varies in [0, 1], the direction and the norm
of the tangent vector of γ varies, which in turn defines a path X : t −! Xγ(t) in the velocity
space. Thus, the path t −! (γ(t), Xγ(t)) defines a curve in R3 × R3 which contains every data
on the physical position of the object and its velocity.

Another way of looking at tangent vectors is the following: let t0 ∈]0, 1[, then the tangent
vector γ̇(t0) acts on any smooth function f ∈ C∞(R3) by:

γ̇(t0)(f) = d(f ◦ γ)
dt

(t0) (2.1)

In particular, if f is a function locally constant at γ(t0), then γ̇(t0)(f) = 0. What is not apparent
on this equation is that, although the right hand side involve γ, the left hand side only depends
on the velocity vector at the point γ(t0). Any other curve η : [0, 1] −! R3 such that η(t0) = γ(t0)
and such that η̇(t0) = γ̇(t0), satisfies d(f◦γ)

dt (t0) = d(f◦η)
dt (t0). This implies that we can forget

about the dependency on the curve and look at elements of the tangent space as linear maps
sending functions to real numbers: for any given point x ∈ R3 and any vector Xx ∈ R3, pick up
a parametrized curve γ : [0, 1] −! R3 and t0 ∈]0, 1[ such that γ(t0) = x, and that γ̇(t0) = Xx,
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Figure 1: Usually we represent a path and its tangent vectors on the same drawing. The tangent
vector γ̇(t) is based at the point γ(t) but this is not rigorous, mathematically: the norm and the
direction of γ̇(t) characterizes the tangent vector, and the base point is an external information
reminding the reader that the tangent vector is attached to the point γ(t).

Figure 2: The figure on the left represents the path γ in the ”position space” Rn, and the figure
on the right is a possible representation of the path X : t 7! Xγ(t) of velocity vectors tangent
to the curve γ, in the ”velocity space” Rn (to determine the exact form of this path, one has
to compute every γ̇(t)). For each t ∈ [0, 1], the vector Xγ(t) has the same norm and the same
direction as γ̇(t). The path t 7−! (γ(t), Xγ(t)) in the abstract product space Rn × Rn contains
the same data which is represented in Figure 1.

then Xx defines a linear morphism Xx : C∞(R3) −! R via Equation (2.1). Due to the properties
of the time derivative, one can show that this action satisfies the following properties:

Xx(λ f + µg) = λXx(f) + µXx(g) (2.2)
Xx(fg) = Xx(f)g(x) + f(x)Xx(g) (2.3)

for any f, g ∈ C∞(R3) and λ, µ ∈ R. The first equation characterizes the fact that Xx :
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C∞(R3) −! R is a linear morphism, whereas the second equation implies that Xx acts as what
we call a derivation at x. Actually, we will see that the action of the vector Xx on a function f
can be identified with the directional derivative of f in the direction Xx, evaluated at the point
x (see below).

Generalizing this observation to n-dimensional vector spaces gives the following definition:
the tangent space to Rn at a given point x is the vector space of linear morphisms that are
derivations at x, i.e. all the maps Xx : C∞(Rn) −! R satisfying Equations (2.2) and (2.3); it is
denoted TxRn. The following Lemma says that every directional derivative is a derivation at x:

Lemma 2.1. Let v ∈ Rn and x ∈ Rn. The linear morphism Dv,x : C∞(Rn) −! R defined by:

Dv,x(f) = d

dt

∣∣∣∣∣
t=0

f(x+ tv)

is a derivation at x, i.e. Dv,x ∈ TxRn.

Exercise 2.2. Prove this Lemma, using Equation (2.1).

Let e1, . . . , en be the standard basis of Rn. We denote by ∂
∂xi

∣∣∣
x

the directional derivative at
x associated to the basis vector ei by Lemma 2.1:

∂

∂xi

∣∣∣∣∣
x

= Dei,x

The notation is such that the action of ∂
∂xi

∣∣∣
x

precisely coincides with what is expected from such
a directional derivative:

∂

∂xi

∣∣∣∣∣
x

(f) = ∂f

∂xi
(x)

From the definitions of such elements, we deduce the following Lemma:

Lemma 2.3. The n directional derivatives ∂
∂x1

∣∣∣
x
, . . . , ∂

∂xn

∣∣∣
x

at the point x are linearly indepen-
dent, and there is a one-to-one correspondence between vectors v of Rn and directional derivatives
Dv,x:

v = viei  −−−−−−−−! Dv,x = vi
∂

∂xi

∣∣∣∣∣
x

Proof. This result can be shown as follows: pick up a set of scalars λ1, . . . , λn and assume that∑n
i=1 λi

∂
∂xi

∣∣∣
x

= 0. Thus in particular, applying it to the i-th coordinate function xi : Rn −! R
gives λi = 0. Also one notices that the assignment v 7−! Dv,x is a linear morphism. This shows
that differential derivative decompose as v,x = vi ∂

∂xi

∣∣∣
x
. Finally, this result is used to prove that

the linear map v 7−! Dv,x is injective. This proves that there is a one-to-one correspondence
between Rn and the space of directional derivatives at x.

The following proposition explains why this is also true for derivations at x:

Proposition 2.4. The n directional derivatives ∂
∂x1

∣∣∣
x
, . . . , ∂

∂xn

∣∣∣
x

at the point x form a basis
of TxRn. In particular it means that directional derivatives at x and derivations at x are in
one-to-one correspondence, and that TxRn is a n-dimensional vector space.
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Proof. We know by Lemma 2.1 that directional derivatives are derivation at x. This, together
with Lemma 2.3, implies that the assignment v 7−! Dv,x is an injection from Rn into TxRn. We
need only show that it is surjective. It can be proven by assigning, to each derivation Xx at x,
a vector v so that its i-th coordinate coincides with X(xi): v = Xx(xi)ei. Then, showing that
Dv,x = X is just a matter of using Taylor’s series expansion (the Hadamard Lemma). For a
detailed proof, see Proposition 3.2 in [Lee, 2003].

Thus, any tangent vector Xx at x decomposes in this basis as:

Xx = Xi
x

∂

∂xi

∣∣∣∣∣
x

(2.4)

where the Xi
x are real numbers, and result from applying Xx to the i-th coordinate function

xi : Rn −! R, that is to say:
Xi
x = Xx(xi)

The vector v = Xi
xei of Rn which has the same coordinates as Xx then induces a directional

derivative Dv,x that precisely coincides with Xx:

Xx = DXi
xei,x

The one-to-one correspondence between directional derivatives at x and derivations at x is
summarized by the following sequence of operations:

Xx = Xi
x

∂

∂xi

∣∣∣∣∣
x

−−−−−−−−−! v = Xi
xei −−−−−−−−−! Dv,x = vi

∂

∂xi

∣∣∣∣∣
x

= Xx

Here, vi = Xi
x by construction. This sequence also describes the canonical isomorphism between

Rn and TxRn. We will often identify Rn with its image under the canonical bijection v 7! Dv,x,
and will either use the notation (x,Xx) or the notation Xx for a tangent vector in TxRn,
depending on how much emphasis we wish to give to the point x.
Example 2.5. In relativity, if xµ are coordinates of a point particle in space-time, then the four-
velocity, often represented by its coordinate Uµ = dxµ

dτ (where τ is the proper time), is a tangent
vector to the world line of the particle.

So far we have used a geometric perspective (tangent vectors to a curve) to determine
algebraic properties that they satisfy: Equation (2.2) and (2.3). Then, we have adopted the
other perspective: we started from all the linear morphisms from C∞(Rn) to Rn satisfying these
equations, and we have shown that they are directional derivatives. Thus we started from
algebraic properties to come back to the geometric realm. We will see in the following that this
alternance between geometric and algebraic perspectives are central in the discussion. This one-
to-one correspondence actually allows us to transform cumbersome geometric considerations into
easier algebraic computations, and conversely, to find clear geometric illustrations of algebraic
obscure notions. Let us now generalize the notion of tangent vector, to the whole of Rn:

Definition 2.6. The disjoint union of all tangent spaces:

TRn =
⊔
x∈Rn

TxRn

is called the tangent bundle of Rn.
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The word ‘bundle’ means that several things of the same kind have been fastened or held
together. We call it a trivial (vector) bundle because it is homeomorphic7 to Rn × Rn. In the
latter cartesian product, we call the space on the left the base and the space on the right the
fiber. The fiber at x is the tangent space TxRn, which can then be identified with the product
{x} × Rn. An element of the tangent bundle is a couple (x,Xx), where x is a point in Rn and
Xx is a tangent vector at x. The projection on the first variable:

π : TRn −−−−−! Rn

(x,Xx) 7−−−−−! x

is surjective, and the pre-image of x through π is the tangent space TxRn. This defines a short
exact sequence:

0 Rn ' TxRn TRn Rn 0π

σ

This sequence splits, which means that the map π admits sections: continuous maps σ : Rn −!
TRn such that π ◦ σ = idRn .

Definition 2.7. We call vector fields over Rn the sections of π:

X : Rn −−−−−! TRn

x 7−−−−−! (x,Xx)

that are infinitely differentiable (or smooth) in the second variable (see Scholie 2.8). We denote
by X(Rn) the R-vector space of vector fields on Rn.

Figure 3: On the left hand side, the ‘geometric’ representation of the tangent vectors to a path
in R. On the right hand side, the abstract representation through the tangent bundle of R: over
each point x there is a fiber TxR ' R, and the vector field, tangent to the path at each point, is
symbolized by a section (dashed curve) of the vector bundle. The ‘height’ of the section in the
fiber over a given point x is equal to the modulus of the tangent vector to the path at x.

By definition, vector fields consist of the assignment to every point x of a tangent vector at
x, denoted Xx, which is, additionally, required to vary smoothly over Rn. We will now explain

7We will actually see later that it is actually diffeomorphic (the notion of equivalence in the category of smooth
manifolds).
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what we mean by that. The tangent bundle TRn is trivial, i.e. it is homeomorphic to the
cartesian product Rn × Rn. We already know a basis on the base: the vectors e1, . . . , en; let us
define a basis on the fiber, denoting it by:

∂

∂x1 , . . . ,
∂

∂xn
(2.5)

This notation is consistent with the notation of the basis vectors of the tangent space TxRn
as in Proposition 2.4, because TxRn ' {x} × Rn, so that one can makes the straightforward
identification:

∂

∂xi

∣∣∣∣∣
x

∈ TxRn  −−−−−−−−!

(
x,

∂

∂xi

)
∈ {x} × Rn (2.6)

Now, given a section X of the tangent bundle, its evaluation at the point x is a tangent
vector Xx which can be decomposed on the standard basis of TxRn as in Equation (2.4). Using
the one-to-one correspondence (2.6), this gives the following correspondence:

Xx  −−−−−−−−!

(
x,Xi

x

∂

∂xi

)
(2.7)

Then, for every 1 ≤ i ≤ n, this defines an assignment:

Xi : Rn −−−−−! R
x 7−−−−−! Xi

x

This provides us with the following criterion for smoothness of sections of the tangent bundle:

Scholie 2.8. Smoothness criterion for vector fields A section X : Rn −! TRn being
smooth means that the applications:

Xi : Rn −−−−−! R
x 7−−−−−! Xi

x

are smooth functions of x (i.e. they are infinitely differentiable).

It turns out that the role of the basis ∂
∂x1 , . . . ,

∂
∂xn is not only computational, for the sake of

the presentation, but has an additional very practical scope. First, the basis elements ∂
∂xi

can be
seen as sections of the tangent bundle, through the following assignment: to every point x, ∂

∂xi

associates the element ∂
∂xi

∣∣∣
x

in the tangent space TxRn. Because the assignment is canonical, we
still denote by ∂

∂xi
these sections, although the reader should remember that, rigorously, they

are not the same mathematical objects as the basis vectors (2.5). Second, this set of sections
forms a basis of the fiber at each point, by Proposition 2.4.

A set of smooth sections that satisfy these two criteria is called a frame. In the present case,
the ∂

∂xi
are in fact constant sections, and thus are automatically vector fields on Rn by Scholie

2.8. They provide a basis for the C∞-module of sections, as the following discussion illustrates.
Given a vector field X, Scholie 2.8 says that the functions Xi are smooth, so that one can define
an additional vector field Xi ∂

∂xi
on Rn. By equivalence (2.7), we observe that the vector field

X and the vector field Xi ∂
∂xi

coincide at every point x. Thus, one can identity the two vector
fields and write:

X = Xi ∂

∂xi
(2.8)

It turns out that every vector field can be uniquely decomposed in such a way. This is why we
call the functions Xi the coordinate functions of the vector field X.
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Example 2.9. Examples of vector fields (every coordinate functions are smooth):

X = y2z
∂

∂x
+ xey

∂

∂y
+ 4 ∂

∂z
in R3

Y = 3 y sin(t) ∂
∂x

+ x3y8z3t9
∂

∂z
+ arctan(x) ∂

∂t
in R4

Z =
{

0 when x ≤ 0
e−

1
x
∂
∂x when x > 0

in R

E = xi
∂

∂xi
in Rn, is called the Euler vector field

Examples of objects which are not vector fields:

1. e−
1
x
∂

∂x
, 2. |xi| ∂

∂xi
, 3. x

y − 1
∂

∂z
, 4.t

1
3
∂

∂t

The first object differs from the vector field Z on the negative semi-axis, and this actually makes
a huge difference: although the function x 7−! e−

1
x is smooth on the right of 0 (its limit is zero),

it explodes in the left of 0. This function is not smooth at 0, let alone continuous: that is why
the object defined in item 1. is not a vector field. In contrast, to avoid this problem, we have
imposed on the object Z to vanish for negative values of x, so that it becomes a well-defined
vector field. The object in item 2. is not smooth at zero because the absolute value function is
not a smooth function (although it is continuous). The third object is not a vector field because
if x 6= 0 then the function y 7−! x

y−1 explodes at 1. The fourth item is not a vector field because
it is not differentiable in 0.
Example 2.10. In quantum mechanics (where space time is R4, say), one can write the wave
function ψ in polar form: ψ = √ρeiS , where ρ is a positive smooth function over R4 and
where S is a real-valued smooth function (over R4). The probability density is ρ = ψ†ψ and
the probability current is denoted j = ρ

m∇S, where ∇ (nabla) symbolizes the gradient (with
respect to spatial coordinates). In coordinate notations this reads: j =

∑3
i=1

ρ
m
∂S
∂xi

∂
∂xi

; the sum
is made over spatial dimensions only. Since the function S is defined all over space-time and is
supposedly smooth, for each fixed time t, the probability current is a vector field (on the space
R3). Representing the time with the fourth coordinate x4, the 4-vector ρ ∂

∂x4 + j defines a vector
field over space-time R4. Using the Schrodinger equation, one can show that the divergence
of this 4-vector vanishes, which can be interpreted as a continuity equation for the probability
current.
Example 2.11. Pick up a solution of the heat equation ∂u

∂t = ∆u in a homogeneous material of
thermal conductivity k (it is a real number then). Assume that this solution is smooth in the
four variables (x, y, z, t), or equivalently (x1, x2, x3, x4). Then, for each time t, the heat flow
defined as q = −k∇u = −

∑3
i=1 k

∂u
∂xi

∂
∂xi

is a vector field on R3 (or at least the part of R3 where
the material is). It indicates at every point of space in which direction the heat flows.

It is important to notice at this point that, when x varies over M , the direction and the
norm of the tangent vector Xx varies (it can even vanish at some point !). Hence one sees that
a vector field has no ”direction” per se, but it is assigned one direction at each point of Rn.
Tangent vectors at x were directional derivatives at x; what would be the similar perspective
for vector fields?

For every function f ∈ C∞(Rn), the assignment x 7−! Xx(f) defines a function from Rn to
R . We call this function X(f) and it satisfies, at every point:

X(f)(x) = Xx(f) = Xi
x

∂f

∂xi
(x)
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Figure 4: Example of a vector field with two points where it vanishes: one from which the vector
field ‘flows out’, and one where it ‘flows in’.

In particular, if f is a constant function, X(f) = 0. Because X is smooth, the coordinate
functions Xi : x 7−! Xi

x are smooth functions of x, as are the derivatives ∂f
∂xi

. Then, the
function X(f) is a smooth function. Then the vector field X can be seen as an endomorphism
of the (infinite dimensional) vector space C∞(Rn), also denoted X:

X : C∞(Rn) −−−−−! C∞(Rn)

f 7−−−−−! X(f) = Xi ∂f

∂xi

This is consistent with the remark that the vector field X can be written as Xi ∂
∂xi

as explained
in Equation (2.8). From this discussion, one sees that the vector field X can be seen as a
directional derivative in the direction of X or, said differently, along the integral curves of X,
i.e. those paths γ in Rn such that X is always tangent to γ: at each time t, Xγ(t) = γ̇(t). A
vector field being a family of tangent vectors indexed over the points of Rn, they inherit the
derivation property of tangent vectors Equation (2.3).

A vector field X induces a derivation of the algebra of smooth functions C∞(Rn), i.e. an
endomorphism of the (infinite dimensional) vector space C∞(Rn) that satisfies the following
identity:

for every f, g ∈ C∞(Rn) X(fg) = X(f) · g + f ·X(g) (2.9)

where · symbolizes the multiplication of function in C∞(Rn). While Equation (2.3) was valid
pointwise (because we were working with tangent vectors, defined at a point), Equation (2.9)
is valid independently of the point. We denote by Der

(
C∞(Rn)

)
the space of all derivations of

C∞(Rn). Conversely, one can show that any derivation of C∞(Rn) is a vector field, in the sense
of Definition 2.7:

Proposition 2.12. Vector fields on Rn are in one-to-one correspondence with derivations of
C∞(Rn):

X(Rn) ' Der
(
C∞(Rn)

)
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Proof. We have shown that every vector field is a derivation, and we just need to show that a
derivation is a vector field. Let X ∈ Der

(
C∞(Rn)

)
and define a section of the tangent bundle

X : Rn −! TRn by:
Xx(f) = X(f)(x)

This equation makes sense because X (f) is a smooth function, and the right hand side is its
evaluation in x. The object Xx is then a derivation at x, i.e. an element of TxRn. One needs
only to prove that the assignment x 7−! Xx is smooth. This is shown for example in Proposition
4.7 in [Lee, 2003] and in Proposition 8.15 in the 2012 edition.

This proposition is important because it shows that there is a correspondence between the ge-
ometric perspective (vector fields on Rn) and the algebraic perspective (derivations of C∞(Rn)).
We have said that passing from one point of view to the other allows to make sense or make
things easier. Let us illustrate this strategy by showing that the algebraic perspective is adapted
to define a Lie bracket on the space of vector fields X(Rn):

Definition 2.13. A Lie algebra is a (real, possibly infinite dimensional) vector space g, equipped
with a bilinear operation [ . , . ] called the Lie bracket, which satisfies the following identities:

skew-symmetry [x, y] = −[y, x]
Jacobi identity [x, [y, z]] = [[x, y], z] + [y, [x, z]]

for every x, y, z ∈ g

Remark 2.14. The Jacobi identity is often written under the following, equivalent but more
symmetric, form:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The form presented in Definition 2.13 is useful because it makes clear that ”the Lie bracket is a
derivation of itself”. Here, by derivation of g we mean any endomorphism δ : g −! g such that:

δ
(
[x, y]

)
=
[
δ(x), y

]
+
[
x, δ(y)

]
Then, notice that to every element x of a Lie algebra (g, [ . , . ]), we can associate a derivation of
g via the adjoint action of x on g:

ad : g −−−−−! Der(g)
x 7−−−−−! adx : y 7−! [x, y]

The Jacobi identity ensures that adx is a derivation of g, for every x. The image ad(g) ⊂ Der(g)
forms what is called the space of inner derivation of g, sometimes denoted inn(g).
Example 2.15. One can always equip an associative algebra (A, ·) with a Lie algebra structure,
by setting:

[a, b] = a · b− b · a

for every a, b ∈ A. In particular, the space of n × n matrices Mn(R) (equivalently, the space
End(E) of a n-dimensional vector space) is an associative algebra, so that we can define a Lie
bracket on it.

Vector fields are derivations of the (infinite-dimensional) space C∞(Rn). Derivations are
special cases of endomorphisms. However, the composition of two vector fields is not a derivation
of C∞(Rn), as the following computation shows:

X
(
Y (fg)

)
= X

(
Y (f) g + f Y (g)

)
= X(Y (f)) g + f X(Y (g)) +

(
X(f)Y (g) +X(g)Y (f)

)
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The latter parenthesis prevents the composite X ◦ Y to be a derivation of C∞(Rn). Hence, the
space of derivations of C∞(Rn) is not stable under composition. However, inspired by Example
2.15, let us define the following operation on the space of vector fields:

[X,Y ](f) = X(Y (f))− Y (X(f)) (2.10)

The right-hand side is a smooth function so the left-hand side is a smooth function as well,
but one needs to show that the bracket [X,Y ] is still a derivation of C∞(Rn), that is to say:
the space X(Rn) ' Der

(
C∞(Rn)

)
is stable under the action of this bracket. The proof of the

following proposition is left as an exercise:

Proposition 2.16. The R-vector space X(Rn) equipped with this operation is a Lie algebra.

Exercise 2.17. Prove that Equation (2.10) defines a Lie bracket, i.e. that it is bilinear (with
respect to real numbers), skew-symmetric, and that it satisfies the Jacobi identity. By expanding
the Lie bracket, prove that the Lie bracket of two vector fields is still a vector field (i.e. a
derivation of C∞(Rn)).

Figure 5: Metaphorical picture of the bracket of vector fields. If one follows for small times first
the integral curve of Y , then the integral curve of X, one arrives at the point x1. Whereas, if
one had followed the integral curve of X first, and then that of Y , one arrives at the point x2.
The Lie bracket [X,Y ] is the vector field whose integral curve links x1 to x2. This discussion
can be made rigorous if one makes the time of walking along integral curves tend to 0. See for
example page 47 of [Baez and Muniain, 1994], where however the last equation is wrong: the
sign should be the opposite, as consequently should be the vector field [X,Y ] on figure 10.

A subtle remark has to be made here. We have seen that every vector field can be decomposed
on the basis of vectors ∂

∂xi
. However, this basis does not form a basis of the R-vector space X(Rn),

which is actually infinite dimensional as a real vector space. More precisely:
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Scholie 2.18. Algebraic characterization of X(Rn) The space X(Rn) is, at the same time:

1. an infinite dimensional R-vector space;

2. a C∞(Rn)-module of finite rank.

The notion of module over a ring is the generalization of the notion of a vector space over a
field. Given a ring (R, ◦), we say that a vector space E is a R-module8 if there is an action · of
R on E which satisfies the following axioms:

r · (x+ y) = r · x+ r · y (r + s) · x = r · y + r · y
r · (s · x) = (r ◦ s) · x 1R · x = x

where r, s ∈ R, x, y ∈ E, and where 1R is the identity of the ring. The reader can check that
these axioms are the same axioms that the scalars have to satisfy when acting on a vector
space. In our case, the field is R and the ring is C∞(Rn). Then, when we say that X(Rn)
is a R-vector space we understand that vector fields can be added, and multiplication by real
scalars is well-defined. When we say that X(Rn) is a C∞(Rn)-module, we mean that vector fields
can be added, and that multiplication by smooth functions is well-defined. Notice that, since
constant functions can be identified with real scalars, the fact that X(Rn) is a R-vector space is
a consequence of the fact that it is a C∞(Rn)-module.

Now, the dimension of a vector space is the minimal number of independent vectors that
generate the space (using only multiplication by real scalars and addition). The rank of a
module is the maximum number of elements which are linearly independent under the action of
the ring. In our case, every vector field X decomposes on the elements ∂

∂xi
as X = Xi ∂

∂xi
, where

the Xi are smooth functions (we see the module structure emerging). Moreover, those constant
sections are linearly independent over C∞(Rn) because by definition the identity Xi ∂

∂xi
= 0

implies Xi = 0. Thus, X(Rn) is a C∞(Rn)-module of rank n. What is crucial in the present
discussion is that the generators of a module need not coincide with a basis of the underlying
vector space, because the multiplication with a ring element generate much different elements
than the multiplication with a scalar. Indeed, one can explicitly compute how the ring of smooth
functions C∞(Rn) acts on a vector field X via multiplication: let f ∈ C∞(Rn), then we define
the vector field fX to be the unique vector field whose coordinate functions are fXi, where
here we understand the product of two functions. In other words:

fX = (f ·Xi) ∂

∂xi

so that (fX)i = f ·Xi, where · symbolizes the multiplication of function in C∞(Rn). Pointwise,
this vector field satisfies (fX)x = f(x)Xx. We see how the structure of C∞(Rn)-module only
needs n-generators to be defined.

However, X(Rn) is an infinite dimensional vector space. This can be shown by contradiction.
Assume there exists a finite number of vector fields X1, . . . , Xr which form a basis of X(Rn) (as
a real vector space), that is: every vector field X would be uniquely written as X =

∑r
s=1 λsXs,

where the λs are real numbers. Then, given a smooth function f , there exists real scalars
µ1, . . . , µr such that fX :

∑r
s=1 µsXs. On the other hand, multiplying

∑r
s=1 λsXs by f gives

fX =
∑r
s=1 fλsXs. By unicity of the decomposition, fλs = µs for every s = 1, . . . , r, which is

impossible most of the time because f need not be constant. The demonstration may be a bit
too much abstract. The idea of the proof is that a finite number of elements cannot form a set

8Actually, in full generality we only require E to be an abelian group. A vector space is an abelian group with
respect to the addition.
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of generators for all the vector fields, because multiplication by any function offers much more
freedom and variability that can be encoded by a mere finite dimensional vector space.

The Lie algebra structure on X(Rn) is defined on top of the vector space structure. Thus,
Scholie 2.18 explains why X(Rn) is a real Lie algebra of infinite dimension, although only a
finite number of constant sections ∂

∂xi
is needed to generate all the vector fields (using the ring

multiplication). This additionally explains why the Lie bracket is bilinear with respect to the
scalars, but not with respect to the smooth functions. More precisely, since every vector field
can be decomposed on the frame ∂

∂xi
, a small computation shows that the Lie bracket of X and

Y reads:
[X,Y ] =

(
X(Y i)− Y (Xi)

) ∂

∂xi
(2.11)

where we recall that Xi and Y i are the i-th coordinate functions associated to X and Y ,
respectively. The Einstein summation convention has been used. Then, for any smooth function
f ∈ C∞(Rn):

[X, fY ] = f [X,Y ] +X(f)Y (2.12)

where the term on the right hand side has to be understood as the multiplication of the function
X(f) with the vector field Y . Equation (2.12) shows that the Lie bracket defined in Equation
(2.10) is not linear with respect to the functions, as expected since it should only be linear with
respect to real numbers.
Remark 2.19. We conclude this section by introducing an alternative notation for the constant
vector fields ∂

∂xi
, that may also be denoted ∂i:

∂i ≡
∂

∂xi

The position of the index i is indeed at the bottom because one should formally consider the
fractional notation ∂

∂xi
as a fraction of fractions:

a
b
c
d

, where the index i is at the top of the
denominator, at the place occupied by the element c. Since the latter fraction can be written
as ad

bc , and that the element c is at the bottom, this justifies that we place the index i at the
bottom of the notation ∂i. I emphasize that keeping track of the position of indices is central in
differential geometry when we work in coordinates. Moreover the above informal reasoning will
have some relevance later in the text. Using Equation (2.11), we deduce that the commutator
of two vectors of the frame vanishes:

[∂i, ∂j ] = 0 (2.13)

2.2 Cotangent vectors and differential 1-forms on Rn

Now let us turn to the elements dual to tangent vectors and vector fields. Given some point
x ∈ Rn we call the cotangent space and we write T ∗xRn the dual of the tangent space at x:

T ∗xRn = (TxRn)∗

Elements of this dual space are called cotangent vectors at x. They are linear forms on TxRn
and there is a canonical bijection between (Rn)∗ and T ∗xRn: since a basis of TxRn is given by
the vectors ∂i|x = ∂

∂xi

∣∣∣
x
, using Equation (1.11) one obtains a dual basis of T ∗xRn whose elements

are denoted dxi|x. In particular one has:

dxi|x
(
∂j |x

)
= δij (2.14)
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Thus, for any tangent vector Xx, one has dxi|x(Xx) = Xi
x. In particular, one observes that it

is as if the tangent vector Xx had been fed with the coordinate function xi : Rn 7−! R that
associates a point to its i-th coordinate:

dxi|x(Xx) = Xx(xi)

One can now extend the notion of cotangent vectors to the one of covector fields, following what
has been said in subsection 2.1.

Definition 2.20. We define the cotangent bundle T ∗Rn to be the union of all cotangent spaces:

T ∗Rn =
⊔
x∈Rn

T ∗xRn

It has several properties: it is a trivial vector bundle over Rn, i.e. it is diffeomorphic to
Rn × (Rn)∗. As expected from the definition of cotangent spaces, the fiber or T ∗Rn is (Rn)∗,
the dual space of the fiber of TRn. Points in T ∗Rn are couples (x, ξx), where ξx is a notation
for cotangent vectors at x; they decompose on the basis of T ∗xRn as ξx,idxi|x, where the ξx,i
are the coordinates of ξx (they are real numbers). The projection on the first variable, denoted
τ : T ∗Rn −! Rn, admits sections:

Definition 2.21. We call covector fields – or differential 1-forms – over Rn the sections of τ :

ξ : Rn −−−−−! T ∗Rn

x 7−−−−−! (x, ξx)

that are infinitely differentiable (or smooth) in the second variable (see Scholie 2.22). We denote
by Ω1(Rn) the R-vector space of covector fields/differential 1-forms on Rn.

Since the cotangent bundle is trivial (i.e. it is diffeomorphic to a cartesian product), one
can define a standard basis on its fiber. The fiber Rn of the tangent bundle is already equipped
with a standard basis: the generators ∂i = ∂

∂xi
. The dual basis would form a basis of the fiber

(Rn)∗ of the cotangent bundle; let us denote this basis by:

dx1, . . . , dxn

and we call it the dual coframe to the given frame. This notation is consistent with the notation
of the basis vectors of the cotangent spaces. Indeed, since T ∗xRn ' {x} × (Rn)∗, we can make
the following identification:

dxi|x ∈ T ∗xRn  −−−−−−−−!
(
x, dxi

)
∈ {x} × (Rn)∗ (2.15)

Thus, the basis vectors dx1, . . . , dxn can also be seen as constant sections of the cotangent
bundle: the differential 1-forms dxi associates, to every point x, the cotangent vector dxi|x via
the above correspondence. Every cotangent vector ξx defined at the point x can be decomposed
on the dual basis defined in Equation (2.14) as ξx = ξx,idx

i|x. Then, because of the injection of
T ∗xRn into T ∗Rn, the one-to-one equivalence defined in Equation (2.15) defines an equivalence:

ξx  −−−−−−−−!
(
x, ξx,idx

i)
where Einstein summation convention has been used. Then, for every 1 ≤ i ≤ n, this defines an
assignment:

ξi : Rn −−−−−! R
x 7−−−−−! ξi,x
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A priori the coordinate functions ξi of a random section ξ are not smooth, unless the section
is smooth, i.e. unless it is a covector field. As for vector fields, this actually provides a first
criterion for smoothness of covector fields (see Scholie 2.22).

Furthermore, this enables us to understand how sections of T ∗Rn act on vector fields. Recall
that we have the following identity, by definition of the dual basis on the fiber of T ∗Rn:

dxi(∂j) = δij

By construction, the constant sections dxi are C∞(Rn)-linear: dxi(Xj∂j) = Xjdxi(∂j) = Xi.
Then, given a section ξ of T ∗Rn and a vector field X, one has:

ξ(X) = ξiX
jdxi(∂j) = ξi ·Xi (2.16)

where the Einstein summation convention has been used, and where · symbolizes the multiplica-
tion of function in C∞(Rn). The term on the right of Equation (2.16) is a product of functions,
thus the term on the left is a function as well. Evaluating both terms in a point x gives:

ξ(X)(x) = ξx,iX
i
x = ξx(Xx)

where the term in the middle is a sum of products of real numbers. A priori the function
ξ(X) : x 7−! ξx(Xx) is not smooth, unless ξ is a smooth section of T ∗Rn, i.e. unless it is a
covector field. This observation provides the second criterion for smoothness of covector fields:

Scholie 2.22. Smoothness criteria for covector fields A section ξ : Rn −! T ∗Rn being
smooth means:

1. that the components functions ξi:

ξi : Rn −−−−−! R
x 7−−−−−! ξx,i

are smooth functions of x (i.e. they are infinitely differentiable);

2. or that, equivalently9, for every vector field X, the function:

ξ(X) : Rn −−−−−! R
x 7−−−−−! ξx(Xx)

is smooth.

Example 2.23. An example of a covector field in R2:

ξ =
(
2xy cos(x)− x2y sin(x)

)
dx+ x2 cos(x)dy

We will see in subsection 2.3 that such a differential 1-form is actually the differential of the
function f(x, y) = x2y cos(x).
Example 2.24. A physically oriented example consists of the connections Aµ. Actually they
correspond to a differential 1-form (taking values in a Lie algebra) A = Aµdx

µ.
9The equivalence of the two criteria is shown by noticing that: 1. the second one is implied by the first one

using Equation (2.16) and smoothness of vector fields, and 2. the first one is implied by the second one if one
picks up X = ∂i for every 1 ≤ i ≤ n.
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Hence there are at least two way at looking at covector fields (= differential 1-forms): one
is to see them as smooth sections of the cotangent bundle, and in that case they are smooth if
and only if item 1. of Scholie 2.22 is satisfied. Another way of looking at covector fields is to see
them as being linear morphisms on the space of vector fields, landing in the smooth functions,
that is to say:

Ω1(Rn) ' Hom
(
X(Rn), C∞(Rn)

)
(2.17)

The homomorphisms here have to be understood as homomorphisms of C∞(Rn)-modules. More
precisely, in that case, a covector field ξ can be seen as a linear morphism:

ξ : X(Rn) −−−−−! C∞(Rn)
X 7−−−−−! ξ(X)

The fact that this map lands in the smooth functions for every choice of vector field is precisely
the content of item 2. of Scholie 2.22. Although the latter perspective is often the most used,
the former one is useful to have a glimpse of the geometrical meaning of differential 1-forms.

What is the meaning of covector fields/differential 1-forms? An explanation can be the
following: a differential 1-form ξ : Rn −! T ∗Rn defines, at every point x, a linear form ξx :
TxRn −! R on the tangent space at x. As a map from a n-dimensional space to a 1-dimensional
space, the kernel of this linear form is an hyperplane Hx of TxRn, that is: a n− 1-dimensional
subspace. This hyperplane separates the n-dimensional space TxRn in two (n-dimensional) open
half-spaces. The linear form additionally defines a ‘positive’ half-space H+

x and a ‘negative’ half-
space H−x : the former consists of all tangent vectors Xx such that ξx(Xx) > 0, while the latter
consists of all tangent vectors Xx such that ξx(Xx) < 0. The hyperplane Hx is a separator
between these two half-spaces since ξx|Hx = 0. Since the covector ξx is a linear morphism from
TxRn to R, its level sets are (n− 1)-dimensional affine subspaces defined as follows:

Hx,t =
{
Xx

∣∣ ξx(Xx) = t
}

for every t ∈ R. The notation is consistent with the definition of Hx because Hx,0 = Hx. In
particular, the positive half-space and the negative half-space are union of level sets:

H+
x =

⋃
t>0

Hx,t and H−x =
⋃
t<0

Hx,t

The level sets define a partition of TxRn by parallel affine subspaces. The main point here is
that a linear form is entirely described from its level sets. Smoothly varying the linear form ξx
then has the consequence of smoothly changing its level sets and in particular: their inclination
and their respective distance. Thus a differential 1-form can be seen as a smooth assignment, to
every point x, of a partition of TxRn by parallel affine subspace. Smoothness of this assignment
means that the partition (of the fiber Rn) smoothly varies when the base point varies.

These hyperplanes have a geometric significance: let ξ\ be the vector field corresponding to
ξ through the musical isomorphism \ (where we assume the metric to be the euclidean metric
on Rn). Then the hyperplane Hx = Ker(ξx) defines the tangent space to the transversal to the
integral curve of ξ\. In other words, the tangent vector ξ

\
x is orthogonal to Hx. The distance

between the hyperplanes is an alternative – though equivalent – measure of the length of ξ\: the
hyperplanes are closer to one another at the points where ξ\ has a small modulus, and they are
more distant to one another at the points where ξ\ has a bigger modulus.

Before moving to the next section, we would go for a quick excursion through the realm of
vector bundles (over Rn). The idea of a vector bundle is the following: given a k-dimensional
vector space, Rk say, we attach a copy of such a vector space at each and every point of the
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Figure 6: Visual representation of the geometrical meaning of differential forms. When the base
point varies smoothly, the partition of the tangent space by (n−1)-dimensional affine subspaces
varies smoothly: the inclination and the relative distance of the affine hyperspaces is smoothly
modified. The hyperspace Hx (resp. Hy) is orthogonal to the tangent vector ξ

\
x (resp. ξ

\
y), and

can be seen as the tangent space to the transversal to the integral curve of ξ\ at x (resp. y).

space Rn. This form an enormous space denoted E for example, that we require to be sufficiently
well-defined (to be clear: it should be a topological space, i.e. a space along with a topology
of open sets). The topology on E is chosen so that at least locally, in the neighborhood of any
point, say U , E looks like U × Rk. Trivial vector bundles are precisely those that have this
structure globally, i.e. those of the form Rn ×Rk. It turns out that every vector bundle defined
over Rn has this property. The precise statement is the following:

Definition 2.25. A (trivial) vector bundle of rank k (over Rn) is a topological space E together
with a surjective continuous map π : E −! Rn, satisfying the two following conditions:

1. for every x ∈ Rn, the preimage π−1(x) ⊂ E is a k-dimensional vector space, called the
fiber of E at x and denoted Ex;

2. there exists a homeomorphism Φ : E −! Rn × Rk (called a trivialization of E), making
the following triangle commutative:
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Figure 7: Wherever it makes sense, the kernel of the differential dξ defines the tangent space to
the transversal to the vector field ξ

\.

E Rn × Rk

Rn

Φ

π pr1

where pr1 : Rn ×Rk −! Rn is the projection on the first variable, and such that for every
y ∈ Rn, the restriction of Φ to Ey is a linear isomorphism from Ey to {y} × Rk ' Rk.

Remark 2.26. The second item means that for every u ∈ E, one has the following identity:

π(u) = pr1 ◦ Φ(u)

Notice that, in full generality (i.e. on a smooth manifold), the second item should hold only
locally (see e.g. Chapter 5 of [Lee, 2003], Chapter 10 in the 2012 edition). The fact that Rn is
contractible implies that every vector bundle is trivial, and that we wrote this second item from
the global perspective.
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One should really think of a vector bundle as a bunch of vector spaces stacked together and
labeled by points. The set underlying any vector bundle is the disjoint union of its fiber:

E =
⊔
x∈Rn

Ex

There is a natural topology on a disjoint union, that we call the ‘disjoint union topology’: it is
the finest topology that makes the injective functions φx : Ex ↪−! E continuous. More precisely,
with respect to this topology, U ⊂ E is open if and only if φ−1

x (U) is open in Ex for every x ∈ Rn.
Assuming that every Ex is homeomorphic to Rk with its standard topology, the disjoint union
E =

⊔
x∈Rn Ex equipped with its disjoint union topology is then homeomorphic to the product of

topological space Rn×Rk, where Rn has the discrete topology and the product has the product
topology. Hence, the disjoint union underlying every vector bundle over Rn is homeomorphic to
Rn×Rk, with respect to topologies that we do not like though (because we are not interested in
working on Rn with the discrete topology). What additional property does a vector bundle have
then, that the mere underlying disjoint union does not have? The answer is that it is equipped
with a ‘vector bundle topology’ – certainly coarser than the disjoint union topology – such that
there is an homeomorphism between E =

⊔
x∈Rn Ex equipped with its vector bundle topology

and Rn × Rk, but here Rn has its standard topology (which is not discrete!). This is why a
vector bundle is much more than its underlying set, the disjoint union of all its fibers.

A section of a vector bundle E (over Rn) is a continuous map σ : Rn −! E satisfying the
following identity:

π ◦ σ = idRn

In other words, σ(x) ∈ Ex for every x. A section can be symbolically represented as a n-
dimensional surface in E, that is projectable onto Rn. Given a section σ, if the map Φ ◦ σ is
smooth we call σ a smooth function. The space of smooth sections of E then consists of smooth
functions from Rn to E and is denoted Γ(E) (sometimes, also denoted Γ(Rn, E) or C∞(Rn, E)).
As was explained in Scholie 2.18, these spaces are real vector spaces of infinite dimension, and
C∞(Rn)-modules of finite rank, k to be precise, as is shown by the following paragraph.

Assume that we have k smooth sections σ1, . . . , σk that are fiberwise linearly independent,
i.e. for every x, the vectors σ1(x), . . . , σk(x) form a basis of Ex. Then, we call such a family a
frame for E. Since every vector bundle over Rn is trivial, one can pickup constant orthonormal
frames, i.e. for every 1 ≤ i ≤ n, the smooth map Φ ◦ σi : Rn 7−! Rn × Rk is constant, and thus
defines a vector fi ∈ Rk, so that f1, . . . , fk forms a basis of Rk. Under an intelligent choice of
sections, this basis can be made orthonormal. A frame forms a set of generator of the sections of
E, with respect to the C∞(Rn)-module structure on Γ(E). That is why the rank of this module
coincides with the number of vector in the frame, which is the same as the dimension of the
fiber: k.

Famous examples of vector bundles are the tangent bundle TRn (with fiber TxRn ' Rn)
and the cotangent bundle T ∗Rn (with fiber T ∗xRn ' (Rn)∗). Smooth sections of TRn are vector
fields and smooth sections of T ∗Rn are differential 1-forms:

X(Rn) = Γ(TRn) and Ω1(Rn) = Γ(T ∗Rn)

A frame for TRn is the family of constant vector fields ∂1, . . . , ∂n, whereas a frame for T ∗Rn
(what we had called a coframe) is made of the constant covector fields dx1, . . . , dxn. Moreover,
drawing on the material presented in subsection 1.1, one can construct the following other vector
bundles:

∧mTRn =
⊔
x∈Rn

∧mTxRn and ∧m T ∗Rn =
⊔
x∈Rn

∧mT ∗xRn
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The notation is transparent: the fiber at a given point x is the m-th exterior power of TxRn
(or T ∗xRn, respectively). These are trivial vector bundles (as is every vector bundle over Rn).
Smooth sections of ∧mTRn are called m-multivector fields, whereas smooth sections of ∧mT ∗Rn
are called differential m-forms, and are denoted as follows:

Xm(Rn) = Γ(∧mTRn) and Ωm(Rn) = Γ(∧mT ∗Rn)

In particular X0(Rn) = Ω0(Rn) = C∞(Rn) ' Xn(Rn) ' Ωn(Rn), and X1(Rn) = X(Rn).
When m ≥ 1, a frame for

∧m TRn consists of the constant sections ∂i1∧. . .∧∂im , whereas a frame
for

∧m T ∗Rn is given by constant sections of the form dxi1∧. . .∧dxim , for 1 ≤ i1 < . . . < im ≤ n.
Let us now find criteria for smoothness of sections of

∧• T ∗Rn. A (not necessarily smooth
but at least continuous) section η of

∧m T ∗Rn decomposes on this basis as:

η =
∑

1≤i1<...<im≤n
ηi1...im dx

i1 ∧ . . . ∧ dxim (2.18)

We denote the coordinate functions in the basis dxi1 ∧ . . . ∧ dxim where we assume that 1 ≤
i1 < . . . < im ≤ n as ηi1...im . However, usually the Einstein summation convention (in which the
indices ik vary from 1 to n and are not ordered) is much more practical. To use it, one needs to
do a bit of gymnastics. First define the following functions:

for every 1 ≤ i1 < . . . < im ≤ n ηi1...im = 1
m!ηi1...im

Then, for every choice of non-ordered indices i1, . . . , im ∈ {1, ..., n}, there is a unique permutation
σ ∈ Sm such that iσ(1) < iσ(2) < . . . < iσ(m). In other words, the permutation σ rearrange the
indices so that they come in order. For such a permutation, we define the function ηi1...im as
follows:

ηi1...im = (−1)σηiσ(1)...iσ(m) = (−1)σ

m! ηiσ(1)...iσ(m)

Then one can write under Einstein summation convention:

η = ηi1...im dx
i1 ∧ . . . ∧ dxim (2.19)

Exercise 2.27. By using the antisymmetry of the wedge product, prove that Equation (2.19)
gives back Equation (2.18).

The section η is at least continuous so the functions ηi1...im are continuous functions on Rn
and, as for covector fields (see Scholie 2.22), they are smooth if and only if η is a smooth section,
i.e. if and only if η ∈ Ωm(Rn) (η is a differential m-form). Another criterion for smoothness
of η is obtained by using Equation (1.17); when fed with m vector fields, η gives the following
continuous function:

η(X1, . . . , Xm) = ηi1...im dx
i1 ∧ . . . ∧ dxim(X1, . . . , Xm)

= ηi1...im det


Xi1

1 Xi1
2 . . . Xi1

m−1 Xi1
m

Xi2
1 Xi2

m

. . . . . . . . .

X
im−1
1 X

im−1
m

Xim
1 Xim

2 . . . Xim
m−1 Xim

m

 (2.20)

Since the Xi are vector fields, Scholie 2.8 implies that their coordinate function are infinitely
differentiable, which implies that the above determinant, as a product of smooth functions of
x, is a smooth function over Rn. Then, it implies that η(X1, . . . , Xm) is a smooth function if
and only if the coordinate functions ηi1...im , i.e. if and only if η is a differential m-form. The
situation can be summarized as follows:
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Scholie 2.28. Smoothness criteria for differential m-forms A section η : Rn −! ∧mT ∗Rn
being smooth means:

1. that the coordinate functions ηi1...im are smooth functions of x;

2. or that, equivalently, for every vector fields X1, . . . , Xm, the continuous function η(X1, . . . , Xm)
defined in Equation (2.20) is smooth.

Exercise 2.29. For any given choice of m indices j1, . . . , jm ∈ {1, ..., n}, show that Equation
(2.20) applied to ∂j1 , . . . , ∂jm gives:

η(∂j1 , . . . , ∂jm) = m! ηj1...jm = (−1)σηjσ(1)...jσ(m)

where σ is the unique permutation of m elements such that jσ(1) < jσ(2) < . . . < jσ(m).

The properties of the wedge product on the exterior algebra
∧• T ∗Rn are transported to

the differential forms. So in particular dxi ∧ dxj = −dxj ∧ dxi, and for any η ∈ Ωk(Rn) and
µ ∈ Ωl(Rn) , the object η ∧ µ is a differential k + l-form, and:

η ∧ µ = (−1)klµ ∧ η (2.21)

This turns the graded vector space Ω•(Rn) into a (graded) commutative graded algebra.

2.3 Differential forms on Rn and the de Rham complex

Scholie 2.22 shows us that an obvious family of covector fields would be those induced by smooth
functions. For every f ∈ C∞(Rn), let us define the covector field formally denoted df , by the
following identity:

df(X) = X(f) (2.22)
The left hand side is a smooth function by item 2. of Scholie 2.22, as is the right hand side.
We call the covector field df : X(Rn) −! C∞(Rn) the differential of the function f . Not
every covector field is the differential of a function. For example, there is no smooth function
f : R2 −! R such that the globally defined covector field ξ = xdy−ydx would be the differential
of10. Those covector fields that are of the form df for some smooth function f , and thus satisfy
Equation (2.22), are called exact differential 1-forms. Recall that the basis vectors of the fibre
of the cotangent bundle are denoted dxi; this is not a coincidence, because dxi is the differential
of the coordinate function xi : Rn 7−! R, and its action on a vector field gives:

dxi(X) = X(xi) = Xi

which is the i-th coordinate function of X.
Exercise 2.30. Show that the covector field defined in Example 2.23 is actually an exact differ-
ential 1-form by finding a function f from which it is the differential of.

Let us now compute the coordinates of df for some given f , by applying Equation (2.22) to
every generator ∂i:

df(∂i) = ∂f

∂xi

Hence, the covector field df decomposes as follows in the dual coframe:

df = ∂f

∂xi
dxi

In other words, the coordinate functions of df coincide with the components of the gradient of
f . This is not a coincidence, because we have the following result:

10In polar coordinates (r, θ), this covector field reads r2dθ, from which we understand that it cannot be written
under the form df .
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Proposition 2.31. Given a smooth function f ∈ C∞(Rn), there exists a unique vector field on
Rn, denoted −−!grad(f), such that:

df(X) = g
(−−!grad(f), X

)
for every X ∈ X(Rn)

where g is the standard euclidean metric on the fiber of TRn.

Since the tangent bundle is trivial, it is diffeomorphic to the cartesian product Rn×Rn. The
metric g appearing in the statement of the proposition is the Euclidean metric defined on the
fiber. Thus, on the basis vecors ∂1, . . . , ∂n, it satisfies g(∂i, ∂j) = 1 if i = j and 0 otherwise.
Although it is not apparent in the proposition, the metric does not depend on the base point.
The metric is bilinear so, for X = Xi∂i and Y = Y j∂j two vector fields on Rn, one has:

g(X,Y ) = g(Xi∂i, Y
j∂j) = XiY i g(∂i, ∂j) =

n∑
i=1

XiY i

Notice that we did not use the Einstein summation convention in the rightmost term because
the two indices are both exponentiated. It can alternatively be written under this convention
as XiYi, given that we lowered the second index via the formula Yi = gijY

j .
Remark 2.32. Proposition 2.31 is a particular case of a much more general result that states
that a pseudo-Riemannian metric on a manifold M defines an isomorphism between TM and
T ∗M .

Let us now turn to the question of ‘dualizing’ the Lie bracket, so that we obtain an operator
on T ∗Rn that encodes it. Let us first rewrite Equation (2.10) using exact differential 1-forms:

df
(
[X,Y ]

)
= X

(
df(Y )

)
− Y

(
df(X)

)
(2.23)

for every X,Y ∈ X(Rn). Although this equation is satisfied for exact covector fields, it does not
mean that it is satisfied for all covector fields:

ξ
(
[X,Y ]

) ?= X
(
ξ(Y )

)
− Y

(
ξ(X)

)
(2.24)

We would like to measure ‘how far’ a given vector field ξ is from satisfying Equation (2.24). This
can be done by passing the term on the left-hand side to the right-hand side, so that we can
evaluate the difference between X

(
ξ(Y )

)
− Y

(
ξ(X)

)
and ξ

(
[X,Y ]

)
. To this end, we set (formal

notation) dξ to be the obstruction of a covector field ξ to satisfy Equation (2.24):

dξ(X,Y ) = X
(
ξ(Y )

)
− Y

(
ξ(X)

)
− ξ

(
[X,Y ]

)
(2.25)

A covector field satisfies Equation (2.24) if and only if dξ = 0, when evaluated on any two vector
fields. We call such covector fields closed differential 1-forms. In particular, exact forms are
closed.

Notice that since the right-hand side of Equation (2.25) is a smooth function, the object on
the left-hand side formally noted dξ(X,Y ) is a smooth function as well. Then, since dξ(X,Y ) =
−dξ(Y,X), dξ defines a skew-symmetric operator that, when fed with two vector fields X and
Y , gives a smooth function dξ(X,Y ) whose evaluation at the point x reads:

dξ : X(Rn)× X(Rn) −−−−−! C∞(Rn)
(X,Y ) 7−−−−−! dξ(X,Y ) : x 7−! Xx

(
ξ(Y )

)
− Yx

(
ξ(X)

)
− ξx

(
[X,Y ]x

)
This is consistent with the definitions of the objects so far, because e.g. ξ(Y ) is a smooth
function, on which the derivation at x, Xx : C∞(Rn) −! R, acts, hence the term Xx(ξ(Y )) is
a real number. Although the Lie bracket of two vector fields is not C∞(Rn) bilinear, one can
check that the map dξ is.

38



Exercise 2.33. Prove that dξ is C∞(Rn) bilinear, i.e. that dξ(fX + gY, Z) = f · dξ(X,Z) + g ·
dξ(Y,Z) for every f, g ∈ C∞(Rn) and X,Y, Z ∈ X(Rn), and vice versa with respect to the second
variable.

Then, it is sufficient to know how dξ acts on the couples of basis vectors (∂i, ∂j) to know
how it acts on any couple of vector fields. Using Equation (2.13), Equation (2.25) becomes:

dξ(∂i, ∂j) = ∂ξj
∂xi
− ∂ξi
∂xj

(2.26)

The fact that dξ(∂i, ∂i) = 0 is consistent with the fact that dξ is a skew-symmetric operator.
The observation made in Equation (2.26) induces the following result:

Proposition 2.34. Given a differential 1-form ξ, the skew-symmetric operator dξ can be seen
as a section of the vector bundle ∧2T ∗Rn, and reads:

dξ = 1
2

(
∂ξj
∂xi
− ∂ξi
∂xj

)
dxi ∧ dxj (2.27)

where the Einstein summation convention (on the two indices i and j!) has been used.

Proof. When one applies the right-hand side of this formula to two vector fields X and Y , one
obtains:

1
2

(
∂ξj
∂xi
− ∂ξi
∂xj

)
dxi ∧ dxj(X,Y ) = 1

2

(
∂ξj
∂xi
− ∂ξi
∂xj

) (
dxi ⊗ dxj − dxj ⊗ dxi

)
(X,Y )

= 1
2

(
∂ξj
∂xi
− ∂ξi
∂xj

)
(Xi · Y j −Xj · Y i)

=
(
Xi ∂ξj

∂xi

)
· Y j −

(
Y i ∂ξj
∂xi

)
·Xj

= X(ξj · Y j)− Y (ξj ·Xj)− ξj ·X(Y j) + ξj · Y (Xj)
= X

(
ξ(Y )

)
− Y

(
ξ(X)

)
− ξ

(
[X,Y ]

)
Where the symbol · has been used to symbolize and emphasize the product of two smooth
functions. Since indices which are summed over can be relabelled at one’s convenance, we have
done this between the second line and the third line. The two supplementary terms added on
the right in the fourth line compensate the addition of the terms ξj ·X(Y j)− ξj · Y (Xj) which
were necessary to form the terms X(ξj · Y j) − Y (ξj ·Xj). Passing from the fourth line to the
fifth and last line used Equation (2.11).

Remark 2.35. The right hand side of Equation (2.27) contains redundant terms, since:(
∂ξj
∂xi
− ∂ξi
∂xj

)
dxi ∧ dxj = −

(
∂ξj
∂xi
− ∂ξi
∂xj

)
dxj ∧ dxi =

(
∂ξi
∂xj
− ∂ξj
∂xi

)
dxj ∧ dxi

The factor 1
2 precisely compensates such redundancy, so that (2.27) can be rewritten:

dξ =
∑

1≤i<j≤n

(
∂ξj
∂xi
− ∂ξi
∂xj

)
dxi ∧ dxj (2.28)

Since the bivectors dxi ∧ dxj for i < j form a family of generators of
∧2 T ∗R2, the coordinates

functions of dξ in this basis are the ∂ξj
∂xi
− ∂ξi

∂xj
, and not one-half of it.

Exercise 2.36. Using Equation (1.19), check that applying Equation (2.27) or (2.28) to the couple
(∂i, ∂j) (beware of the range of the sums!) gives back Equation (2.26).
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From Proposition 2.34 we deduce the very important (always true) observation:

Corollary 2.37. Exact differential 1-forms are closed.

Proof. We have already seen a proof of such a result by comparing Equations (2.23) and (2.25),
but let us use here a more computational approach. Let ξ be an exact differential 1-form. Then
there exists f a smooth function on Rn such that ξ = df . In particular it means that ξi = ∂if .
Then:

dξ = 1
2

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
dxi ∧ dxj = 0

Thus, ξ is a closed form.

Remark 2.38. We will see later that in the three-dimensional space R3, Corollary 2.37 is equiv-
alent to the following identity:

−−!curl
(−−!grad(f)

)
= 0

Now that we have an explicit formula for the operator dξ, one may ask: which closed
differential 1-forms are also exact? That is to say: which covector fields ξ satisfying Equation
(2.24) are actually the differential of a function f , i.e. are such that ξ = df? Drawing on
Proposition 2.31, this question has an equivalent interpretation in terms of vector fields: which
vector field X on Rn such that −−!curl(X) = 0 (whatever that means in dimension higher than 3)
can be written as the gradient of a function f? Indeed, the standard euclidean metric g on the
fiber of the tangent bundle defines an isomorphism g̃ between the fiber of TRn and T ∗Rn (see
subsection 1.2). The following Lemma is a particular case of Poincaré’s Lemma:

Lemma 2.39. (Part of) Poincaré Lemma Every closed differential 1-form defined on Rn is
an exact form. That is to say, for every ξ ∈ Ω1(Rn) such that dξ = 0, there exists a smooth
function f ∈ C∞(Rn) such that ξ = df .

Proof. Let ξ = ξidx
i ∈ Ω1(Rn), then define the following function:

f(x) =
∫ 1

0
xiξi(tx)dt

This function is smooth because the ξi are smooth functions by Scholie 2.22. Differientating
f at a given x with respect to the k-th variable, and seeing the function x 7−! ξi(tx) as the
composite function x 7−! tx 7−! ξ(tx), one obtains:

∂kf(x) =
∫ 1

0
∂k
(
xiξi(tx)

)
dt

=
∫ 1

0
δikξi(tx)dt+

∫ 1

0
xi∂k

(
ξi(tx)

)
dt

=
∫ 1

0
ξk(tx)dt+

∫ 1

0
xit∂kξi(tx)dt

=
∫ 1

0
ξk(tx)dt+

∫ 1

0
txi∂iξk(tx)dt

=
∫ 1

0

d

dt

(
tξk(tx)

)
dt

= 1 · ξk(x)− 0 · ξk(0)

Here we have used the convention that ∂k
(
ξi(tx)

)
is the derivative in the k-th variable of the

function x 7−! ξi(tx) evaluated at x, whereas ∂kξi(tx) is the derivative of the function ξ, eval-
uated at tx. This explains why a factor t appears on the third line. To pass to the fourth line
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we used Equation (2.26), whose left-hand side is zero because ξ is closed. Thus, we obtain that
∂kf = ξk, so that df = ξ.

Remark 2.40. Actually, Poincaré’s Lemma is more general: it applies to every differential p-
forms, and does not necessarily assume that they are defined globally but only on star-shaped
open subsets of Rn.
Remark 2.41. When Rn = R3, using the one-to-one correspondence between the fiber of the
tangent space and the fiber of the cotangent space, Lemma 2.39 is equivalent to saying that
every irrotational vector field X (i.e. such that −−!curl(X) = 0) is conservative (i.e. it is the
gradient of a function f).

Let us recall what we have so far: we have shown that for every smooth function, there is
a differential 1-form df satisfying Equation (2.22). We have additionally shown that for every
differential 1-form ξ, there is a differential 2-form dξ satisfying Equation (2.25). Additionally, by
Corollary 2.37, every exact differential 1-form is closed, and by Lemma 2.39, every closed form
is exact. Recalling that C∞(Rn) = Ω0(Rn), we can summarize the situation by the following
sequence of spaces:

Ω0(Rn) Ω1(Rn) Ω2(Rn)d d (2.29)

Given Equations (2.23) and (2.25), the map d can be understood as the dual of the Lie bracket:
whereas the Lie bracket is a bilinear map from X2(Rn) to X1(Rn), the map d : ξ 7−! dξ is a
linear map from Ω1(Rn) to Ω2(Rn).

We have also seen that there is a strong relationship between the map d and the gradi-
ent of a function and the curl of a vector field. For example, we have seen that the identity
−−!curl

(−−!grad(f)
)

= 0 is a reformulation of Corollary 2.37. How does the divergence of a vector field
enters in the picture? The same question arises for the Laplacian of a function. We are tempted
to extend the sequence (2.29) to the right to account for those operators. This is will be the
topic of the rest of this subsection. We need first to introduce a few abstract material:

Definition 2.42. A chain complex (of vector spaces) is a graded vector space E = (Ei)i∈Z
equipped with a family of linear morphisms d = (di : Ei −! Ei+1)i∈Z:

. . . E−2 E−1 E0 E1 E2 . . .
d−3 d−2 d−1 d0 d1 d2

such that di+1 ◦ di = 0. We call the linear operator d the differential of the chain complex.

Remark 2.43. In general we do not bother writing all the indices on the maps di and we write
d instead, being understood that d

∣∣
Ei

= di. In that case di+1 ◦ di = 0 becomes:

d2 = 0

Moreover, the graded vector space may be graded above or below, or may be only posi-
tively/negatively graded, etc.

Let us now show how the sequence (2.29) can be extended to the right:

Ω0(Rn) Ω1(Rn) Ω2(Rn) . . . Ωn−1(Rn) Ωn(Rn) 0d d d d d d

(2.30)
where all vector spaces of degree higher than n, on the right, are understood to be null vector
spaces. Recall that each Ωm(Rn) is the space of smooth sections of the vector bundle

∧m T ∗Rn.
It admits as a set of C∞(Rn)-linearly independent generators the elements:{

dxi1 ∧ . . . ∧ dxim
∣∣∣ 1 ≤ i1 < i2 < . . . < im ≤ n

}
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Drawing on what has been said in the discussion following Scholie 2.22 – in particular Equality
(2.17) – one can equivalently see Ωm(Rn) as the space of alternating m C∞(Rn)-multi-linear
forms on X(Rn) taking values in the smooth functions:

Ωm(Rn) ' Hom
(
Xm(Rn), C∞(Rn)

)
The homomorphisms here have to be understood as homomorphisms of C∞(Rn)-modules. It
means that for any given smooth section η ∈ Ωm(Rn) and any family of vectorfields X1, . . . , Xm,
the element η(X1, . . . , Xm) is a smooth function. This is a smoothness criterion for differential
p-forms.

We have defined the linear morphism d0 : Ω0(Rn) 7−! Ω1(Rn) in Equation (2.22), and we
have defined the linear morphism d1 : Ω1(Rn) 7−! Ω2(Rn) in Equation (2.25). In both case we
have written df or dξ but it should be rigorously understood as d0f and d1ξ if one wants to
establish a differential whose notation is consistent with Definition 2.42. In the following we will
write d instead of dm because the latter notation is too cumbersome. Generalizing Equation
(2.25) to any number of vector fieldm ≥ 1, let us define the linear map d : Ωm(Rn) 7−! Ωm+1(Rn)
(should be understood as dm then) from its action on any section η ∈ Ωm(Rn):

dη(X1, . . . , Xm, Xm+1) =
m+1∑
i=1

(−1)i−1Xi
(
η(X1, . . . , X̂i, . . . , Xm+1)

)
(2.31)

+
∑

1≤i<j≤m+1
(−1)i+jη

(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xm+1

)
where the notation (X1, . . . , X̂i, . . . , Xm+1) means that the vector field Xi has been removed
from the list of vector fields. In other words, for 2 ≤ i ≤ m:

(X1, . . . , X̂i, . . . , Xm+1) = (X1, . . . , Xi−1, Xi+1, . . . , Xm+1)

whereas for i = 0 we obtain (X2, . . . , Xm+1) and for i = m + 1 we obtain (X1, . . . , Xm). In a
similar fashion we have:(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xm+1

)
=
(
[Xi, Xj ], X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xm+1

)
with similar exceptions for i = 0 and j = m + 1. First notice that both terms on the right are
smooth functions: η(X1, . . . , X̂i, . . . , Xm+1) is a smooth function, on which the vector field Xi

acts; and one can check that there are onlym vector fields in the term η
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xm+1

)
,

making it a smooth function too. Thus, the right hand side is infinitely differentiable, which
make the left-hand side infinitely differentiable.
Exercise 2.44. Check that Equation (2.31) gives back Equation (2.25) when m = 1.

Let us now give a formula for dη in the basis of generators dxi. To do this, evaluate Equation
(2.31) on m given constant sections taken out of ∂1, . . . , ∂n, so that the last term involving the
Lie bracket vanishes by Equation (2.13).

Proposition 2.45. The action of the operator d : Ω•(Rn) −! Ω•+1(Rn) on a differential m-
form η = ηi1...im dx

i1 ∧ . . . ∧ dxim is given in local coordinates by:

dη = ∂i(ηi1...im) dxi ∧ dxi1 ∧ . . . ∧ dxim (2.32)

where Einstein summation convention is assumed.
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Proof. Write η = ηi1...im dx
i1 ∧ . . .∧dxim , where ηi1...im is a smooth function by Scholie 2.28 and

where Einstein summation convention on contracted indices is assumed. Let ∂j1 , . . . , ∂jm+1 play
the role of X1, . . . , Xm+1, then Equation (2.31) gives:

dη(∂j1 , . . . , ∂jm+1) =
m+1∑
k=1

(−1)k−1∂jk
(
η(∂j1 , . . . , ∂̂jk , . . . , ∂jm+1)

)
+

∑
1≤k<l≤m+1

(−1)k+lη
(

[∂jk , ∂jl ]︸ ︷︷ ︸
= 0

, ∂j1 , . . . , ∂̂jk , . . . , ∂̂jl , . . . , ∂jm+1

)

=
m+1∑
k=1

(−1)k−1∂jk
(
m! ηi1...imδ

i1
j1
. . . δ

ik−1
jk−1

δ
ik+1
jk+1

. . . δ
im+1
jm+1

)
= m!

m+1∑
k=1

(−1)k−1∂jk
(
ηj1...jk−1jk+1...jm+1

)
(2.33)

where Exercise 2.29 justifies that m! pops out, and where we passed form the second line to the
penultimate one by using Equation (2.20). Since the top left hand side of Equation (2.33) is dη
evaluated on ∂j1 , . . . , ∂jm+1 , the same Exercise 2.29 implies that it is equal to (m+1)! (dη)j1...jm+1 .
Thus we have:

(m+ 1)! (dη)j1...jm+1 = m!
m+1∑
k=1

(−1)k−1∂jk
(
ηj1...jk−1jk+1...jm+1

)

Multiplying on the left and on the right by dxj1 ∧ . . . ∧ dxjk−1 ∧ dxjk ∧ dxjk+1 ∧ . . . ∧ dxjm+1

and contracting the indices, this implies that dη reads:

dη = 1
m+ 1

m+1∑
k=1

(−1)k−1∂jk
(
ηj1...jk−1jk+1...jm+1

)
dxj1 ∧ . . . ∧ dxjk−1 ∧ dxjk ∧ dxjk+1 ∧ . . . ∧ dxjm+1

= 1
m+ 1

m+1∑
k=1

∂jk
(
ηj1...jk−1jk+1...jm+1

)
dxjk ∧ dxj1 ∧ . . . ∧ dxjk−1 ∧ dxjk+1 ∧ . . . ∧ dxjm+1

= ∂jk
(
ηj1...jk−1jk+1...jm+1

)
dxjk ∧ dxj1 ∧ . . . ∧ dxjk−1 ∧ dxjk+1 ∧ . . . ∧ dxjm+1 (2.34)

where we have used Equation (2.21) between the first line and the second line, and where we use
Einstein summation convention on repeated indices. But then, they are dummy indices and it
does not change anything that we write the m indices j1, . . . , jk−1, jk+1, . . . , jm+1 as i1, . . . , im,
and jk as i, at the condition that they appear contracted with themselves in the formula. That
is to say, Equation (2.34) can alternatively be written as:

dη = ∂i(ηi1...im) dxi ∧ dxi1 ∧ . . . ∧ dxim

which is the required result.

Exercise 2.46. Check that Equation (2.32) gives back Equation (2.27) when m = 1.

Proposition 2.45 allows us to prove the following proposition in a very elegant way:

Proposition 2.47. The C∞(Rn)-linear morphism d : Ω•(Rn) −! Ω•+1(Rn) is a differential,
i.e. d ◦ d = 0.
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Proof. We know already by Corollary 2.37 that d2f = 0 for any smooth function. Then, let
η = ηi1...im dx

i1 ∧ . . . ∧ dxim ∈ Ωm(Rn) be a differential m-form, for m ≥ 1, and apply twice
Equation (2.32):

d2(η) = d
(
∂i(ηi1...im) dxi ∧ dxi1 ∧ . . . ∧ dxim

)
= ∂j∂i(ηi1...im) dxj ∧ dxi ∧ dxi1 ∧ . . . ∧ dxim

But the element ∂j∂i(ηi1...im), symmetric under a permutation i ↔ j, is contracted with an
element dxj ∧dxi∧dxi1 ∧ . . .∧dxim , which is skew-symmetric under a permutation i↔ j. Thus
their contraction is zero.

Remark 2.48. There is an alternative proof, much more computational, that relies exclusively
on the expression of the differential given in Equation (2.31). This proof ressembles the proof
that one could invoke to show the consistency of the Chevalley-Eilenberg differential in the
cohomology theory of Lie algebra (recall that the space of vector fields is a Lie algebra!). Doing
this alternative proof is a very good training to understand how differential forms interact with
vector fields.

Thus, the graded vector space of differential forms Ω•(Rn) =
(
Ωm(Rn)

)
0≤m≤n, equipped

with the differential d is a chain complex. We call it the de Rham complex and the differential
d is called the de Rham differential. It is bounded below and above and it is understood in this
complex that for every m ≤ −1 and every m ≥ n, dm = 0 (see sequence (2.30)). We conclude
this subsection by stating a unicity result that we do not prove, but which is worth knowing:

Proposition 2.49. The de Rham differential is the unique C∞(Rn)-linear morphism d : Ω•(Rn) −!
Ω•+1(Rn) which satisfies all three following properties:

1. on smooth functions (i.e. 0-forms), df(X) = X(f);

2. d ◦ d = 0;

3. for every η ∈ Ωk(Rn) and µ ∈ Ωl(Rn):

d(η ∧ µ) = (dη) ∧ µ+ (−1)kη ∧ (dµ) (2.35)

Proof. This is Theorem 12.14 in [Lee, 2003]. See also the paragraph at the top of page 313
to understand the equivalence between our definition of the de Rham differential and Lee’s
definition.

Remark 2.50. Notice that Equation (2.35) implies that d is a graded derivation of the com-
mutative graded algebra (Ω•(Rn),∧), turning it into a differential commutative graded algebra,
abbreviated cdga (notice the inversion of the letters in the abbreviation).
Example 2.51. The vector calculus identities. In three dimensional euclidean space R3, Proposi-
tion (2.47) will translate under an unexpected form. Recall what we said in Remark 2.38: that
exact 1-forms are closed translates as the following identity:

−−!curl
(−−!grad(f)

)
= 0

Let us explain this identity from the perspective of differential forms. We saw in Proposition 2.31
that the gradient of a function f is the image through the musical isomorphism \ : T ∗Rn −! TRn
of the differential df via the formula:

−−!grad(f) = (df)\
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Let us pursue this analogy.
Assume we work in three dimensional euclidean space R3 with standard coordinates x, y, z

(so that, for this discussion, x is a coordinate and not a point). We will not use Einstein
summation convention either. Let ξ be a differential 1-form: ξ = ξxdx + ξydy + ξzdz. Then
Equation (2.28) tells us that:

dξ =
(
∂ξy
∂x
− ∂ξx

∂y

)
dx ∧ dy +

(
∂ξz
∂y
− ∂ξy
∂z

)
dy ∧ dz +

(
∂ξx
∂z
− ∂ξz
∂x

)
dz ∧ dx

We recognize the coordinates of the −−!curl of the vector field ξ
\ = ξx

∂
∂x + ξy

∂
∂y + ξz

∂
∂z . Since dξ

is a 2-form, one only needs the Hodge star operator ? : Ω2(R3) −! Ω1(R3) and the musical
isomorphisms to reconstruct the desired relation:

(? dξ)\ = −−!curl(ξ\)
Equivalently, for every vector field X, one has:

−−!curl(X) =
(
? d(X Z))\

Next, pick up a differential 2-form η = ηxydx ∧ dy + ηyzdy ∧ dz + ηzxdz ∧ dx. Let write ηz
instead of ηxy, ηx instead of ηyz and ηy instead of ηzx, for a reason that will soon be transparent.
The differential of this 2-form is a 3-form, which, under some simple permutations of dx, dy and
dz, can be written as:

dη =
(
∂ηx
∂x

+ ∂ηy
∂y

+ ∂ηz
∂z

)
dx ∧ dy ∧ dz

We recognize, in the parenthesis, the divergence of the vector field (?η)\ = ηx
∂
∂x + ηy

∂
∂y + ηz

∂
∂z .

Then, we have the following identity:

? dη = div
(
(?η)\) (2.36)

The left-hand side is indeed a smooth function because ?
(
Ω3(R3)

)
= Ω0(R3) = C∞(R3). Equiv-

alently, for every vector field X, one has:

div(X) = ? d ? (X Z) (2.37)

Notice that Equation (2.36) is equivalent to Equation (2.37) because in dimension 3, Equation
(1.28) tells us that ? ? η = η for any 2-form η.

Now let us check that the vector calculus identities in R3 amount to d2 = 0. Let f be a
smooth function on R3, then:

−−!curl
(−−!grad(f)

)
= −−!curl

(
(df)\)

=
(
? d((df \)Z))\

=
(
? d(df)︸ ︷︷ ︸

= 0

)\
To pass from the second line to the third line, we used the fact that \ and Z are inverse to one
another. We thus obtain the infamous identity −−!curl

(−−!grad(f)
)

= 0. Since the Hodge star operator
and \ are isomorphisms, we conclude that:

−−!curl
(−−!grad(f)

)
= 0 ⇐⇒ d2f = 0
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Now, turning to the next identity: let X be a vector field on R3. Then:

div
(−−!curl(X)

)
= div

(
(?d(X Z))\)

= ? d ?
((

(?d(X Z))\)Z)
= ? d ?

(
? d(X Z))

= ? d
(
d(X Z))︸ ︷︷ ︸

= 0

Since the Hodge star operator is an isomorphism, we deduce that:

div
(−−!curl(X)

)
= 0 ⇐⇒ d ◦ d(X Z) = 0

Hence, the two most famous vector calculus identities −−!curl ◦ −−!grad = 0 and div ◦ −−!curl = 0 are
nothing but Proposition 2.47 applied to R3. Thus, since on R3 with the euclidean metric ?−1 = ?,
we have the following commutative diagram:

C∞(R3) X(R3) X(R3) C∞(R3)

0 Ω0(R3) Ω1(R3) Ω2(R3) Ω3(R3) 0

id

−−!grad

Z

−−!curl

?Z
div

?

d d d

2.4 De Rham cohomology and Maxwell equations

Let (E, d) be a chain complex of vector spaces. Then every map di : Ei −! Ei+1 has a kernel
and an image. We say that an element x ∈ Ei is closed when dix = 0, whereas it is exact when
x = di−1y for some other element y ∈ Ei−1. Since d2 = 0, we have the infamous result:

Proposition 2.52. In a chain complex (E, d), every exact element is closed.

The converse (that every closed element is exact) is in general not true, and actually those
closed elements that are not exact carry important informations on the problem. That is why
mathematicians have defined the following central notion in modern mathematics:

Definition 2.53. Let (E, d) be a chain complex (of vector spaces). We define its cohomology
as the graded vector vector space H•(E) =

(
H i(E)

)
i∈Z, where for each i ∈ Z, the space H i(E)

is called the i-th cohomology group of E and is defined as the quotient:

H i(E) = Ker(di)
Im(di−1)

We say that that the chain complex is exact – equivalently, that it is a resolution – if H i(E) = 0
for every i ∈ Z.

Remark 2.54. While in our context, the cohomology groups H i(E) are vector spaces, the word
‘group’ is widely used because the notion of cohomology applies to much more general objects
than complexes of vector spaces. In any case, a vector space can be seen as an abelian group,
with respect to the vector addition.
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Elements of H i(E) are equivalence classes of vectors of Ei. For every element x ∈ Ker(di) ⊂
Ei, we write [x] the corresponding equivalence class in H i(E). We call [x] the cohomology class
of x. It has the following meaning: in cohomology, x is identified with every other closed element
x′ ∈ Ei that can be written as follows:

x′ = x+ di−1y

for some y ∈ Ei−1. In such a case we say that x and x′ are cohomologous and we write [x] = [x′].
Therefore, any closed element x whose cohomology class is zero, i.e. such that [x] = 0 ∈ H i(E), is
exact. To every cohomology class θ ∈ H i(E), there exist an infinite number of representatives,
i.e. those closed elements x ∈ Ei such that [x] = θ, because x + dy would be another valid
representative. A priori, there is no better choice of representative, except in certain cases (as
we may see later).

The cohomology of the de Rham complex is called the de Rham cohomology. We write the
cohomology groups of the de Rham complex as H i

dR(Rn). Lemma 2.39 has shown that closed
1-forms are exact. That is to say, that H1

dR(Rn) = 0. This is actually much more general:

Proposition 2.55. The de Rham cohomology of Rn satisfies:

H i
dR(Rn) '

{
R if i = 0
0 otherwise

Proof. This is a consequence of Poincaré’s Lemma, which states that the de Rham cohomology
on every star-shaped open set (of a smooth manifold) is trivial (except for the 0-th cohomology
group). See Theorem 15.11 in [Lee, 2003].

What kind of objects span the 0-th group of de Rham cohomology H0
dR(Rn)? We have the

following situation:

0 Ω0(Rn) Ω1(Rn) . . .d d

Then H0
dR(Rn) = Ker(d0). Since d0 is the morphism associating, to every function f , its

differential, one deduces that df = 0 if and only if f is a constant function. Then H0
dR(Rn) ={

constant functions on Rn
}
, which is indeed a one-dimensional space. Another simple example

sits at the other side of the chain complex: we know that Ωn(Rn) is one-dimensional and spanned
by the standard volume form ω = dx1 ∧ . . .∧ dxn. Since d

(
Ωn(Rn)

)
= 0, Proposition (2.55) tells

us that there should be a differential n− 1-form ν such that ω = dν. There are several actually:
for example x1 dx

2∧ . . .∧dxn or, more generally, those of the form (−1)k−1xk dx
1∧ . . .∧dxk−1∧

dxk+1 ∧ . . . ∧ dxn.
Let us now apply all this machinery to Maxwell equations. They are equations that the elec-

tric field ~E and the magnetic field ~B should satisfy. Recall what they are (in three-dimensional
space):

div(~E) = ρ (2.38)
div
(
~B
)

= 0 (2.39)
−−!curl

(
~E
)

+ ∂~B

∂t
= 0 (2.40)

−−!curl
(
~B
)
− ∂~E

∂t
= ~j (2.41)
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We have used the rationalized Planck units, where:

c = 4πG = ~ = ε0 = kB = 1

Although ~E and ~B are usually considered as vector fields, the discussion in Example 2.51
has shown that using the musical isomorphisms allow us to adopt a much more synthesized
perspective. However, from the knowledge we have of the differences between the respective
behavior of the electric and the magnetic field, we expect that they would not carry the same
degree as differential forms. Let us be more specific.

Let M4 be Minkowski space, i.e. R4 equipped with a metric ηµν of signature (3, 1) – the
indices ranging from 0 to 3, corresponding to the coordinates t, x, y and z. In other words:
η00 = −1, and ηii = +1 for 1 ≤ i ≤ 3. The other components of the metric vanish. The volume
form would then be ω = dt ∧ dx ∧ dy ∧ dz. The order is important here because if we had
taken t to be the fourth coordinate, then the corresponding volume form dx∧dy∧dz∧dt would
be minus ω. This would have repercussions on the definition of the Hodge star operator. The
electric and magnetic fields are 1-forms and 2-forms on R4, respectively:

E = Ex dx+ Ey dy + Ez dz

and
B = Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy

So, in particular, E = ~E
Z

and B = ? (~B
Z
∧ dt). We define the field strength as the following

differential 2-form on M4:
F = B + E ∧ dt

In particular, this 2-form decomposes on the canonical frame dxµ ∧ dxν of the vector bundle∧2 T ∗M4, as:

F = 1
2Fµν dx

µ ∧ dxν , where Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


The current density ~j can be merged with the charge density ρ into a 4-vector ~J = ρ ∂∂t + ~j.
Using the musical isomorphism \, we transform this 4-vector into a differential 1-form J called
the current:

J = −ρ dt+ jx dx+ jy dy + jz dz

This allows us to have synthesized Maxwell equations:

Proposition 2.56. Geometric Maxwell equations Equations (2.39) and (2.40) are equiva-
lent to the Bianchi identity:

dF = 0 (2.42)

whereas Equations (2.38) and (2.41) are equivalent to:

? d ? F = J (2.43)

Proof. Equation (2.42) contains two terms:

dF = dB + dE ∧ dt (2.44)
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because d2t = 0. Let us focus on the first term dB, using Proposition (2.45), and deleting the
terms containing dx ∧ dx, dy ∧ dy or dz ∧ dz:

dB = ∂xBx dx ∧ dy ∧ dz + ∂yBy dy ∧ dz ∧ dx+ ∂zBz dz ∧ dx ∧ dy
+ ∂tBx dt ∧ dy ∧ dz + ∂tBy dt ∧ dz ∧ dx+ ∂tBz dt ∧ dx ∧ dy

= div(~B)dx ∧ dy ∧ dz + ∂tBx dy ∧ dz ∧ dt+ ∂tBy dz ∧ dx ∧ dt+ ∂tBz dx ∧ dy ∧ dt

On the other hand, the second term of Equation (2.44) can be written as:

dE ∧ dt = ∂yEx dy ∧ dx ∧ dt+ ∂zEx dz ∧ dx ∧ dt
+ ∂xEy dx ∧ dy ∧ dt+ ∂zEy dz ∧ dy ∧ dt

+ ∂xEz dx ∧ dz ∧ dt+ ∂yEz dy ∧ dz ∧ dt
=
(
∂xEy − ∂yEx

)
dx ∧ dy ∧ dt+

(
∂yEz − ∂zEy

)
dy ∧ dz ∧ dt

+
(
∂zEx − ∂xEz

)
dz ∧ dx ∧ dt

Writing dB + dE ∧ dt = 0, one obtains the following identity:

0 = div(~B) dx ∧ dy ∧ dz +
(
∂tBx + ∂yEz − ∂zEy

)
dy ∧ dz ∧ dt

+
(
∂tBy + ∂zEx − ∂xEz

)
dz ∧ dx ∧ dt+

(
∂tBz + ∂xEy − ∂yEx

)
dx ∧ dy ∧ dt

Thus, each term in parenthesis is equal to zero, and we obtain Equations (2.39) and (2.40).

Exercise 2.57. Using the fact that the volume form is ω = dt ∧ dx ∧ dy ∧ dz in our convention
for Minkowski space, show that:

(?F )µν =


0 Bx By Bz
−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0


and prove Equation (2.43). Beware of the timelike direction dt that satisfies 〈dt, dt〉 = −1 in
Minkowski space.

The Bianchi identity (2.42) implies that the field strength is a closed 2-form. We have seen
in Proposition 2.55 that the de Rham cohomology is vanishing, except for zero forms. Then, it
means that F is an exact form, i.e. there exists a differential 1-form A such that:

F = dA (2.45)

Using the musical isomorphism \ on the 1-form:

A = Aµ dx
µ = −V dt+Ax dx+Ay dy +Az dz

it gives a vector field on M4 that is written A
\ = V ∂

∂t + ~A, where V is the scalar potential and
~A is the vector potential. To keep this analogy in mind, we often call the differential 1-form
A a potential for F . Obviously, in the case where the 2nd group of de Rham cohomology is
not zero (this does not happen in Rn but could happen on other smooth manifolds), it may
not be possible to find a vector potential for F . That is why Equation (2.42) is a topological
condition. The physical information is contained in Equation (2.43): it is a necessary condition
to the existence of a potential A for F .
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Exercise 2.58. Check that Equation (2.45), with the potential A = −V dt+Ax dx+Ay dy+Az dz
is equivalent to the two equations:

~E = −−−!grad(V )− ∂~A

∂t
(2.46)

~B = −−!curl
(
~A
)

(2.47)

Where −−!curl and −−!grad are considered to be the usual operators in R3.

Reinjecting Equation (2.45) in Equation (2.43), one obtains the following identity:

? d ? dA = J (2.48)

We will see later that ? d ? d is (in Minkowski space) the d’Alembertian operator � = ∂2

∂t2 −∆,
so that one may show that Equation (2.48) is equivalent to the following two equations:

∆V + ∂

∂t
div
(
~A
)

= −ρ (2.49)
!
�~A+−−!grad

(
div
(
~A
)

+ ∂V

∂t

)
= ~j (2.50)

Under the assumption that ~E and ~B are related to ~A and V through Equations (2.46) and (2.47),
Equations (2.49) and (2.50) are equivalent to Equations (2.38) and (2.41). Hence we see that
the geometric Maxwell equations are equivalent to the classical Maxwell equations. The Bianchi
identity is a topological condition, automatically satisfied in M4 (but not on every manifold), so
that the existence of A depends on the possibility of solving Equation (2.48).

The fact that the choice of potential A is fixed, up to an exact 1-form df – because d(A+df) =
dA = F – implies that one can make a specific choice for A that possibly simplifies Equations
(2.49) and (2.50). When we make such a choice, we say that we fix the gauge. Let us choose
the Lorenz gauge11, defined by the condition:

∂µA
µ = 0 (2.51)

The notation Aµ symbolizes the components of the vector field A
Z, so Aµ = ηµνAν : A0 = V ,

and Ai = Ai for 1 ≤ i ≤ 3. Then, Equation (2.51) translates as:

∂V

∂t
+ div

(
~A
)

= 0

In this gauge, Equations (2.49) and (2.50) become:

�V = ρ
!
�~A = ~j

Fixing a gauge allows to obtain differential equations that may be easier to solve. There are
several gauges in electromagnetism: the Coulomb gauge, where div

(
~A
)

= 0; the Weyl – or
temporal – gauge, where V = 0. Electromagnetism is one of the simplest gauge theories. Its
straightforward generalization is the Yang-Mills theory, whose study is postponed to a later
chapter.

11From the Danish physicist Ludvig Lorenz, not to be confused with the Dutch physicist Hendrik Lorentz,
to whom we attribute the Lorentz transformations in the theory of relativity, nor with the American physicist
Edward Lorenz, who gave his name to the attractor looking like a butterfly in dynamical systems.
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3 Differential calculus on smooth manifolds

In this Chapter, we will introduce the notion of smooth manifold and, relying on the mathemat-
ical background of the first chapter, develop the machinery needed to study action functionals
and turn to more involved topics. The material presented in Chapter 2 will be central to the
present chapter, because we will soon understand that a smooth manifold is locally like Rn. It
means that at least locally, in a neighborhood of a point, we should think of a smooth manifold
as a n-dimensional vector space. The tangent bundle and the cotangent bundle on a smooth
manifold, although defined globally, are thus always locally trivial. Differential forms on a
manifold are thus always locally exact (because de Rham cohomology on Rn is almost trivial).
Integration of differential forms, though, needs considering the global structure of the manifold.
That is why it is often used to probe the topological structure of the manifold, e.g. in topological
field theories.

3.1 Smooth manifolds

We emphasize in this presentation the role of functions on manifolds. There is indeed a deep
relationship between a manifold, and the algebra of functions on this manifold. One should
consider that defining a smooth manifold M from its topology and additional properties satisfied
by the open sets is actually equivalent to characterizing what are smooth functions on this
manifold M . This point of view illustrates the equivalence between the geometrico-analytic
point of view, and the algebraic point of view:

Geometry Algebra
M  −−−−−−−−! C∞(M)

A smooth manifold is a particular case of a topological manifold which, in turn, is defined
as follows:

Definition 3.1. A topological manifold of dimension n is a topological space M (i.e. a set
equipped with a topology of open subsets), that is:

1. Hausdorff, i.e. points can be separated by neighborhoods: for every pair of points x, y ∈M ,
there are disjoint open subsets U, V ⊂M such that x ∈ U and y ∈ V ;

2. second countable, i.e. there exists a countable basis for the topology of M ;

3. locally euclidean, i.e. every point of M has a neighborhood that is homeomorphic to an
open subset of Rn.

The first property is a minimal assumption to avoid pathological cases that are not fit to do
analysis. The second property means that the topology is generated by a countable family of
open sets. This axiom, together with the Hausdorff property, has the following consequence:

Proposition 3.2. Let M be a locally euclidean Hausdorff topological space, then M is second-
countable if and only if M is paracompact – i.e. every open cover of M has a locally finite open
refinement – and has countably many connected components.

Proof. See Proposition 2.24 and Exercise 2.15 in [Lee, 2003].
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This consequence is crucially needed to define partitions of unity, which are central to define
integration on smooth manifolds and metrics on a manifold. The last property of Definition 3.1
means, more precisely, that for every point x ∈ M , there exists an open neighborhood U of x
and an open subset Ũ ⊂ Rn, together with a homeomorphism ϕ : U −! Ũ from U onto its
image. We call the pair (U,ϕ) a chart or coordinate chart on M . At the cost of translating the
image of the map ϕ in Rn, one can always send x to 0 ∈ Rn. We then say that the chart is
centered at x; every chart can be made centered at x by substracting the vector ϕ(x). Denoting
by x1, . . . , xn the standard coordinates centered at 0 on Rn, we often define by abuse of notation
the composite functions xi ◦ ϕ with the same letters xi. We then call the continuous functions
x1, . . . , xn local coordinates at x. We define an atlas for M to be a collection A of charts whose
domains cover M . Let us now give three pathological examples illustrating why we need the
three assumptions in Definition 3.1.
Example 3.3. The ‘line with two origins’ is second-countable and locally euclidean, but not
Hausdorff. It is obtained as the quotient of the union of the two horizontal lines {(x, y) ∈
R2 | y = 1} and {(x, y) ∈ R2 | y = −1} (with their respective subspace topology) under the
following relation: (x, 1) ∼ (x,−1), whenever x 6= 0. Due to this very particular choice of
quotient, the two origins cannot be separated by neighborhoods.
Example 3.4. The ‘long line’ is Hausdorff and locally Euclidean but not second-countable. It
consists of segments [0, 1[ glued one after the other, but uncountably many times (contrary to
the real line). The ‘long ray’ is the cartesian product L = ω1 × [0, 1[ equipped with the order
topology that arises from the lexicographical order on L. The long line is obtained by putting
together a long ray in each direction (positive and negative).
Example 3.5. The ‘figure eight’ is Hausdorff and second-countable but not locally Euclidean at
the origin.
Example 3.6. Let f : Rn −! Rk be a continuous function. The graph of f is the subset of
Rn × Rk:

Γ(f) =
{
(x, y) ∈ Rn × Rk

∣∣ y = f(x)
}

Equipped with the subspace topology, it is a topological manifold. Indeed, denoting the projec-
tion on the first factor pr1 : (x, y) 7−! x, we set ϕ = pr1|Γ(f). Then ϕ is a continuous surjective
map that has a continuous inverse: ϕ−1(x) = (x, f(x)). Then it is a homeomorphism, and(
Γ(f), ϕ

)
is a global coordinate chart, turning Γ(f) into a topological manifold of dimension n.

The fact that topological manifolds of dimension n are locally homeomorphic to Rn implies
that we may be able to do differential calculus on it. For instance, given a continuous function
f : M −! R and a chart (U,ϕ) on M , one could consider the composition f ◦ ϕ−1 : Ũ −! R,
which is a real-valued function whose domain is an open subset Ũ of a Euclidean space. Then
it would make sense to say that f is smooth if and only if for every chart (U,ϕ) on M , f ◦ ϕ−1

is infinitely differentiable. However, this definition is not stable when passing from one open
set U to another open set V , for the following reason: let (U,ϕ) and (V, ψ) be two charts
whose underlying open sets U and V are overlapping; then, the transition map ϕ ◦ ψ−1 is a
homeomorphism from ψ(U ∩V ) to ϕ(U ∩V ), both open subsets of Rn. However, this map is not
necessarily smooth, and this has the following consequence when we write f over the intersection
U ∩ V :

f ◦ ψ−1 = f ◦ ϕ−1 ◦ (ϕ ◦ ψ−1)
Then, even if f ◦ ϕ−1 and f ◦ ψ−1 are both differentiable, it does not imply that the function
ϕ ◦ ψ−1 is, which is a bit problematic regarding the derivation rule of composite functions:
∂k(g ◦ h) =

∑n
i=1 ∂k(hi)∂i(g) that one should expect in differential calculus.

To solve this issue, one should restrict the choice of coordinate charts adapted to the topo-
logical space M and pick up only a sub-family of those, that are ‘compatible’, i.e. such that the
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Figure 8: Two overlapping charts (U,ϕ) and (V, ψ) are smoothly compatible if the map ψ ◦ϕ−1 :
ϕ(U ∩ V ) −! ψ(U ∩ V ) is a diffeomorphism. A smooth atlas is a collection of smoothly
compatible charts covering M .

transition functions between two charts of that family are smooth. More precisely, two charts
(U,ϕ) and (V, ψ) are said to be smoothly compatible if either U ∩ V = ∅ or the transition map
ϕ ◦ ψ−1 : ϕ(U ∩ V ) −! ψ(U ∩ V ) is a diffeomorphism, i.e. a smooth homeomorphism from
ϕ(U ∩ V ) to ψ(U ∩ V ), whose inverse is smooth as well. An atlas A is called a smooth atlas if
any two charts in A are smoothly compatible with each other. Obviously a given (topological)
atlas on M can give rise to several smooth atlases if, for instance, two families of charts covering
M are smoothly compatible within the families, but not between them. Given a smooth atlas
A on M , one says that a chart is smoothly compatible with the atlas, if this chart is smoothly
compatible with every chart comprised in A . The union of all compatible charts to a given
smooth atlas A then defines a smooth atlas that is said maximal: it is not contained in any
strictly larger smooth atlas. Such a smooth atlas is always very large since it contains every
possible choice of smoothly compatible charts on the topological manifold M . Alternatively,
one can work with equivalence classes of smooth atlases: two smooth atlases A and A ′ are
considered equivalent if every chart of A is smoothly compatible with A ′. That allows working
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on a manifold with a single smooth atlas, consisting of only a few and practical charts, with the
implicit understanding that many other charts and differentiable atlases are equally legitimate.
Then, maximal smooth atlases are distinguished representents of their respective equivalence
classes of compatible smooth atlases. Lemma 1.10 in [Lee, 2003] provides some understanding
of the relationship between maximal smooth atlases and equivalence classes of smooth atlases:

Lemma 3.7. Let M be a topological manifold of dimension n.

1. Every smooth atlas for M is contained in a unique maximal smooth atlas.

2. Two smooth atlases are equivalent if and only if their union is a smooth atlas.

In particular, this shows that there may exist non-equivalent maximal smooth atlases for a
given topological manifold M . Then, we can now define the central definition of this subsection:

Definition 3.8. A smooth structure on a topological n dimensional manifold M is a maximal
smooth atlas A . A smooth manifold of dimension n is a pair (M,A ) – often only written M ,
omitting A – where M is a topological manifold of dimension n and A is a smooth structure
on M .

Remark 3.9. The smooth structure is an additional piece of data added to a topological manifold
M . Most topological manifolds have uncountably many different smooth structures, but there
exist topological manifolds that do not admit any smooth structure.
Example 3.10. The vector space Rn is a smooth manifold, when equipped with the chart
(Rn, idRn): the smooth structure consists of all the charts on Rn that are compatible with
the first one.
Exercise 3.11. Check that the following charts on the 2-sphere are smoothly compatible:

U+
x =

{
(x, y, z) ∈ S2 ∣∣x > 0

}
(resp. U−x for x < 0)

U+
y =

{
(x, y, z) ∈ S2 ∣∣ y > 0

}
(resp. U−y for y < 0)

U+
z =

{
(x, y, z) ∈ S2 ∣∣ z > 0

}
(resp. U−z for z < 0)

and thus induce a smooth structure on S2 (the smooth atlas of every chart compatible with the
above three charts). This kind of charts can be generalized to every n-sphere and defines the
standard smooth structure on the n-sphere.

It turns out that if the dimension of the topological manifold M is higher than or equal to 1,
then it has uncountably many distinct smooth structures (see Problem 1.3 in [Lee, 2003]). Thus
we would like a notion of equivalence of smooth structures that mimic the topological equivalence
of homeomorphic topological spaces: for this reason we introduce the notion of diffeomorphism.
Let M,N be smooth manifolds, and let f : M −! N be any map (of sets). We say that f
is a smooth map if for any x ∈ M , there exist smooth charts (U,ϕ) containing x and (V, ψ)
containing f(x) such that f(U) ⊂ V and the composite map ψ ◦ f ◦ ϕ−1 is smooth in the usual
sense (i.e. infinitely differentiable) from ϕ(U) to ψ(V ). The smooth map f is a diffeomorphism
if it is bijective, and its inverse f−1 is smooth as well. The coordinate map ϕ of a smooth chart
(U,ϕ) is a diffeomorphism onto its image ϕ(U). While homeomorphisms define an equivalence
relation between topological manifolds, diffeomorphisms define an equivalence relation between
smooth manifolds. This relation allows to probe inequivalent smooth structures, for there exist
topological manifolds admitting several smooth structures that are not diffeomorphic to one
another. Finally, it is always useful to have the local variant of the former notion: f : M −! N
is called a local diffeomorphism if every point x ∈ M has a neighborhood U such that f(U) is
open in N and f : U −! f(U) is a diffeomorphism (onto its image).
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Example 3.12. The euclidean vector space Rn has a unique smooth structure (up to diffeomor-
phism) unless n = 4, in which case R4 admits an uncountable number of non-diffeomorphic
smooth structures, and these are called exotic R4. See [Lee, 2003, p. 37] for more details on this
deep and exciting topic.
Example 3.13. The situation for the spheres is a bit more complicated. The following table
shows how many smooth types, i.e. smooth-structures up to diffeomorphism, a n-sphere admits:

Dim. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Types 1 1 1 ≥ 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24

The n-spheres whose smooth structure is not diffeomorphic to the standard one are called exotic
sphere. It is not known yet how many types the 4-sphere possesses.

A smooth map f : M −! R is called a smooth function on M . The set of smooth functions
on a smooth manifold M is denoted C∞(M). It is a commutative associative unital R-algebra.
The definition applies locally as well: any open set U of M inherits a smooth structure by
restriction of the atlas to U (this can be seen by applying Lemma 1.23 in [Lee, 2003] to U); then
we note C∞(U), or Ω0(U), the space of functions on the open set U ⊂ M . Not every function
in C∞(U) descend from a function in C∞(M): for example ]0, 1[ is a smooth manifold, whose
smooth structure is inherited from its embedding in R, but there are functions on ]0, 1[ that
do not descend from functions on R, e.g. f : x 7−! 1

x(1−x) . Thus we see that C∞(U) is not a
subalgebra of C∞(M). Rather, the assignment U −! C∞(U) which associates to any open set
a commutative associative unital R-algebra is what is called a sheaf of (commutative associative
unital) R-algebras over M . There is a deep relationship between smooth manifolds and their
algebras of functions. As for finite dimensional vector spaces, where the dual space E∗ is an
alternative characterization of a given vector space E, we expect some sort of duality between
a smooth manifold M and its space of smooth functions C∞(M). There exists such a result in
operator algebra:

Theorem 3.14. Gel’fand duality For every arbitrary unital commutative C∗-algebra A there
exists a compact Hausdorff topological space X such that A is equivalent to the algebra of complex-
valued continuous functions on X: A ' C(X). More precisely, there exists an equivalence of
categories between the (opposite) category of unital commutative C∗-algebras and the category
of compact Hausdorff topological spaces.

The idea is not to understand this theorem but to see that for any given algebra of a certain
type, there exists a geometric space such that this algebra plays the role of a subalgebra of
functions – or operators – on this space. We expect this result to hold as well for smooth
manifolds, that is to say: to any commutative, associative algebra with unit over R with some
additional property, one can associate a smooth manifold, in the sens of Definition 3.8. Using a
metaphor with physics, the algebra of functions would be considered as ‘physical observables’,
and the associated smooth manifold would be what ‘could be observed’ by using these functions.
It is thus meaningful that, given a different choice of observables, then what could be observed
would change, and thus the associated manifold. There exists such a correspondence in algebraic
geometry, between a choice of a commutative ring R, and its associated set of points that we
call the spectrum of R: it is the set of prime ideals of R and is denoted Spec(R). Then, the
ring R is considered as playing the role of the ring of functions on Spec(R). Then a scheme is
a topological space X admitting a covering by open sets Ui, such that each Ui is the spectrum
of a given ring Ri.
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We can define a smooth manifold using the same kind of ideas. Let us start from a commu-
tative, associative algebra with unit over R denoted C which will play the role of the algebra
of smooth functions C∞(M) on the manifold M yet to define. Drawing an analogy from finite
dimensional vector spaces, for which the dual of the dual of E is E (this is not true anymore in
infinite dimension), we define M – also denoted

∣∣C ∣∣ – to be the ‘dual’ of C , i.e. the set of all
R-algebra homomorphisms to R:∣∣C ∣∣ =

{
x : C −! R, f 7−! x(f) is an R-algebra homomorphism

}
To this set we can associate an algebra of ‘physical observables’ C̃ , i.e. the R-algebra of objects
f̃ :

∣∣C ∣∣ −! R associated to some f ∈ C via the formula f̃(x) = x(f). It turns out that C is
surjective onto C̃ , but not injective because there may be some non-trivial element f ∈ C which
satisfies x(f) = 0 for every x. Since we want the elements of C to be in one-to-one correspondence
with the physical observables on M =

∣∣C ∣∣, we require C to satisfy the additional assumption
that: ⋂

x∈|C |
Ker(x) = 0

This condition is equivalent to saying that every element of C ‘observe’ at least something – for
if x(f) = 0 for every x ∈

∣∣C ∣∣, the element f could not be used as a physical observable. Then,
under this assumption, one can show that C becomes canonically isomorphic to the algebra of
‘observables’ C̃ . Equipping the set

∣∣C ∣∣ with the weakest topology for which all such functions
are continuous turns M =

∣∣C ∣∣ into a Hausdorff topological space. Then, C can be identified
through its isomorphism with C̃ as a subalgebra of the algebra of continuous functions on M .

At this point, one would expect that the algebra C represents smooth functions on M .
However this claim is still far from reality. A naive postulate would be to additionally require
that C be locally isomorphic to C∞(Rn) i.e., by assuming that there exists an open cover of M
with a family of open sets Ui, M =

⋃
i Ui, such that the restriction of C to each Ui is isomorphic

to C∞(Rn) as a R-algebra. This would be the algebraic way of saying that the manifold M
is locally like Rn. However, this is mathematically not sufficient or does not define a smooth
manifold as we understand it. The precise condition that one should require on C is much more
subtle and very close to mathematical notions that are commonly used in algebraic geometry.
Since it is not the topic of the current course, I refer to [Nestruev, 2003] for precise statements:

Theorem 3.15. There is an equivalence of categories between the category of smooth manifolds
and the category of complete geometric commutative associative unital R-algebras.

Geometry Algebra
M −−−−−−−−−! C∞(M)∣∣C ∣∣  −−−−−−−−− C

What should be remembered from this discussion, is that there exists a canonical one-to-one
correspondence between smooth manifolds and commutative associative unital R-algebras satis-
fying additional specific conditions mirroring the topological and differential properties charac-
terizing smooth manifolds. This bijective correspondence will be used frequently when we study
gauge theories and constraint surfaces, and ultimately will be the fundamental characterization
of graded manifolds in graded geometry.

3.2 Vector bundles, pushforwards, pullbacks

In this section we are interested in smooth maps, and there associated pushforwards and pull-
backs. Most notions that we have seen in Chapter 2 will be understood as the ‘local’ versions of
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the objects presented in the present section. We have seen that over Rn a vector bundle is always
trivial. This property will only be observed locally for vector bundles over smooth manifolds:

Definition 3.16. A vector bundle of rank k over M is a topological space E together with a
surjective continuous map π : E −!M , satisfying the two following conditions:

1. for every x ∈ M , the preimage π−1(x) ⊂ E is a k-dimensional vector space, called the
fiber of E at x and denoted Ex;

2. for each x ∈ M , there exists a neighborhood U of x in M and a homeomorphism ΦU :
π−1(U)! U×Rk (called a local trivialization of E over U), making the following triangle
commutative:

π−1(U) U × Rk

U

ΦU

π pr1

where pr1 : U × Rk −! U is the projection on the first variable; and such that for every
y ∈ U , the restriction of ΦU to Ey is a linear isomorphism from Ey to {y} × Rk ' Rk.

The space E is called the total space of the bundle, M is called its base, and π is called its
projection. If E is a smooth manifold, π is a smooth map, and the local trivializations can be
chosen to be diffeomorphisms, then E is said to be a smooth vector bundle. If there exists a
local trivialization over all of M (called a global trivialization of E), then E is said to be a
trivial bundle. In this case, E itself is homeomorphic (resp. diffeomorphic if E is smooth) to
the product space M × Rk.

Every point x of M admits a tangent space TxM , whose definition is straightforward since it
does not depend on the neighboring points of x: the tangent space to M at a given point x is the
vector space of linear morphisms that are derivations at x, i.e. all the maps Xx : C∞(M) −! R
satisfying Equations (2.2) and (2.3). The tangent bundle of the smooth manifold M is the
disjoint union of the tangent spaces at each point:

TM =
⊔
x∈M

TxM

It can be equipped with a natural topology and a natural smooth structure, making it into a
rank n smooth vector bundle over M (see Lemma 4.1 in [Lee, 2003]). Similarly, the cotangent
bundle it the disjoint union of the cotangent spaces at each point, i.e. the spaces dual to the
tangent spaces: T ∗xM = (TxM)∗. It can be showned that it is a smooth vector bundle of rank
n (see Proposition 6.5 in [Lee, 2003]).

A local section of a vector bundle E over an open set U ⊂M is a continuous map σ : U −! E
such that:

π ◦ σ = idU
A global section is a local section defined over the whole manifold, i.e. such that U = M . When
E is a smooth vector bundle and σ is a smooth map, we say it is a smooth section. Vector fields
and differential 1-forms are smooth sections of the vector bundles TM and T ∗M , respectively.

57



Figure 9: A (smooth) vector bundle is locally trivial, i.e. in the neighborhood of every point,
there is an open set U , over which the pre-image π−1(U) is homeomorphic (resp. diffeomorphic)
to U × Rk.

Some are defined only locally, while other are defined globally. The space of vector fields on an
open set U is noted X(U) while the space of differential 1-forms on the same open set is denoted
Ω1(U). A vector bundle always admits a smooth global section: the zero section, that has the
particularity that it sends every point x ∈M to the zero vector in the fiber Ex. A set of k local
sections σ1, . . . , σk of E over U is called a local frame of E over U if for every x ∈ U , the vectors
σ1(x), . . . , σk(x) form a basis of the fiber Ex. It is called a global frame if U = M , and it is
called smooth if the sections σi are smooth sections of the smooth vector bundle E.

Proposition 3.17. A smooth vector bundle is trivial if and only if it admits a smooth global
frame.

Remark 3.18. Unless explicitly said, in the following we will always assume that vector bundles
and their sections are smooth.

The space of smooth local sections of E over U is denoted ΓU (E) or Γ(U,E); it is an infinite
dimensional R-vector space but a C∞(U)-module. If there exists a smooth local frame on U –
this occurs U is an open set trivializing E, i.e. satisfying the second item of 3.16 – then one
observes that the frame plays the role of independent generators of ΓU (E), with respect to the
action of C∞(U). One can always find such a frame in the neighborhood of every point, turning
the assignment U −! Γ(U,E) in what is called a locally free and finitely generated sheaf (it is
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actually what is called a C∞-module, because Γ(U,E) is a C∞(U)-module for every U). Pushing
the idea further, C∞(U) can be seen as the space of local sections over U of the trivial bundle
M ×R. In the same manner that a smooth manifold can be defined by its algebra of functions,
a smooth vector bundle can be defined through its space of sections. This fact is a central tenet
of the general duality between geometry and algebra. The category of real vector bundles on M
is equivalent to the category of locally free and finitely generated sheaves of C∞-modules on M .
This is the well-known Serre-Swan theorem which, in modern language, can be expressed as:

Theorem 3.19. Serre-Swan There is an equivalence of categories between smooth vector bun-
dles of finite rank over a smooth manifold M and finitely generated projective (equivalently:
locally free) C∞-modules over M .

Geometry Algebra
E  −−−−−−−−! Γ(−, E)

Proof. It is explained in Chapter 11 of [Nestruev, 2003].

Smooth sections of the vector bundle
∧m T ∗M =

⊔
x∈M

∧m T ∗xM are called differential m-
forms. They can be either locally defined or globally defined. The de Rham differential acts
on these differential forms via Equation (2.31), and it induces the same notion of closeness and
exactness of differential forms. For any open set U , the m-th de Rham cohomology group is:

Hm
dR(U) =

Ker
(
d : Ωm(U) −! Ωm+1(U)

)
Im
(
d : Ωm−1(U) −! Ωm(U)

)
where we understand that Ω−1(U) = Ωn+1(U) = 0. Since a smooth manifold is locally Euclidean,
it means that in the neighborhood of every point, the cohomology groups are trivial except at
level 0 (see Proposition 2.55), because a small enough open set is homeomorphic to Rn. However,
globally, the de Rham cohomology of a smooth manifold has no reason to be trivial. On the
contrary, it is often not trivial because it contains information on the topological structure of
the manifold, as the following examples show:
Example 3.20. The de Rham cohomology of the n-sphere Sn satisfies:

H i
dR(Sn) '

{
R if i = 0 or i = n

0 otherwise

Example 3.21. The de Rham cohomology of the n-torus Tn satisfies:

H i
dR(Tn) ' R(ni)

In order to define local frames of the tangent and cotangent bundles, one needs to introduce
the notion of pushforwards, and pull backs. First, let us define the following important notion:

Definition 3.22. A morphism of vector bundles, or bundle map, between smooth vector bundles
E (over M) and E′ (over N) is a pair (ψ, φ) of smooth maps ψ : M −! N and φ : E −! E′,
making the following square commutative:

E E′

M N

φ

π π′

ψ
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and such that the restriction to the fibers φp : Ep −! E′ψ(p) is a linear morphism of vector
spaces.

When N = M and ψ = idM , the above diagram reduces to a triangle:

E E′

M

φ

π π′

Since both E and E′ are smooth vector bundles over M , for every smooth section σ the composite
φ◦σ defines a smooth section of E′. Then, fiberwise linearity of φ implies that, for every smooth
section σ of E, and every function f ∈ C∞(M), one has:

φ
(
f(x)σ(x)

)
= f(x)φ

(
σ(x)

)
Forgetting about the point x, this equation reads: φ ◦

(
fσ) = f(φ ◦ σ). Thus, vector bundle

morphisms over the same base manifold are morphisms of the corresponding sheaves of sections
that are C∞-linear. This is actually an alternative characterization of vector bundle morphisms
over a smooth manifold. This is a consequence of the Serre-Swan theorem:

Proposition 3.23. Let E and E′ be smooth vector bundles over a smooth manifold M . Then a
map of sheaves Φ : Γ(−, E) −! Γ(−, E′) is linear over C∞(U) for every open set U if and only
if there exists a smooth bundle map φ : E −! E′ over M such that Φ(σ) = φ ◦ σ for all smooth
section σ.

Let us provide an example of such a vector bundle morphism, that will become central in
the following parts fo the course:

Definition 3.24. Let M be a smooth manifold. A Lie algebroid over M is a smooth vector
bundle A, together with:

1. a Lie algebra structure [ . , . ]A : Γ(A)⊗ Γ(A) −! Γ(A) on the space of sections,

2. and a vector bundle morphism ρ : A −! TM called the anchor,

such that the following Leibniz rule holds:

[a, fb]A = f [a, b]A + ρ(a)(f) b (3.1)

for every a, b ∈ Γ(A).

A Lie algebroid is a generalization of the tangent bundle, since Equation (3.1) is resembling
Equation (2.12). Indeed, the tangent bundle is a particular case of a Lie algebroid, where the
anchor is the identity map. Lie algebroids also generalize Lie algebras since a Lie algebra is
a Lie algebroid over a point. As Lie algebras are infinitesimal counterparts of Lie groups, Lie
algebroids are infinitesimal counterparts of Lie groupoids. These objects are widely used in
mathematical physics nowadays.
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Example 3.25. The space of endomorphisms of Rn is denoted End(Rn) or gln(R). By Example
2.15, it is a finite dimensional Lie algebra, with respect to the commutator of endomorphisms
[M,N ] = M ◦ N − N ◦M . This Lie algebra additionally defines an infinitesimal Lie algebra
action on Rn via the following Lie algebra homomorphism:

ρ : gln(R) −−−−−! X(Rn)

M −−−−−! XM : (x, f) 7−! d

dt

∣∣∣∣
t=0

f
(
x · exp(tM)

)
where, on he right-hand side, the group element acts from the right. On the basis (Ei,j)1≤i,j≤n
of gln(R) this homomorphism then reads at the point x:

ρ(Ei,j)x = XEi,j ,x = xi
∂

∂xj

where the xi are the coordinates of the point x. These data are sufficient to define a Lie algebroid
over Rn via the following data: A = Rn× gln(R) (it is a trivial vector bundle); [ . , . ]A is defined
on the constant sections as the bracket on gln(R) and then it is generalized to every smooth
sections by the Leibniz rule (3.1); the anchor map is defined on the frame of constant sections
(Ei,j)1≤i,j≤n of A by:

ρ(Ei,j) = xi
∂

∂xj

Then the infinitesimal action of gln(R) on Rn straightforwardly translates in the data contained
in a Lie algebroid. More generally, the action of a Lie algebra g on a manifold M can be encoded
in what is called an action Lie algebroid M × g.
Remark 3.26. One could have defined the infinitesimal action of gln(R) on Rn as a left action,
but in that case we need to add a minus sign to have a Lie algebra homomorphism:

gln(R) −−−−−! X(Rn)

M −−−−−! XM : (x, f) 7−! − d

dt

∣∣∣∣
t=0

f
(
exp(tM) · x

)
(3.2)

and the basis vectors Ei,j are sent to −xj ∂
∂xi

, which is not very practical. If the minus sign
had not been present, we would have a Lie algebra anti-homomorphism g −! X(M). The
choice of a minus sign or, more conveniently, a right action, comes from the following facts
(that we summarize very sketchily): to any smooth manifold M , one can associate its set of
diffeomorphisms, denoted Diff(M). This space can be equipped with an infinite dimensional Lie
group structure whose local charts are modeled over the infinite vector space X(M).

Then, the left invariant vector fields over this Lie group form a Lie algebra diff(M), in
bijection with the space of vector fields on M . However, the choice of Lie bracket on X(M),
as defined in Equation (2.10), corresponds to minus the Lie bracket on diff(M), and we write
X(M) ' diff(M)op. This can be explained by the fact that the diffeomorphisms act on M from
the left, and thus the induced linear map between the Lie algebras of Diff(M) and X(M) is an
anti-homomorphism (because the vector field associated to a given diffeomorphism is obtained
without involving the minus sign appearing in Equation (3.2)). More generally, a left action of
a Lie group G on the manifold M is equivalent to a group homomorphism G −! Diff(M). This
group homomorphism induces in turn a Lie algebra homomorphism g −! diff(M), and thus a
Lie algebra anti-homomorphism from g to X(M). However, a right-action of a Lie group G on
a manifold M is equivalent to a Lie group homomorphism G −! Diff(M)op, where Diff(M)op
is the Lie group modeled on Diff(M) but with multiplication from the right. Then in that case,
the Lie algebra homomorphism g −! diff(M)op is equivalent to a Lie algebra homomorphism
g −! X(M). For more details on these questions see Section 3.3 of these lecture notes.
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Exercise 3.27. By using the Jacobi identity on Γ(A) and Equation (3.1), show that the anchor
map is a Lie algebra homomorphism from Γ(A) to X(M). That is to say, it satisfies the following
equation:

ρ
(
[a, b]A

)
=
[
ρ(a), ρ(b)

]
for every smooth sections a, b ∈ Γ(A).

Here is another important example of a vector bundle morphism:

Definition 3.28. Let M,N be smooth manifolds. For every smooth map F : M −! N we
associate a vector bundle morphism F∗ : TM −! TN called the pushforward, defined on each
fiber TxM as:

F∗(Xx)(f) = Xx(f ◦ F )

for every f ∈ C∞(N) and Xx ∈ TxM .

The pushforward is a vector bundle morphism sending tangent vectors on M to tangent
vectors on N :

TM TN

M N

F∗

π π′

F

Given a point x ∈ M (resp. y ∈ N) and a trivializing neighborhood (U,ϕ) centered at x (resp.
(V, ψ) centered at y), then the matrix of the linear morphism F∗ : TxM −! TF (x)N at x is the
Jacobian of the smooth map ψ ◦ F ◦ ϕ−1 : Ũ −! Ṽ at ϕ(x), where Ũ = ϕ(U) is an open subset
of Rn centered at 0 (and respectively for Ṽ ):

F∗
∣∣
x

=
(
∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(
ϕ(x)

))
1≤i,j≤n

(3.3)

In the above formula, the coordinates xi in the denominator denote the standard coordinates on
Ũ . Notice that the numerator (ψ ◦F ◦ϕ−1)j can alternatively be written ψj ◦F ◦ϕ−1, where ψj
is a smooth function on V and denotes the j-th component of ψ with respect to the standard
coordinates on Ṽ .

The pushforward F∗ is then the best linear approximation of F at the point x. The rank of
the Jacobian matrix at x characterizes this smooth map at this point and is called the rank of
F at x. If the rank of F is constant for every point of the smooth manifold M then we say that
F has constant rank and denote it by rk(F ). We have the following conventions:

1. if rk(F ) = dim(M) at every point (i.e. F∗ is injective everywhere), then F is called an
immersion;

2. if rk(F ) = dim(N) at every point (i.e. F∗ is surjective everywhere), then F is called a
submersion.

In both cases, these properties are partly independent from the fact that F being injective,
surjective of bijective. For instance, when dim(M) = dim(N), F is a (local) diffeomorphism if
and only if it is an immersion or a submersion. However, F needs not be a global diffeomorphism:
for that it should be either injective or surjective.
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Remark 3.29. The pushforward admits several other notations: dF because it is the differential
of the map F (so that when N = R, we retrieve the usual differential of functions), TF to
symbolize that it is a map between tangent spaces, etc.

Lemma 3.30. Given two smooth functions F : M −! N and G : N −! P , the pushforward of
the composite G ◦ F : M −! P preserves the order:

(G ◦ F )∗ = G∗ ◦ F∗

Be aware that although tangent vectors always behave well under pushforwards, it may not
be the case for vector fields, i.e. sections of the tangent bundle. This phenomenon actually
exists for every vector bundle morphism, so we will study this problem in the general setting.
Let E (resp. E′) be a smooth vector bundle over the smooth manifold M (resp. N), and let
(ψ, φ) be a vector bundle morphism from E to E′. Let σ be a smooth section of E, then under
the action of φ it becomes a map σ(ψ,φ) : Im(ψ) −! E′ defined on the subset Im(ψ) ⊂ N by:

σ(ψ,φ)(ψ(x)
)

= φ
(
σ(x)

)
There may be several obstructions to the fact that σ(ψ,φ) forms a smooth section of E′. This
can be seen in several situations: 1) local sections should be defined on open sets, but if the
smooth map ψ is not open (i.e. if ψ(U) is not necessarily open while U is open) then Im(ψ) may
not be even open in N , so that the map σ(ψ,φ) could not be qualified as a local section of E′; 2)
if ψ is not injective then φ can send two conflicting informations to the same point of N : take
x, y ∈ M such that z = ψ(x) = ψ(y), but then for any choice of smooth section σ, how would
be defined σ(ψ,φ)(z)? As φ

(
σ(x)

)
or as φ

(
σ(y)

)
?

These problems can be explicitly solved if one introduces the notion of pullback bundle,
that would be introduced as an intermediary bundle between E and E′. Given a smooth map
ψ : M −! N , and a vector bundle E′ over N , one defines the pullback bundle of E′ along
ψ, denoted ψ!E′, as the vector bundle over M such that the fiber over the point x ∈ M is
(ψ!E′)x = E′ψ(x). Thus, as a set, the pullback bundle is the disjoint union ψ!E′ =

⊔
x∈M E′ψ(x)

and the projection map is denoted ψ!π′ : E′ψ(x) 7−! x. Notice that the fact that we have a
disjoint union (and not a mere union) is crucial so that the fibers associated to the pre-image of
the same point stay disjoint in ψ!E′. Under this convention, the vector bundle morphism (ψ, φ)
induces a vector bundle morphism (idM , φ) covering the identity of M :

E ψ!E′

M

φ

π ψ!π′

In that context, any local smooth section σ of E induces a local smooth section σ(idM ,φ) of ψ!E′.
Indeed, since ψ!E′ is a vector bundle over M , if σ is defined over an open set U then σ(idM ,φ)

stays defined over the same open set U . Moreover, the possible lack of injectivity of ψ is now
solved: the images of two different fibers of E through φ are sent to different fibers of ψ!E′

so they cannot be confounded. Thus, even though ψ(x) = ψ(y), the element σ(idM ,φ)(x) is a
vector of the fiber of ψ!E′ over x, while σ(idM ,φ)(y) ∈ (ψ!E′)y. To conclude, the vector bundle
morphism (idM , φ) : E −! ψ!E′ sends smooth sections to smooth sections.

Now, notice that any smooth section τ of E′ over some open set U ⊂ N defines a map
ψ!τ : ψ−1(U) −! ψ!E′ by the following identity:

(ψ!τ)x = τψ(x)
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This assignment is well defined, and it is easy to see that it is additionally smooth, hence ψ!τ is
a smooth section of ψ!E′ over ψ−1(U). Then, we say that a smooth section σ ∈ Γ(E) over some
open set U ⊂ M and a smooth section τ ∈ Γ(E′) over some open set V ⊂ N containing ψ(U)
are (ψ, φ)-related if we have the following identity over U :

σ(idM ,φ) = ψ!τ

In that case, we can consider that the image of the smooth section σ through (ψ, φ) is τ .
Obviously, if ψ is not surjective, σ can be related to many sections τ (that could for instance
differ outside Im(ψ)). Moreover, not every smooth section of E is related to a smooth section
of E′.
Example 3.31. Let M = N = R and let E = E′ = R2. Let ψ(x) = x2 and let φ(x, y) = (x, xy)
(the latter is indeed linear on the fibers). Be aware that although M = N and E = E′, the
fact that ψ is not the identity implies that not all smooth sections of E are (ψ, φ) related to
smooth sections of E′. Let σ : x 7−! (x, sin(x)) a smooth section of E; determine what is the
section σ(idM ,φ) ∈ Γ(ψ!E′). Then, find a global smooth section τ of E! which is (ψ, φ)-related
to σ. Find a smooth section σ′ of E such that there exist no global smooth section of E′ that
would be (ψ, φ)-related to σ′.

To summarize we have the following situation (this diagram should not be understood as a
commutative diagram, but as a metaphor, even though the square on the left is commutative):

E ψ!E′ E′

M M N

φ ψ!

π ψ!π′ π′

idM ψ

Using this construction, we understand that, given a smooth map F : M −! N , a vector field
X on M is F -related to a vector field Y on N , if:

F∗X = F !Y

The notion of pullback bundle, as the name indicates, allows to make sense of so-called pullbacks:

Definition 3.32. Let M,N be smooth manifolds. For every smooth map F : M −! N we
associate the pullback F ∗ : F !T ∗N −! T ∗M , defined on each fiber T ∗F (x)N as:

F ∗(ξF (x))(Xx) = ξF (x)
(
F∗(Xx)

)
(3.4)

for every ξF (x) ∈ T ∗F (x)N and Xx ∈ TxM .

The pullback is a vector bundle morphism covering the identity of M :

F !T ∗N T ∗M

M

F ∗

F !π′ π
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Differential 1-forms on N can be pullbacked on M via Equation (3.4) but, contrary to vector
fields that do not behave well under pushforwards, differential forms actually behave very well
under pullbacks. For every covector field ξ ∈ Ω1(N), the pullback of ξ is the unique section F ∗ξ
of T ∗M defined at x as in Equation (3.4):

(F ∗ξ)x = F ∗(ξF (x))

Note that there is no ambiguity in the definition of F ∗(ξ), contrary to the case of the pushforward
of vector fields. This section is smooth because the function (F ∗ξ)(X) : x 7−! ξF (x)

(
F∗(Xx)

)
is a smooth function of x (it can be seen from the fact that x 7−! ξF (x) is a smooth section of
F !T ∗N , while x 7−! F∗Xx is a smooth section of F !TN), thus it satisfies criterion 2. of Scholie
2.22.

Thus, the pullback can be extended to a smooth map F ∗ : Ω1(N) −! Ω1(M). We can also
extend F ∗ to smooth functions, for if f ∈ C∞(N), we define, for every x ∈M :

F ∗(f)(x) = f
(
F (x)

)
More generally, for every differential m-form η on N (m ≥ 1), one defines the pullback of η to
M from its action on m vector fields X1, . . . , Xm ∈ X(M):

F ∗(η)(X1, . . . , Xm) = F !η
(
F∗X1, . . . , F∗Xm

)
where F !η ∈ Γ(F !∧mT ∗N) is the pullback section of F !∧mT ∗N associated to η, i.e. the smooth
map associating to every point x ∈M the covector ηF (x). Using this result, one can extend the
pullback as a graded commutative algebra morphism F ∗ : Ω•(N) −! Ω•(M) from the following
identity:

F ∗(η ∧ µ) = F ∗(η) ∧ F ∗(µ) (3.5)

for any m-form η and p-form µ on N . For a proof of this statement see Lemma 12.10 in [Lee,
2003]. Then, the pullback somehow defines a dual version of a smooth map:

Geometry Algebra
M  −−−−−−−−! C∞(M)

F : M −! N  −−−−−−−−! F ∗ : Ω•(N) −! Ω•(M)

In this correspondence the pullback is actually characterized by the following algebraic property:

Proposition 3.33. The pullback F ∗ : Ω•(N) −! Ω•(M) of the smooth map F : M −! N is
a morphism of differential graded commutative algebras from (Ω•(N), dN ) to (Ω•(M), dM ). In
particular, it commutes with the respective de Rham differentials dM on M and dN on N :

dM ◦ F ∗ = F ∗ ◦ dN

Proof. The fact that F ∗ is a morphism of graded commutative algebra is transparent in Equation
(3.5). For m = 0, let f ∈ C∞(N) and let X be a vector field on M . Then, one has:

F ∗(dNf)(X) = F !dNf(F∗X) = F∗X(f) = X(f ◦ F ) = X(F ∗f) = dMF
∗(f)(X)

where the third term is an explicitation of the second, as the action of the section F∗X ∈
Γ(F !TN) on f is understood to be the expected one: x 7−! Xx

(
f ◦ F (x)

)
. Now let m ≥ 1,

let η ∈ Ωm(N) be a differential m-form on N , and let X1, . . . , Xm+1 be m vector fields on
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M . One can easily check that on their respective pullback bundles, F !dNη = dNF
!η and

[F∗Xi, F∗Xj ] = F∗[Xi, Xj ]. From this, we deduce:(
F ∗(dNη)

)(
X1, . . . , Xm+1

)
= F !dNη

(
F∗X1, . . . , F∗Xm+1

)
= dNF

!η
(
F∗X1, . . . , F∗Xm+1

)
=

m+1∑
i=1

(−1)i−1F∗Xi
(
F !η(F∗X1, . . . , F̂∗Xi, . . . , F∗Xm+1)

)
+

∑
1≤i<j≤m+1

(−1)i+j−1F !η
(

[F∗Xi, F∗Xj ]︸ ︷︷ ︸
=F∗[Xi,Xj ]

, F∗X1, . . . , F̂∗Xi, . . . , F̂∗Xj , . . . , F∗Xm+1
)

=
m+1∑
i=1

(−1)i−1Xi
(
F ∗(η)(X1, . . . , X̂i, . . . , Xm+1)

)
+

∑
1≤i<j≤m+1

(−1)i+j−1F ∗(η)
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xm+1

)
= dMF

∗(η)

Since pullback goes the other way around compared to F , contrary to pushforwards, com-
position of pullbacks is not the pullback of the composite maps:

Lemma 3.34. Given two smooth functions F : M −! N and G : N −! P , the pullback of the
composite G ◦ F : M −! P reverts the order:

(G ◦ F )∗ = F ∗ ◦G∗

Remark 3.35. The correspondence between geometry and algebra can be further exploited to
describe Lie algebroid morphisms. Without entering into much details, a morphism of Lie
algebroids φ : A −! B is a vector bundle morphism that is additionally a Lie algebra morphism
on sections, and which is compatible with the anchor map. This complicated condition can
be equivalently stated as the following: a Lie algebroid morphism is a morphism of differential
commutative graded algebra Φ : (Ω•(B), dB) −! (Ω•(A), dA), where (Ω•(A), dA) is the so-called
Lie algebroid cohomology. This one-to-one correspondence was originally found by Vaintrob
[Vaintrob, 1997], and is still valid for higher Lie algebroids.

Pushforwards and pullbacks allow to define smooth local frames on the tangent and cotangent
bundle. Let x ∈ M and let (U,ϕ) be a trivializing chart of the tangent bundle (and then, by
duality of the fiber, of the cotangent bundle as well) centered at x. We denote by x1, . . . , xn the
standard coordinates on Ũ centered at 0 (because ϕ(x) = 0), and by abuse of notation they also
denote the composite function xi ◦ ϕ. Then one can define:

1. a local smooth frame of TM over U from the constant vector fields ∂
∂xi

on Ũ = ϕ(U), via
the push-forward of ϕ−1 : Ũ −! U . This time the pushforward is well defined because
ϕ : U −! Ũ is a diffeomorphism. For brevity, we denote the induced local smooth frame
on U by the same notation ∂

∂x1 , . . . ,
∂
∂xn and we call it the coordinate frame;

2. a local smooth frame of T ∗M over U from the constant covector fields dxi on Ũ = ϕ(U)
via the pull back of ϕ. We denote this local smooth frame on U by the same notation
dx1, . . . , dxn and we call it the coordinate coframe.

Both frames are well-defined because they are constant sections. In order to differentiate the
frame on U ⊂ M and the one on Ũ ⊂ Rn, we write ∂

∂xi

∣∣∣
y

(resp. dxi|y) to indicate the former,
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and ∂
∂xi

∣∣∣
ϕ(y)

(resp. dxi|ϕ(y)) to indicate the latter, for every y ∈ U . A manifold that admits
a smooth global frame for the tangent bundle is said parallelizable. The only spheres that are
parallelizable are S1, S3 and S7.
Example 3.36. For every 1 ≤ m ≤ n, the exterior algebra of the cotangent space at each point
defines a smooth vector bundle:

∧mT ∗Rn =
⊔
x∈Rn

∧mT ∗xRn

Then a smooth local frame consists of the sections dxi1 ∧ . . . ∧ dxim for 1 ≤ i1 < . . . < im ≤ n.
It is not a global frame because the coordinates functions xi are only defined locally.

Now let us understand how the coordinate functions of vector fields and of differential forms
transform under a change of local coordinates. Assume that there exists another compatible
chart (V, ψ) centered at x so that Ṽ = ψ(V ) and x′1, . . . , x′n are the standard coordinates on Ṽ
centered at 0. Then, under the change of coordinates ψ ◦ ϕ−1 : Ũ −! Ṽ , the constant sections
∂
∂xi

transform as:

∂

∂xi

∣∣∣∣∣
y

= (ϕ−1)∗
∂

∂xi

∣∣∣∣∣
ϕ(y)

(3.6)

= (ψ−1)∗ ◦ (ψ ◦ ϕ−1)∗
∂

∂xi

∣∣∣∣∣
ϕ(y)

= (ψ−1)∗

∂(ψ ◦ ϕ−1)j

∂xi
(
ϕ(y)

) ∂

∂x′j

∣∣∣∣∣
ψ(y)


= ∂(ψj ◦ ϕ−1)

∂xi
(
ϕ(y)

) ∂

∂x′j

∣∣∣∣∣
y

(3.7)

for every y ∈ U ∩ V . We pass from the first line to the second line by using Lemma 3.30, and
from the second line to the third by Equation (3.3). Then the push-forward (ψ−1)∗ is linear so
that we obtain the fourth line.
Remark 3.37. Usually the term ∂(ψj◦ϕ−1)

∂xi

(
ϕ(y)

)
is denoted ∂x′j

∂xi
(y), because it is transparent and

for practical purposes. We will pick up this convention from then on.

A vector field X ∈ X(U∩V ) decomposes as Xi ∂
∂xi

with respect to the coordinate functions xi

of ϕ, and X ′j ∂
∂x′j

with respect to the coordinate functions x′i of ψ. Then Equations (3.6)-(3.7)
show that:

X ′jy = ∂x′j

∂xi
(y)Xi

y

We observe that under a change of coordinates xi 7−! x′i, the coordinate functions of the vector
field transform in the opposite way than the constant sections ∂

∂xi
:

∂

∂xi

∣∣∣∣∣
y

−−−−−−−−−!
∂

∂x′i

∣∣∣∣∣
y

= ∂xj

∂x′i
(y) ∂

∂xj

∣∣∣∣∣
y

Xi
y −−−−−−−−−! X ′iy = ∂x′j

∂xi
(y)Xi

y

The first line has been obtained from Equations (3.6)-(3.7) by inverting the Jacobian matrix
∂x′j

∂xi
. Since the coordinate functions of vector fields transform in the opposite way than the way
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in which the canonical frame of the tangent bundle transforms, we say that these coordinates are
contravariant. Changes of coordinates impact also the way differential forms transform, since
for any covector field ξ = ξi dx

i = ξ′j dx
′j , by using Equations (3.6)-(3.7), one has:

ξy,i = ξy

 ∂

∂xi

∣∣∣∣∣
y

 = ∂x′j

∂xi
(y) ξy

 ∂

∂x′j

∣∣∣∣∣
y

 = ∂x′j

∂xi
(y) ξ′y,j

Here, we consider that the coordinates xi and xj are those on U ∩V . Thus, we observe that the
coordinate functions of differential 1-forms transform in the same way as the constant sections
∂
∂xi

:

∂

∂xi

∣∣∣∣∣
y

−−−−−−−−−!
∂

∂x′i

∣∣∣∣∣
y

= ∂xj

∂x′i
(y) ∂

∂xj

∣∣∣∣∣
y

ξy,i −−−−−−−−−! ξ′y,i = ∂xj

∂x′i
(y) ξy,j

Since the coordinate functions of differential forms transform in the same way as the way in
which the coordinate frame of the tangent bundle transforms, we say that these coordinates are
covariant. In general the position of the indices indicates when it is a covariant (at the bottom)
or a contravariant (at the top) coordinate. The names ‘contravariant’ and ‘covariant’ come from
the fact that the pushforward functor, assigning to any smooth manifold its tangent bundle
and to any smooth function its pushforward, is a covariant functor, while the pullback functor,
assigning to any smooth manifold its algebra of functions and to any smooth function between
manifolds its pullback, is a contravariant functor.

3.3 Submanifolds in differential geometry

The notion of pullback and pushforward allows to define various kinds of subspaces in a smooth
manifold, that can be additionally equipped with a distinguished smooth structure that turn
them into submanifolds. Since it is a very subtle topic, I strongly advise the reader to refer
to [Lee, 2003] and to [Lee, 2009] to get a much more clear understanding of the notions discussed
in the present section. There are three main kinds of submanifold objects:{

embedded submanifolds
}
⊂
{
weakly embedded submanifolds

}
⊂
{
immersed submanifolds

}
An immersed submanifold of a smooth manifold M is a subset S, equipped with a smooth

structure (i.e. a topology composed of smoothly compatible charts) such that the inclusion
ι : S −! M is a smooth map (with respect to the respective smooth structures on S and M)
and an immersion. It does not mean that the topology on S is the subspace topology, and
in general it will not be! There may exist various non-diffeomorphic smooth structures on the
subset S such that the inclusion ι is an immersion. A famous example of an immersed manifold
is the figure eight:
Example 3.38. Let γ : ]− π, π[−! R2 be the smooth map defined as:

γ(t) =
(
sin(2t), sin(t)

)
The image of γ, denoted S, is the locus of points (x, y) defined by x2 = 4 y2(1−y2). This subset
can be equipped with a topology of open sets defined as follows: a subset U ⊂ Im(γ) is open if
and only if γ−1(U) is open in the topology of N . This implies in particular that any subset of the
form (sin(2t), sin(t)) for t ∈]− ε, ε[ is an open set of S. The map γ−1 then turn these open sets
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into smooth open charts, that are smoothly compatible by construction. Then, S is a smooth
manifold, but its smooth structure does not descend from the smooth structure on M for the
following reason: in the subspace topology, a neighborhood of 0 in S has the shape of a cross,
and is not homeomorphic to any region of euclidean space, while in the manifold topology, there
exist neighborhoods of the origin that are homeomorphic to an open one-dimensional segment.
The inclusion map ι : S −! M being an immersion since γ̇(t) never vanishes, the subset S
equipped with its smooth manifold structure is an immersed manifold of M .

Figure 10: The image of the path γ is a subset of R2 that has the shape of a ‘eight’. In particular
it is not simply connected, and at the origin it looks like a crossroad (as a set), although as a
topological space, an open neighborhood of the origin is an open set of dimension 1, of the form
γ
(
]− ε, ε[

)
.

Example 3.39. Another example consists of any irrational curve on the 2-torus: pick up an
irrational number α ∈ R\Q and define S to be the subset of T2 induced by the slope of slope α
(it can be understood visually by using the well-known identification between T2 and a square).
The topology of the irrational curve is so that connected open line segments are open, while
the subspace topology does not allow this because the irrational curve is dense in T2. Thus,
the submanifold smooth structure does not descend from the ambient smooth structure so the
submanifold is not embedded but merely immersed.

Let us now turn to embedded (or regular) submanifolds of a smooth manifold M : they are
subsets S such that the subspace topology of M defines a canonical smooth structure on S (see
Theorem 8.2 in [Lee, 2003]). This property is a consequence of the fact that these submanifolds
are modeled locally on the standard embedding of Rk into Rn. More precisely, let Ũ be an open

69



subset of Rn, then a k-slice of Ũ is any subset of the form:{(
x1, . . . , xk, xk+1, . . . , xn

)
∈ Ũ

∣∣∣ xk+1 = ck+1, . . . , xn = cn
}

for some constants ck+1, . . . , cn. Clearly any k-slice is homeomorphic to an open subset of Rk.
Let M be a smooth manifold, and let (U,ϕ) be a smooth chart on M . If S is a subset of U such
that ϕ(S) is a k-slice of Ũ = ϕ(U), then we say simply that S is a k-slice of U . A subset S ⊂M
is called a k-dimensional embedded submanifold of M if for each point x ∈ S, there exists a
smooth chart (U,ϕ) for M such that x ∈ U , and U ∩ S is a k-slice of U . Equivalently, S is a
k-dimensional embedded manifold in M if every point x ∈ S is in the domain of a coordinate
chart (U,ϕ) such that:

ϕ(U ∩ S) = ϕ(U) ∩
{
Rk × 0

}
(3.8)

The definition of embedded submanifolds is a local one, so that we can summarize it under the
following Lemma:

Lemma 3.40. Let M be a smooth manifold and let S be a subset of M . Suppose that for some
k, every point x ∈ S has a neighborhood U ⊂M such that U ∩ S is an embedded k-submanifold
of U . Then S is an embedded k-submanifold of M .

Example 3.41. The figure eight (Figure 10) is not an embedded submanifold because, although
any point of the figure eight outside the origin belong to a 1-dimensional slice, there is no open
set U ⊂ R2 containing the origin such that the intersection of U and the figure eight is an
embedded submanifold of U (i.e. a one-dimensional slice of U).
Example 3.42. Let M and N be smooth manifolds of dimensions n and k, respectively, and let
F : M −! N be a smooth map. Let us call the graph of F the following subset of Rk × Rn:

Gr(F ) =
{

(y, x) ∈ Rk × Rn
∣∣ y = F (x)

}
Indeed, Lemma 8.6 in [Lee, 2003] shows that locally this graph is embedded. Hence, by Lemma
3.40, it is an embedded submanifold.

A nice characterization of embedded submanifolds is obtained through the observation that
the slice property carried by embedded submanifolds is equivalent to being locally the level set
of a submersion:

Proposition 3.43. Constant rank level set theorem Let M and N be smooth manifolds,
and let F : M −! N be a smooth map with constant rank equal to k. Each level set of F is
a closed embedded submanifold of codimension k in M . In particular, a subset S of M is an
embedded submanifold of M of codimension k if and only if every point x ∈ S has a neighborhood
U in M such that U ∩ S is a level set of a submersion U −! Rk.

Proof. See Chapter 8 in [Lee, 2003].

A straightforward and very useful relies on the following notions. If F : M −! N is a smooth
map, a point x ∈M is said to be a regular point of F if the push-forward F∗ : TxM −! TF (x)N
is surjective; it is a critical point otherwise. A point y ∈ N is said to be a regular value of F if
every point of the level set F−1(y) is a regular point, and a critical value otherwise. Finally, a
level set F−1(y) is called a regular level set if y is a regular value; in other words, a regular level
set is a level set consisting entirely of regular points. Than, one has:

Theorem 3.44. Regular level set theorem Every regular level set of a smooth map is a
closed embedded submanifold whose codimension is equal to the dimension of the range.
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Figure 11: The image of S through the map ϕ : U −! Rn
is an open subset of Rk × {0}.

Proof. This is Corollary 8.10 in in [Lee, 2003].

Example 3.45. An alternative argument to show that the figure eight is not an embedded sub-
manifold is that the figure eight is the zero level set of the smooth function:

F : R2 −−−−−! R
(x, y) 7−−−−−! x2 − 4 y2(1− y2)

This function does not satisfies the latter part of Proposition (3.43) because at (0, 0) ∈ S it is
not a submersion.
Example 3.46. Let Rn be the configuration space, with the corresponding coordinates qi. We
call the cotangent bundle P = T ∗Rn the phase space, with coordinates qi and pi (the latter
are linear forms on the fibers). Then a constraint is a smooth function φ : P −! R. The
0-level locus of a set of constraints φ1, . . . , φr is a subset Σ of P that we call the constraint
surface. Usually, physicists assume that the constraints satisfy a so-called regularity condition
that often take the form that for each point x ∈ Σ there exists an open neighborhood U such
that only r′ constraints φi1 , . . . , φir′ are functionally independent over U , making Σ ∩ U an
embedded submanifold of U of codimension r′ (as a level set of the constant rank smooth map
(φi1 , . . . , φir′ ) : P −! Rr′). Then by Proposition 3.43, the constraint surface is an embedded
submanifold of dimension 2n − r′. For more details, see Chapters 1 and 2 of [Henneaux and
Teitelboim, 1994].

Associated to immersed submanifolds and embedded submanifolds, there exist corresponding
notions of maps: injective immersions and smooth embeddings. An injective immersion between
two smooth manifolds S and M is an injective smooth map F : S ↪−! M that is additionally
an immersion, i.e. such that the pushforward F∗ : TS −! TM is injective (we can consider
that F∗ takes values in TM because F is injective). In particular, an injective smooth map
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is an immersion if and only if it has constant rank. A topological embedding F : S ↪−! M is
a continuous map that is a homeomorphism onto its image, where the topology on the image
F (S) is the subspace topology induced from the smooth atlas on M . A smooth embedding
is a topological embedding that is smooth and of constant rank (then it is automatically an
immersion). Obviously not every injective immersion is a smooth embedding (not even on its
image), however here are two cases where it happens:

1. S is compact

2. F is proper (i.e. F−1(K) is compact if and only if K ⊂M is compact)

because in both cases the map F : S ↪−! M is closed (see Proposition 7.4 in [Lee, 2003]).
Moreover, immersions locally behave as smooth embeddings, but not globally (hence justifying
that the figure eight is the image of an immersion and not an embedding). See Lemma 8.18
in [Lee, 2003] for more details.

Proposition 3.47. Immersed submanifolds are precisely the images of injective immersions
and embedded submanifolds are precisely the images of smooth embeddings.

Proof. See Chapter 8 in [Lee, 2003].

Exercise 3.48. Define the following three open subsets of R:

A− =
]
−∞,−π2

[
, A0 =

]
− π

2 ,+
π

2
[
, A+ =

]
+ π

2 ,+∞
[

Denote by A their disjoint union so, in particular, A = R − {−π
2 ,

π
2 }. Let f : A −! R2 be the

smooth map defined on each subset as follows:

f
∣∣
A−

=
(
−e

x− 1
x+π

2 , e
x− 1

x+π
2

)
, f

∣∣
A0

=
(
tan(x), tan(x)

)
, f

∣∣
A+

=
(
e
−x+ 1

x−π2 ,−e
−x+ 1

x−π2

)
Prove that f is an injective immersion (with respect to the standard smooth structures on A
and R2). Draw a conclusion about the image of f , and determine the tangent space of Im(f) at
the point (0, 0).

Now let us study in more details the difference between immersed and embedded subman-
ifolds. Notice that if one had chosen another parametrization for the figure eight in Example
3.38, we would have inherited a totally different topology. Another, alternative smooth map
defining the figure eight (as a set) can be chosen to be :

η(t) =
(
− sin(2t), sin(t)

)
and the path corresponding to η would be the symmetric image of that with respect to γ with
respect to the vertical axis (see Figure 10). The open sets would not be the same either, because
for example the image of γ(]− ε, ε[), although a connected open set with respect to the topology
induced by γ, would not be open in the topology induced by η, for its preimage would consists
of two disjoint intervals, and the origin t = 0 (closed point). Then it seems that, although
the subset S is uniquely defined as the level sets of the points (x, y) satisfying the equation
x2 = 4y2(1 − y2), it admits several – a priori non-equivalent – smooth structures. The above
argument shows that the map η−1 ◦ γ : ] − π, π[−!] − π, π[ is not a smooth map, not even
a continuous one. However, if one would have a diffeomorphism ψ from ] − π, π[ such that
η = γ ◦ ψ, we would certainly conclude that the two smooth structures on S can be considered
as ‘equivalent’. This is not the case, but this equivalence property is worth extending to every
immersed submanifolds.
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Definition 3.49. Immersed submanifolds N1
ϕ1
↪! M and N2

ϕ2
↪! M are called equivalent when

there exists a diffeomorphism ψ : N1 −! N2 making the following diagram commutative:

N1

M

N2

ϕ1

ψ

ϕ2

This is an equivalence relation on the set of immersed submanifolds of M , and thus each
equivalence class has a unique representative (S,A, ι) where S is a subset of M with a given
smooth structure A such that the inclusion ι is an immersion. We emphasized the presence of
the maximal atlas A because it will turn out to be central in the discussion. For example, as
seen above, there are two possible atlases for the figure eight to be an immersed submanifold,
which are not equivalent because the map η ◦ γ−1 is not continuous. Thus, the figure eight
admits several non-equivalent smooth structures making it an immersed submanifold. More
generally now assume that there exist two injective immersions N1

ϕ1
↪! M and N2

ϕ2
↪! M whose

images coincide S = Im(ϕ1) = Im(ϕ2). What is the condition on ϕ1 and ϕ2 for N1 and N2
to be equivalent? Obviously, if ϕ1 and ϕ2 are smooth embeddings (i.e. if S is an embedded
submanifold), then a diffeomorphism between N1 and N2 satisfying the commutative triangle is
ϕ−1

2 ◦ ϕ1. This solution work for smooth embeddings because they have the following property:

Definition 3.50. Let N and M be smooth manifolds. A smooth map F : N −! M will be
called smoothly universal if for any smooth manifold N ′ and any smooth map H : N ′ −! M
such that H(N ′) ⊂ F (N), there exists a smooth map G : N ′ −! N making the following triangle
commutative:

N M

N ′

F

G
H

Not every injective immersion is smoothly universal as the following discussion shows: given
N,N ′, F and G as in the Definition (and assumming that F is an injective immersion), one naive
idea would be to use F−1 to lift the smooth map G to H. However, the smoothness of the map
H then crucially depends on the smooth structure of N and the properties of the smooth map
F or, said differently, if F (N) is an immersed or an embedded manifold. In the latter case, one
can always define the map H as the composite F−1 ◦ G, which is a smooth map because F is
a diffeomorphism onto its image. However, when F (N) is an immersed submanifold, although
well-defined the map H = F−1 ◦ G needs not be a smooth map with respect to the smooth
structure on N . For example, although the two paths γ and η define the same subset S – the
figure eight – in R2, the map η ◦ γ−1 is not continuous. This is the content of Scholie 1.31-33
in [Warner, 1983], which contain a nice discussion on this topic. In particular Theorem 1.32
states that the lift G is smooth if and only if it is continuous, thus showing that not having the
smoothly universal property has tremendous consequences. This justifies the following definition:

73



Definition 3.51. An injective immersion N
ϕ
↪! M that has the smoothly universal property

is called a weak embedding. The image of such a map in M is called a weakly embedded
submanifold.

We deduce from the above discussion that smooth embeddings are weak embeddings, while
injective immersions need not be. Hence the following sequence of inclusions:{

smooth embeddings
}
⊂
{
weak embeddings

}
⊂
{
injective immersions

}
As for Proposition 3.47, weakly embedded submanifolds correspond to the images of weak em-
beddings (some authors call them regularly immersed submanifolds). By construction, they are
immersed submanifolds, but need not be embedded submanifolds.

While the underlying set of an immersed submanifold S may admit different smooth struc-
tures making the inclusion map ι : S −! M an immersion, weak embeddings carry a universal
property making the smooth structure of a weakly embedded manifold unique, up to the equiv-
alence given in Definition 3.49. More precisely, assume that a weakly embedded submanifold
S of M is obtained via a weak embedding ϕ1 : N1 −! M – which is a smooth map with
respect to a maximal smooth atlas A1, and assume moreover that S admits another weak
embedding ϕ2 : N2 −! M with respect to a smooth structure A2 on N2. Then, by the
smoothly universal property of weak embeddings, both maps ϕ−1

1 ◦ ϕ2 : (N2,A2) −! (N1,A1)
and ϕ−1

2 ◦ ϕ1 : (N1,A1) −! (N2,A2) are smooth. Being injective and inverse to one another,
they define a diffeomorphism between (N1,A1) and (N2,A2), thus showing that the two smooth
structures are equivalent in the sense of Definition (3.49):

(N1,A1)

M

(N2,A2)

ϕ1

ϕ−1
1 ◦ ϕ2ϕ−1

2 ◦ ϕ1

ϕ2

Weakly embedded submanifolds can then be considered as those submanifolds that have the
right amount of regularity so that they carry only one possible smooth structure making the
inclusion map an immersion. We will now give more details on their geometric properties and
explain why their smooth structure – although uniquely defined by that of M – is not necessarily
induced by the subspace topology. Given a subset S of a smooth manifold M and a point x ∈ S,
we denote by Cx(S) the path connected component of x in S, i.e. the set of points that are
reachable from x by smooth curves contained entirely in S (here, a smooth curve is a smooth
map γ : R −! M). Then a weakly embedded submanifold is characterized by the following
property, that mimick Equation (3.8), but only at the level of path connected components:

Proposition 3.52. Let M be a smooth manifold and let S be a weakly embedded submanifold
of M of dimension k. Then for every x ∈ S, there exists a coordinate chart (U,ϕ) centered at
x such that:

ϕ
(
Cx(U ∩ S)

)
= ϕ(U) ∩

{
Rk × 0

}
(3.9)

Proof. See Propositions 3.19 and 3.20 in [Lee, 2009].
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Figure 12: Assume that S is a weakly embedded submanifold of M that is additionally dense in
M . Then, although S∩U consists of an infinite number of disjoint ‘plaques’, the path component
of x ∈ S in U is connected (by definition). Then its image through ϕ : U −! Rn is an open
subset of Rk × {0}.

Once again, we see why the figure eight is not even a weakly embedded submanifold: at
the origin, the path-connected component forms a cross shaped set, which does not have the
slice property of Equation (3.9). An example of a weakly embedded manifold which is not an
embedded manifold is any leaf of the Kronecker foliation of the torus:

Example 3.53. Let T = R2/
Z2 be the torus and let X = ∂

∂x + α ∂
∂y be a vector field on T such

that α ∈ R − Q. Then the integral curve of X through any point (x, y) is a dense subset of
T, that is a weakly embedded submanifold. Indeed, any open neighborhood U of (x, y) ∈ T
intersects infinitely many times the leaf through (x, y) (because it is dense). However, the set
of points of U which are path-connected to (x, y) satisfy Equation (3.9) when U is taken to be
sufficiently small. More generally it has been shown by Štefan in 1974 that leaves of (possibly
singular) foliations are weakly embedded submanifolds [Stefan, 1974].

Let us conclude this section by a rather useful result, which is a variation of Proposition 3.52
for immersed submanifolds. Although immersed submanifold do not admit the local structure
of embedded or weakly embedded submanifold as a level set of a constant rank smooth map,
there exist local distinguished coordinates characterizing open sets of immersed submanifolds:

Proposition 3.54. Let N F
↪−! M be an immersed submanifold of M and let x ∈ N . Then

there exists a connected open neighborhood V of x in N and a coordinate chart (U,ϕ) centered
at F (x) such that:

ϕ
(
U ∩ F (V )

)
= ϕ(U) ∩

(
Rk × {0}

)
(3.10)

Proof. The proof can be found in the discussion on page 131 of [Lee, 2009] and complemented
by Proposition 1.35 of [Warner, 1983].

Condition (3.10) emphasizes that the image in M of some connected open neighborhood of
every point of S is embedded in M . Notice the difference with Lemma 3.40 which characterize
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embedded submanifolds. Also notice the difference between Equation (3.10) and the one for
weakly embedded submanifolds (3.9) and for embedded submanifolds (3.8). We see that in each
case the condition is stronger and stronger as we climb the hierarchy of submanifolds:{

embedded submanifolds
}
⊂
{
weakly embedded submanifolds

}
⊂
{
immersed submanifolds

}
While conditions (3.8) and (3.9) are necessary and sufficient conditions to define embedded
and weakly embedded submanifolds (see Propositions 3.19 and 3.20 in [Lee, 2009]), condition
(3.10) does not characterize immersed submanifolds, as it is a particular case of the so-called
rank theorem (see theorem 7.12 in [Lee, 2003]). However if the function F is injective and has
constant rank then it implies that it is an immersion and then that the image is an immersed
submanifold.

3.4 Distributions and foliations

Submanifolds possess their own tangent bundles, but it is often useful to see them as sub-bundles
of the tangent bundle of M . That is why we benefit from the fact that every submanifold –
be it immersed, weakly embedded or embedded – is the image of an immersion, to identify the
tangent space to a submanifold S ⊂ M at x ∈ S with the image of the tangent space TxS as
the image in TxM of the pushforward of the inclusion map ι∗ – or the pushforward of the map
F : N ↪−!M defining S:

TF (x)S = F∗(TxN)
Then, we often identify the tangent bundle of S (in M) with the subbundle of TM whose base is
restricted to S and whose fiber is TxS at any point x ∈ S. This subbundle satisfies the following
nice characterization:

TxS ⊂
{
Xx ∈ TxM

∣∣∣Xx(f) = 0 whenever f ∈ C∞(M) and f |S ≡ 0
}

where the inclusion is an equality (at least) when S is an embedded submanifold (see Proposition
8.5 in [Lee, 2003] for a demonstration). However, by Proposition 3.54, one observes that there
exists an open neighborhood V of x in S such that:

TxS =
{
Xx ∈ TxM

∣∣∣Xx(f) = 0 whenever f ∈ C∞(M) and f |F (V ) ≡ 0
}

This equality can be explained by the fact that F (V ) is an embedded submanifold of M , and
that TxS = TxF (V ).
Example 3.55. Although the origin in the figure eight is located at the crossroad of two one-
dimensional paths, the tangent space at the origin of the figure eight is considered to be one
dimensional, since it is the pushforward of T ]− π, π[ through γ∗.
Example 3.56. The inclusion may not hold for weakly embedded submanifolds, as the example
for the Kronecker foliation shows: since every leaf is dense in T, the only function f that vanish
on the leaf passing through x is the zero function, and hence every tangent vector at x satisfies
Xx(f) = 0. The tangent space to the leaf is one dimensional, hence strictly included into TxT.
However, if one had replaced the condition f |S ≡ 0 by f |Cx(S) ≡ 0 – for any smooth function
f ∈ C∞(U), for any arbitrary open neighborhood U of x – then the inclusion would have been
an equality for weakly embedded submanifolds, but still not for immersed submanifolds (think
of the figure eight).

The tangent bundle of a submanifold S ⊂ M is a subbundle of the tangent bundle of M ,
when the base is restricted to S: TS ⊂ TSM . However, assume now that we have a subbundle
of TM defined over the entire manifold M . Then we expect that, under some circumstances,
there may exist a family of ‘parallel’ submanifolds whose tangent bundles are precisely these
subbundle.
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Definition 3.57. A (smooth) distribution on M is a smooth assignment12, to every point
x ∈ M , of a vector subspace Dx of the tangent space TxM . We say that the distribution D is
regular if the function x 7−! dim(Dx) is constant over M – in that case D forms a subbundle
of TM – and it is said singular (or generalized) otherwise. We say that the distribution is
involutive if the sheaf of smooth sections of D is stable under the Lie bracket of vector fields:

∀ X,Y ∈ Γ(D) [X,Y ] ∈ Γ(D)

An integral manifold of D is an immersed submanifold S such that TxS = Dx for every x ∈ S.
A distribution D is said integrable if through each point of M passes an integral manifold of D.

Remark 3.58. Sometimes people define integral manifolds to be those submanifolds that satisfy
the following inclusion TxS ⊂ Dx, and then define a maximal integral manifold of D to be an
integral manifold that is maximal with respect to inclusion; in particular, which satisfies the
equality TxS = Dx. On the other hand, an invariant manifold of D would be an immersed
submanifold S such that Dx ⊂ TxS for every x ∈ S. The name ‘invariant’ comes from the fact
that S is invariant under the action of the flows of sections of D.
Remark 3.59. Notice that the function x 7−! dim(Dx), as a map from a topological space into
the integers, is lower semi-continuous, and thus, the rank of the distribution D is locally constant
and, in a vicinity of any given any point x, it can only be higher than or equal to that of Dx.
Example 3.60. There exist non-smooth integrable distributions. Let M = R2 and let D be the
distribution defined as follows:

D(x,y) =
{
{0} if x 6= 0
〈∂y〉 if x = 0

The corresponding integral manifolds are the points (x, y) when x 6= 0 and the vertical axis.
The distribution is not smooth because there is no way of extending – as a smooth section of D
– a non-trivial tangent vector defined at the origin (0, 0) to a small neighborhood because the
distribution outside the vertical axis is trivial. Although the distribution D is integrable, we
do not consider it forms a singular foliation because it does not satisfy the axioms that we will
soon present.

An integrable regular (resp. singular) distribution corresponds to what is commonly known
as a regular (resp. singular) foliation. We do not want to enter the wide area of foliation theory
for now, so we stick to the regular case and to regular distributions. The following definition
should certainly be sufficient to understand the basic idea: a foliation atlas of codimension p on
M (where 0 ≤ p ≤ n) is an atlas made of charts call foliation charts and that are such that:

1. the image of the domain of any foliation chart (U,ϕ) through ϕ decomposes as a product
of connected open sets ϕ(U) = Ũ ′ × Ũ ′′ ⊂ Rn−p × Rp

2. the transition function between two foliation charts (U,ϕ) and (V, ψ) is of the form:

ψ ◦ ϕ−1(a, b) =
(
g(a, b), h(b)

)
∈ Rn−p × Rp (3.11)

where g : Rn −! Rn−p and h : Rp −! Rp are smooth maps.

Thus the domain U of each foliation chart (U,ϕ) is partitioned into the connected components of
the submanifolds ϕ−1(Rn−p×y), y ∈ Rp, called plaques. Being the connected components of the
level sets of a smooth map of constant rank, plaques are connected embedded submanifolds of M

12Here, smooth means that for every tangent vector Xx ∈ Dx, it is always possible to find a locally defined
vector field X such that for every point y in a neighborhood of x, Xy ∈ Dy.
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of dimension n − p. The change-of-charts diffeomorphisms defined in Equation (3.11) preserve
the plaques. Then, the union of plaques which overlap amalgamate into an immersed (in fact,
weakly embedded) submanifold of M . Those submanifolds which are maximal with respect to
inclusion are called leaves. More precisely (and we do not have time nor space to detail it here),
two points x, y ∈M lie on the same leaf if there exists a sequence of foliation charts U1, . . . , Uk
and a sequence of points x = x0, x1, . . . , xk = y such that xi−1 and xi lie on the same plaque in
Ui. This defines an equivalence relation, so that the leaves of a foliated atlas of codimension p
forms a partition of M by disjoint connected immersed submanifolds of dimension n− p. This
observation justifies the following abstract definition (although one should stick to the idea that
a foliation is a partition of M into leaves):

Definition 3.61. A foliation of codimension p on a smooth manifold M is a choice of maximal
foliation atlas on M of codimension p.

Remark 3.62. The immersed submanifolds are actually weakly embedded [Stefan, 1974]. The
charts defined in the definition are called foliated charts and there exists an atlas for M made of
foliated charts, that are additionally compatible to one another, in the sense that the transition
maps ψ ◦ϕ−1 send slices to slices and preserve their transversal. We call such an atlas a foliated
atlas. See [Candel and Conlon, 2000] and [Moerdijk and Mrcun, 2003] for details on foliations.

Figure 13: Three different foliations of the torus (and their corresponding equivalent representa-
tions on the flat torus): the vertical one, the horizontal one, and the last one being characterized
by the slope α. When α is an irrational real number, each leaf is dense in the torus: this is the
Kronecker foliation.

The relationship between distributions and foliations is that maximal (with respect to in-
clusion) connected integral manifolds of an integrable regular distribution form the leaves of a
regular foliations:

Proposition 3.63. Let D be an integrable regular distribution on a smooth manifold M . The
collection of all maximal connected integral manifolds of D forms a foliation of M .
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This statement justifies the name ‘integrable’, since the regular distribution is thus integrable
to a regular foliation, such that the leaves are the maximal connected integral manifolds of the
distribution. However, this proposition does not tell us under which circumstances a regular
distribution D is integrable. First observe that the tangent spaces to the leaves of a regular foli-
ation define an involutive distribution. Thus an integrable distribution is necessarily involutive.
The converse is actually also true, and this is the celebrated theorem of Frobenius (although he
was not the first to state it):

Theorem 3.64. Frobenius Theorem A regular distribution D on a smooth manifold is inte-
grable (to a regular foliation) if and only if it is involutive.

Proof. For more details on this subject, see Chapter 19 in [Lee, 2003], or Chapter 11 in [Lee,
2009], or [Candel and Conlon, 2000] and [Moerdijk and Mrcun, 2003].

Example 3.65. Let φ1, . . . , φr be a set of constraints on a phase space T ∗Rn, satisfying the
regularity condition of Example 3.46: the constraint surface Σ is then a 2n − r′-dimensional
embedded submanifold of T ∗Rn. The vector fields Xi = {φi, . } generate a distribution on T ∗Rn
that is regular of rank r′ on the constraint surface. We say that the constraints are first-class
if the canonical Poisson bracket on T ∗Rn of two such constraints vanishes on the constraint
surface, i.e. if we have:

{φi, φj} = Cij
k φk

where the Cijk are smooth functions on T ∗Rn. If otherwise, we say that they are second-class.
Then, a set of first-class constraints define an involutive, and then integrable, distribution on
Σ. The leaves of the induced foliation are immersed (in fact, weakly embedded) submanifolds
in Σ (and thus in T ∗Rn) of dimension r′, and correspond to the gauge equivalent physical
configurations.
Exercise 3.66. By using the Jacobi identity satisfied by the Poisson bracket, compute [Xi, Xj ]
and show that the distribution generated by the Xi is involutive (at least) on Σ.

Now what happens when the distribution is not involutive? It means that there exist
(smooth) sections X,Y of D such that their Lie bracket [X,Y ] is not a section of D any-
more. In particular, there is a point x such that the tangent vector [X,Y ]x does not belong to
Dx. Taking the successive brackets of (smooth) sections of D, and evaluating them at the point
x thus may generate a subspace at x that is way bigger than Dx. We set Lie

(
Γ(D)

)
x

to be the
distribution corresponding to the Lie algebra generated by Γ(D) under the successive action of
the Lie bracket of vector fields on smooth sections of D:

Lie
(
Γ(D)

)
x

= Dx + Span
(
[X1, X2]x, [[X1, X2], X3]x, [[[X1, X2], X3], X4]x, . . .

∣∣∣ Xi ∈ Γ(D)
)

Notice that it may not be a regular distribution, although interesting things happen when it is:

Definition 3.67. Hormander’s condition Let D be a distribution. We say that D is bracket
generating at x if:

Lie
(
Γ(D)

)
x

= TxM

We say that D is maximally non-integrable if D is bracket generating at every point.

The latter notion comes from the fact that Theorem 3.64 can be reformulated as the state-
ment that a distribution is integrable if and only if Lie

(
Γ(D)

)
x

= Dx. Then, obviously, if at
some point Lie

(
Γ(D)

)
x

is strictly bigger that Dx, the distribution will not be integrable. Con-
sequently, the situation where Lie

(
Γ(D)

)
x

= TxM at every point can legitimately be considered
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as the worst case scenario where D is non-integrable in the worst possible way. However, maxi-
mally non-integrable distribution have a nice property: from the fact that if a distribution D is
bracket generating at a given point x, every point in a small neighborhood of x can be reached
through a so-called ‘horizontal’ path. A horizontal path is a path γ : [0, 1] −!M that is:

1. absolutely continuous on every local coordinate chart, and

2. such that γ̇(t) ∈ Dγ(t) almost everywhere.

The notion of absolutely continuous paths is often met in the field of control theory under
the following form: assume that X1, . . . , Xm are smooth sections of D that are defined in a
neighborhood of γ([0, 1]), where γ is up to now only a continuous path. Then it is said absolutely
continuous if there exist m absolutely continuous functions ui ∈ L1([0, 1]) such that the following
equation holds almost everywhere:

γ̇(t) =
m∑
i=1

ui(t)Xi,γ(t)

The functions u1, . . . , um are called the controls of γ with respect to the vector fields X1, . . . , Xm.
When the distribution is induced by a physical system, and that Dx 6= TxM , we say that the
system is non-holonomic – joining two points may not be possible if one restricts itself to
horizontal paths only – while if Dx = TxM , we say that the system is holonomic – one could
always join one point of the state space to any other through horizontal paths. Then we have
the infamous following result that answer the problem for non-holonomic systems:

Theorem 3.68. Chow-Rashevskii theorem Let M be a smooth manifold and let D be a
smooth distribution that is bracket generating at a given point x ∈ M . Then, there exists a
neighborhood of x on which every point can be joined from x by an horizontal path.

Corollary 3.69. If D is maximally non-integrable, every two points of the manifold M can be
joined through a horizontal path.

Proof. See Section 3.2 of [Agrachev et al., 2019].

Exercise 3.70. Check that the distribution D of rank 2 on R3 generated by the vector fields
X = ∂

∂x1 + x2 ∂
∂x3 and Y = ∂

∂x2 is maximally non-integrable.

The corollary give some more insight on the denomination maximally non-integrable: such a
distribution does not have ‘leaves’ per se, and on the contrary, every two points of the manifold
can be joined though an absolutely continuous path almost everywhere tangent to the distribu-
tion. We will use these notions to explain how Constantin Carathéodory defined a geometric
approach to thermodynamics, and how he deduced the existence of a function called the entropy.
The following discussion is mainly inspired by Chapter 22 of [Bamberg and Sternberg, 1988].

In thermodynamics, we distinguish between two kinds of physical systems: closed systems
are those that are spatially bounded and that allow heat transfer with the exterior but no matter
transfer of any kind, while open systems are those physical systems allowing both heat and matter
transfers. Although open systems are those that are found in nature, we will restrict ourselves
to closed ones, which are a very practical modelization. To every closed thermodynamical
system is associated a thermodynamical state space, consisting of all its equilibrium states.
Although we may assume that it is a smooth manifold (possibly with boundary), it turns out
that it is often a vector space or a half space. Usually, it admits three types of coordinates:
some empirical temperature θ or several, depending on the number of reservoir; some intensive
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Figure 14: Although the distribution D defined in Exercise 3.70 does not contain the vertical
tangent vector ∂

∂x3 , we can however reach the point (0, 0, 1) from (0, 0, 0) through a sequence of
paths whose tangent vectors are in D at each point.

variables corresponding to generalized force such as the pression P or a magnetic intensity; and
extensive variables measuring variations of volume V or of magnetization, etc. [Zemansky, 1966].
It turns out that the existence of equations of states – such as the one relating the internal energy
to the thermodynamic variables, see Scholie 3.71 – implies that the intensive variables can be
made dependent on the (then independent) temperatures and on the extensive variables. We will
adopt the convention that paths in the state manifold correspond to reversible thermodynamic
processes.

There are mainly two kinds of thermodynamic transformations: those in which we apply
some work W to the physical system, and those in which there is a heat transfer Q between the
system and the exterior. The corresponding infinitesimal thermodynamic transformations are
denoted δW and δQ, respectively. They are differential one-forms which, when integrated over
a reversible thermodynamic process represented by a path γ, gives the total amount of work
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and of heat that has been exchanged:

Qγ =
∫ 1

0
δQ
(
γ̇(t)

)
dt and Wγ =

∫ 1

0
δW

(
γ̇(t)

)
dt

The symbol δ not only symbolizes that the objets δW and δQ correspond to infinitesimal trans-
formations, but also that they are not exact one-forms. More precisely, the quantity of work and
of heat that is applied to or retrieved from the system depends on the way we apply or retrieve
it (it is process dependent). One family of such processes is fundamental in thermodynamics
for its usefulness: an adiabatic process is a thermodynamic process for which there is no heat
transfer with the exterior, i.e. for which Qγ = 0. Adiabaticity is a property that is central in
Carathéodory’s reformulations of the first and the second principle of thermodynamics [Sears,
1966]:

Scholie 3.71. Carathéothodory’s first principle of Thermodynamics For a closed ther-
modynamic system, in all adiabatic reversible thermodynamic processes between an initial state
and a final state, the work does not depend on the path chosen. In particular, this implies
that there exists a well-defined function U called the internal energy such that its infinitesimal
variations satisfies:

dU = δQ+ δW

Proof. The proof that the second statement is a consequence of the first can be found in [Sears,
1963].

The integration of an exact one form over a path γ joining two points x and y in a simply
connected space only depends on the ends points, and not on the path chosen:

U(y)− U(x) =
∫
γ
dU =

∫ 1

0
γ̇(t)(U)dt

This makes the internal energy a state function, i.e. a function on the state space whose varia-
tions only depend on the initial state and the final state of the system – which is not the case
for work and heat transfer. There may be different kinds of work δW and one of the most used
is the one consisting of increasing or decreasing the volume of a given volume of gas, so that:

δW = −pdV + ν1dµ1 + . . .

The (certainly non-exact) differential one-form δQ = dU−δW then corresponds to the infinites-
imal heat production or absorption. The kernel of the differential one form α = δQ defines
a distribution D = Ker(α) such that at every point x ∈ M , Dx = Ker(αx) ⊂ TxM , and
that for the sake of the presentation we will assume to be regular. This distribution has rank
n − 1 and then the question is: is it integrable or maximally non-integrable? More precisely,
given the equivalence between involutivity and integrability for regular distributions, do we have
Lie
(
Γ(D)

)
x

= Dx or, on the contrary, do we have Lie
(
Γ(D)

)
x

= TxM? There exists obviously
a middle ground: at some point the distribution may be bracket generating while at others it
may not, but we will see that this situation is not met in our context.

If the distribution D = Ker(α) is maximally non-integrable, it means that every two points
of the state space can be joined through a horizontal path, i.e. through a succession of reversible
adiabatic transformations. On the contrary, if the distribution D is integrable, then we can de-
duce some properties of the differential one form δQ. Indeed, one can show that an alternative
form of Frobenius theorem states that the graded ideal I•α =

⊕
1≤m≤n I

m
α of the graded commu-

tative algebra Ω•(M) generated by α – i.e. I1
α = Span(α) and Imα = Span

(
η1∧ . . . ηm−1∧α

∣∣ ηi ∈
Ω1(M)

)
– is actually a differential graded ideal, i.e. it is stable under the de Rham differential:

dI•α ⊂ I•α
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For details on this statement, see for example Theorem 1.3.8 and Exercise 1.3.12 in [Candel
and Conlon, 2000]. So, in particular, since dα ∈ I2

α, there exists a one form η such that, at
least locally, dα = η ∧ α. One can then show that this identity holds if and only if there exist
two smooth functions f, g ∈ C∞ such that α = fdg. This observation leads to Carathéodory’s
(partial) reformulation of the second principle of thermodynamics:

Scholie 3.72. Carathéodory’s second principle of Thermodynamics, a.k.a adiabatic
inacessibility Given a closed system, in every neighborhood of any state x there are states
inaccessible from x through adiabatic (reversible) processes. In particular, this implies that there
exists two smooth functions – T called the temperature and S called the entropy – such that the
differential form δQ takes the following form:

δQ = TdS

Proof. If, in the vicinity of each equilibrium state, there are other states which are not reachable
through adiabatic reversible transformations, then the distribution D = Ker(α) is not maximally
non-integrable and, the assumption of non-accessibility holding at every point, we deduce that
it is integrable. But then, by the above discussion on integrable distribution of rank n − 1,
we deduce that α = δQ can be written as fdg or, for the sake of consistency with traditional
notations, δQ = TdS. The fact that this equality holds globally and not only locally comes from
the fact that the thermodynamic state space is often a vector space, on which the cotangent
bundle is trivial.

Remark 3.73. Actually, Carathéodory’s principle is not a faithful second principle, because it says
nothing about the conditions under which the entropy increases. That is why it is necessary to
supplement it with Planck’s principle, stating that adiabatic isochoric processes always increase
the internal energy of a closed system, hence corresponding to an increase of entropy. The only
way that the entropy of a closed system can decrease is when heat is transferred from the system
to the exterior. See e.g. [Sears, 1966] and [Zemansky, 1966] for a discussion on the relationships
between non-equivalent statements of the second principle.

3.5 Orientation of smooth manifolds and integration of differential forms

Now we have enough material to define integration of differential forms on smooth manifolds.
Theoretically one can integrate any differential k-forms, but this relies on advanced mathematics
so we would rather only concentrate on integrating differential n-forms. This is consistent
with what theoretical physicists mostly do in their everyday life. We would proceed as usual:
integration on a manifold M would first be defined locally, because we know how to integrate
differential n-forms in Rn, and then using a partition of unity we can sum up all the local
contributions to obtain an integral over M . A necessary condition to integrate is to have an
orientable manifold. In this section we assume that the dimension of manifolds and vector spaces
are greater than or equal to 1.

Given a n-dimensional vector space E, we say that two ordered basis e1, . . . , en and e′1, . . . e′n
are consistently oriented if the transition matrix from one to the other has positive determinant.
This relation is an equivalence relation. Since R− {0} has two disjoint connected components,
there are only two equivalence classes of consistently oriented ordered bases: either the deter-
minant of the transition matrix is positive and we stay in the equivalence class, or it is negative,
and we change class. We call an orientation on E either of those equivalence classes of those
consistently oriented ordered bases. There is no absolute choice of orientation on a vector space
(except maybe for Rn), there are only relative choices: once we have chosen an ordered ba-
sis e1, . . . , en, it is a convention to say that every other consistently oriented ordered basis is
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positively oriented. A basis that is obtained from e1, . . . , en through a transition matrix with
negative determinant is said negatively oriented.
Example 3.74. The vector space Rn admits the following standard basis ei = (0, . . . , 0, 1, 0, . . . , 0)
where 1 is located at the i-th position. We say that the orientation defined by this basis is the
standard orientation of Rn.

Lemma 3.75. Let E be a vector space of dimension n ≥ 1, and suppose ω is a nonzero element
of
∧n(E∗). The set of ordered bases e1, . . . , en such that ω(e1, . . . , en) has the same sign is an

orientation for E.

Proof. Let e1, . . . , en and e′1, . . . , e
′
n be two basis of E and let B the transition matrix from the

former to the latter: e′i = Bj
i ej . Then:

ω(e′1, . . . , e′n) = det(B)ω(e1, . . . , en)

so that e1, . . . , en and e′1, . . . , e′n are consistently oriented if and only if ω(e′1, . . . , e′n) and ω(e1, . . . , en)
have the same sign.

Thus, choosing an orientation of a vector space E amounts to choosing an element ω of
∧nE∗.

One this choice is made, we say that ω is a positively oriented n-covector. For example, if the
ordered basis of E is given by e1, . . . , en, the n-covector ω = e1 ∧ . . . ∧ en is positively oriented.
For any real scalar λ > 0, λω is another positively oriented n-covector, while for any real scalar
µ < 0, µω is said to be a negatively oriented n-covector. This plays some role in the definition of
the Hodge star operator. Indeed, it depends on a choice of orientation of E because the volume
form ω = e1 ∧ e2 ∧ . . . ∧ en is given by the choice of an ordered basis e1, e2, . . . , en. If one had
taken the ordered basis e2, e1, e3, . . . , en instead – with reverse orientation, then – the associated
volume form positively oriented with respect to the orientation defined by e2, e1, e3, . . . , en would
be ω′ = e2∧ e1∧ e3∧ . . .∧ en = −ω, so that the Hodge star operator ?′ associated with ω′ would
be the opposite to the one associated with ω: ?′ = −?.

Since a smooth manifold is locally euclidean, we can define an orientation locally, at the
level of the tangent bundle. A pointwise orientation on M is the assignment, to every point x,
of an orientation of the fiber TxM . It is always possible to equip a smooth manifold with such
a pointwise orientation, but the difficulty comes from having this orientation varying smoothly
over the manifold. A local smooth frame X1, . . . , Xn of the tangent bundle over some open set U
is said positively oriented if, for every x ∈ U , the orientation of the basis X1,x, . . . , Xn,x coincides
with the orientation of TxM . A pointwise orientation is said smooth if every point of M is in
the domain of an oriented local smooth frame. Given two smooth manifolds M and N of the
same dimension that admit smooth pointwise orientations, we say that a local diffeomorphism
F : M −! N is orientation-preserving if, for every x ∈ M , F∗ takes oriented bases of TxM
to oriented bases of TF (x)N , and orientation-reversing if it takes (positively) oriented bases of
TxM to negatively oriented bases of TF (x)N .

We want to study how the existence of a smooth pointwise orientation translates at the level
of charts and transition functions. Let M be a smooth manifold equipped with a (non necessarily
smooth) pointwise orientation. Any smooth chart (U,ϕ) whose coordinate frame ∂

∂x1 , . . . ,
∂
∂xn is

positively (resp. negatively) oriented is called a positively (resp. negatively) oriented chart. Any
smooth oriented chart (U,ϕ) on M always induce another chart (U,ϕ) with reverse orientation.
Indeed let ϕ be the composite of ϕ and a reflectional symmetry (which is a smooth map from Rn
to Rn), then (U,ϕ) has reverse orientation compared to (U,ϕ). Obviously, there exist choices
of pointwise orientations such that some charts are neither positively nor negatively oriented.
However we will see that for smooth pointwise orientations, the situation is really nice. We say
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that two smooth oriented charts (U,ϕ) and (V, ψ) are consistently oriented if the transition map
ψ ◦ ϕ−1 has positive Jacobian determinant, i.e. if it is orientation preserving. An oriented atlas
on M is a smooth atlas for which all smooth charts are consistently oriented. M is orientable
if it admits an oriented atlas, and an orientation of M is a choice of a maximal oriented atlas.
The following proposition shows that the existence of a smooth pointwise orientation on M is
equivalent to an orientation on M . Thus, oriented atlases form a subclass of smooth atlases,
where the transition functions are not only diffeomorphisms, but also orientation preserving.
The relationship between the two notions of orientability is actually very simple:

Proposition 3.76. Let M be a positive (n > 1) smooth manifold equipped with a pointwise
orientation. Then it is smooth if and only if it induces an orientation on M .

Proof. First, notice that a smooth pointwise orientation on M implies that there exists an open
cover of positively oriented charts. This can be seen as follows: let x ∈M an let X1, . . . , Xn be
an oriented frame defined on an open neighborhood of x. One can assume that this neighborhood
is a smooth chart (U,ϕ). Then, the induced coordinate frame is either positively oriented, or
negatively oriented, but in that latter case the smooth chart (U,ϕ) is positively oriented. Then
we can find an open cover of positively oriented charts.

Assume that the chosen pointwise orientation on M is smooth and pick up such an open
cover of oriented charts. Then, by Equation 3.2, on overlapping oriented charts, the transition
functions are orientation-preserving. This implies that the open cover of positively oriented
charts is an oriented atlas, providing M with an orientation. Conversely, every orientation
makes the pointwise orientation smooth because the coordinate frames are oriented frames, and
two such frames define the same orientations on the fibers since the transition functions between
oriented charts are orientation-preserving by hypothesis.

Thus, being smoothly pointwise orientable is equivalent to being orientable. If a smooth
manifold is orientable, there are essentially two possible choices of orientations. Pick up a
tangent space and attribute an orientation to this vector space (here we make a choice between
two orientations). Then, by Proposition 3.76, the respective orientations of the other fibers of
the tangent bundle will be automatically determined by this first choice. This can be seen from
the fact that transitions functions from one oriented chart to another are orientation preserving.
Non-orientable manifolds are precisely those manifolds for which there are always at least one
transition function that is not orientation preserving, whatever the choice of smooth chart we
make. For a zero dimensional manifold, i.e. a point {∗}, an orientation is a choice of map
{∗} 7−! {±1}. We know at least one evident situation where a smooth manifold is orientable:

Proposition 3.77. Every parallelizable smooth manifold is orientable.

Example 3.78. Every Lie group is parallelizable, hence is orientable.
Example 3.79. Spheres, planes and tori are orientable.
Example 3.80. The Mobius bundle is the vector bundle E over S1 whose total space is defined
as a quotient of R2 by the following relation:

(x, y) ∼ (x+ n, (−1)ny)

The Mobius band is the subset M ⊂ E of the Mobius bundle that is the image, under the above
quotient map, of the set

{
(x, y) ∈ R2| | y| ≤ 1

}
. It is a smooth 1-manifold with boundary, which

is non orientable.
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The most important point with orientations is that we can characterize it through differential
forms. A volume form on M is a global nowhere vanishing smooth section of the vector bundle∧n T ∗M . We usually denote such a section by the letter ω. Over a local smooth chart U , with
respect to a coordinate coframe, the volume form decomposes as ω = f dx1 ∧ . . .∧dxn, for some
smooth function f ∈ C∞(U). The existence of volume forms is tightly connected to that of
orientations:

Proposition 3.81. Let M be a smooth manifold of dimension n ≥ 1. Any nowhere vanishing
differential n-form ω ∈ Ωn(M) determines a unique orientation of M for which the n-covector
ω(x) ∈

∧n T ∗M is positively oriented for every x ∈M . Conversely, if M is given an orientation,
there is a smooth nowhere vanishing differential n-form on M that is positively oriented at each
point.

Proof. Assume that there exists such a volume form ω, so by Lemma 3.75, the evaluation of the
volume form ω at a point x induces an orientation of the tangent space TxM , that is considered
to be positively oriented. Now let us check that there exists an oriented smooth atlas for M . Let
(U,ϕ) and (V, ψ) be two intersecting oriented charts. Let us denote by x1, . . . , xn and x′1, . . . , x′n
the coordinates respectively associated to the maps ϕ and ψ. Then, on U the volume forms
reads ω = f dx1∧ . . .∧dxn, while on V it reads ω = g dx′1∧ . . .∧dx′n, for two nowhere vanishing
functions f ∈ C∞(U) and g ∈ C∞(V ). Over the intersection U ∩ V , using the transformation
laws found in Equations (3.6)-(3.7), one obtains that:

dx′i
∣∣∣
y

= ∂x′i

∂xj
(
ϕ(y)

)
dxj

∣∣∣
y

(3.12)

Then, we obtain that g dx′1 ∧ . . . ∧ dx′n = g Jac
(
ψ ◦ ϕ−1) dx1 ∧ . . . ∧ dxn, where Jac symbolizes

the Jacobian determinant. Then, we have:

f(y) = g(y) Jac
(
ψ ◦ ϕ−1)(ϕ(y)

)
for every y ∈ U ∩ V . The sign of the Jacobian determinant is determined by the sign of the
function f

g which is nowhere vanishing over U ∩ V .
Now, either f and g have the same sign, and then (U,ϕ) and (V, ψ) are consistently oriented,

or they do not have the same sign. However, in that case, one may define another chart (V, ψ)
by changing a sign in the definition of ψ, e.g. ψ(y) 7−! ψ(y) =

(
−ψ1(y), ψ2(y), . . . , ψn(y)

)
. This

is possible because reflectional symmetries with respect to hyperplanes are diffeomorphisms of
Rn. We label the corresponding new coordinates as xi, and in particular x1 = −x′1 whereas
for 2 ≤ i ≤ n, xi = x′i. Then the volume form decomposes in this new coordinate coframe as
ω = −g dx1 ∧ . . . ∧ dxn, and then, the new Jacobian determinant reads: det

(
ψ ◦ ϕ−1)(ϕ(y)

)
=

−f(y)
g(y) which is now a positive fraction for every y ∈ U ∩ V . Thus, the oriented chart (V, ψ) is

consistently oriented with (U,ϕ). This proves the first statement. For the converse statement
– that any orientable smooth manifold admits a volume form – see Proposition 13.4 in [Lee,
2003].

Since the vector bundle
∧n T ∗M has rank 1, any other nowhere vanishing smooth section f ω,

where f ∈ C∞(M), is a volume form as well. Since there are two disjoint connected components
in R− {0}, there are two equivalence classes of sections of the line bundle

∧n T ∗M : those that
are positively related to ω, and those that are negatively related to ω. Moreover, those volume
forms that are negatively related with ω are still positively related among themselves. Thus, as
the proof of Proposition 3.81 shows, picking up any other representent of the equivalence class
of ω – i.e. of the form f ω for some strictly positive function – defines the same orientation on
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M as ω. Actually, the oriented atlas associated to ω is obtained as the collection of all smooth
charts for which the standard volume form on Rn (induced from the standard oriented basis
presented in Example 3.74) pulls back to a positive multiple of ω. That is why some authors
define an orientation on M as a choice of an equivalence class of positively related volume forms
(see e.g. [Baez and Muniain, 1994, p. 84]):

Corollary 3.82. There is a one-to-one correspondence between orientations on M and equiva-
lence classes of positively related globally defined volume forms.

Remark 3.83. There are homological and cohomological characterization of orientability. For
example, a smooth manifold is orientable if and only if the first Stiefel-Whitney characteristic
class is 0.

Orientability is necessary to define integration on smooth manifolds. Since a smooth manifold
is locally euclidean, let us first define integration over Rn, before generalizing to any smooth
manifold using pullbacks. A subset of Rn is a domain of integration if its boundary has n-
dimensional measure 0. We usually define integration in Rn defining first the integral of bounded
continuous functions on ‘rectangles’, i.e. products of closed intervals. Then, every continuous
function can be locally approximated by such functions, and every domain of integration can be
covered by rectangles (given by the closure of open sets inherited from the subspace topology
of Rn on D), so that in the end we can define the integral of bounded continuous functions on
any domain of integration. Then, a choice of domain of integration D defines a linear form on
the space of bounded continuous functions on D:∫

D
: C0

b(D) −−−−−! R

f 7−−−−−!
∫
D
f dx1 . . . dxn

where the notation dx1 . . . dxn is purely abstract and needs not appear. It only reminds the
reader that we integrate the function over a subset of Rn. It is sometimes noted dµ to symbolize
the Lebesgue measure. You can find more details on this construction in Appendix A of [Lee,
2003].

This definition straightforwardly generalizes to differential n-forms. Let U ⊂ Rn be an open
set and let ω be a differential n-form compactly supported on some compact set K ⊂ U :

K = supp(ω) = {x ∈M |ω(x) 6= 0}

Lemma 14.1 in [Lee, 2003] shows that there always exists a domain of integration D such that
K ⊂ D ⊂ U . Then, assuming that this differential form can be written as ω = f dx1 ∧ . . .∧ dxn
over its support K, the integral of ω over U is given by:∫

U
ω =

∫
D
f dx1 . . . dxn

The notation here is very convenient: it is as if we had ‘erased’ the wedges. Notice that the
above definition does not depend on the choice of domain of integration K ⊂ D ⊂ U .

Lemma 3.84. Suppose U, V are open sets of Rn and that F : U −! V is a diffeomorphism.
Let ω be a compactly supported differential n-form on V . Then:

∫
V
ω =


∫
U
F ∗ω if F is orientation-preserving

−
∫
U
F ∗ω if F is orientation-reversing
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This lemma provides another formulation of the fact that a differential n-form can be written
equivalently in two sets of coordinates x1, . . . , xn and x′1, . . . , x′n, defined over overlapping open
sets U and V , and related through a diffeomorphism F : U −! V , e.g. such that F (x1, . . . , xn) =
(x′1, . . . , x′n)). Then if one writes the differential form on V as ω = g dx′1 ∧ . . .∧ dx′n, Equation
(3.12) implies:

F ∗ω = F ∗
(
g dx′1 ∧ . . . ∧ dx′n

)
= (F ∗g)F ∗(dx′1) ∧ . . . ∧ F ∗(dx′n)
= g ◦ F · Jac(F ) dx1 ∧ . . . ∧ dxn

where · indicates the multiplication of two smooth functions on U . Thus, we obtain the infamous
formula for a change of coordinates under integration:∫

V
g(x′1, . . . , x′n) dx′1 . . . dx′n =

∫
U
g ◦ F (x1, . . . , xn) Jac(F )(x1, . . . , xn) dx1 . . . dxn

We have now enough material to define integration on manifolds. Let M be a n-dimensional
oriented smooth manifold. First, let ω be a differential n-form compactly supported in the
domain of a single oriented smooth chart (U,ϕ). Then, we define the integral of ω over U as
the following objet: ∫

U
ω =

∫
ϕ(U)

(ϕ−1)∗ω (3.13)

The right-hand side is an integral over an open subset Ũ = ϕ(U) of Rn. It is well defined
because (ϕ−1)∗ω is a compactly supported differential n-forms on this open set. Lemma 3.84
implies that the integral of ω over any other choice of oriented smooth chart (V, ψ) containing
its compact support would have given the same result:∫

U
ω =

∫
V
ω

Now that we have defined integration over compact support, we can extend integration over the
whole manifold M by using a notion that is specific to smooth manifolds:

Definition 3.85. Let U = (Uα)α∈A be any open cover of M (indexed over some set A). A
partition of unity subordinate to U is a collection of continuous functions (ψα : M −! R)α∈A,
with the following properties:

1. 0 ≤ ψα(x) ≤ 1 for all α ∈ A and all x ∈M ;

2. supp(ψα) ⊂ Uα;

3. for every x ∈M , there is only a finite number of ψα such that x ∈ supp(ψα);

4.
∑
α∈A ψα(x) = 1 for all x ∈M .

The third condition is equivalent to saying that the set of supports {supp(ψα)}α∈A is locally
finite. Because of this condition, the sum in the last item has only finitely many nonzero terms
in the neighborhood of each point, so there is no issue of convergence. When the functions ψα
are smooth, then we say that they form a smooth partition of unity. The importance of partition
of unity is central in differential geometry, as the following theorem shows:

Theorem 3.86. Any open cover U of a smooth manifold admits a smooth partition of unity
subordinate to U .
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Proof. The main point is that the fact that a topological manifold is Hausdorff and second-
countable implies that it is paracompact (and that it has countably many connected compo-
nents), which is the crucial property needed to demonstrate the result. However, the proof is
long and subtle, so we refer to Chapter 2 of [Lee, 2003].

Remark 3.87. While Theorem 3.86 show that smooth partitions of unity subordinate to any
open cover of a smooth manifold exist, it is no longer the case for analytic manifolds. Indeed,
the proof relies on the existence of smooth bump functions on [−1, 1]. Unfortunately, those
bump functions are not analytic because of the so-called identity theorem, which is then an
obstruction to the existence of analytic partitions of unity subordinate to any open cover of an
analytic manifold.

To integrate over a (connected) smooth manifold, one needs an orientation. The latter is
needed to integration over the entire manifold in order to ensure that local contributions, as
defined by Equation (3.13), do not artefactually cancel one another because of a change in
open chart, as shown by the change of sign in Lemma 3.84. Let ω be a compactly supported
differential n-form on a connected oriented smooth manifold M . Then there exists a finite open
cover {(Ui, ϕi)} of oriented charts for supp(ω), and a partition of unity {ψi} subordinated to
this open cover. We define the integral of ω as follows:∫

M
ω =

∑
i

∫
Ui

ψi ω (3.14)

For each i, the n-form is compactly supported in Ui, so that the integral on the right-hand side
is obtained through Equation (3.13). There are finitely many non-zero integrals on the right
because the open cover of supp(ω) is finite. It turns out that Equation (3.14) neither depends
on the choice of finite cover, nor on the choice of partition of unity (see Lemma 14.5 in [Lee,
2003]). The disconnected case requires to define an orientation on each connected component.
In the following proposition are listed several properties of this integral:

Proposition 3.88. Let M and N be oriented smooth n-dimensional manifolds, and let ω, η be
compactly supported differential n-forms on M . Then:

1. Linearity: for every a, b ∈ R,∫
M
aω + b η = a

∫
M
ω + b

∫
M
η

2. Positivity: if ω is positively oriented, then
∫
M ω > 0;

3. Orientability: If F : N −!M is a diffeomorphism, then:

∫
M
ω =


∫
N
F ∗ω if F is orientation-preserving

−
∫
N
F ∗ω if F is orientation-reversing

Remark 3.89. Equation (3.14) is still valid for non-compactly supported differential forms, but
in that case the integral is improper since the sum on the right may not converge. On a compact
manifold, the integral is defined for every differential n-form.

We conclude this section by briefly discussing two important results relying on integration of
differential forms. We note Ωp

c(M) the compactly supported differential p-forms on M . The de
Rham differential applies to compactly supported differential forms and induces a cohomology,
denoted Hm

c (M). However, this cohomology is different than the de Rham cohomology, as the
following observation shows:
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Proposition 3.90. The compactly supported de Rham cohomology of Rn satisfies:

H i
c(Rn) '

{
R if i = n

0 otherwise

One notices that the m-th compactly supported cohomology group of compact support is
isomorphic to the n−m-th de Rham cohomology group. Does this extend to general manifolds?
For every 0 ≤ m ≤ n, notice that the integral defined in Equation (3.14) induces a linear
morphism:

PD : Ωm(M) −−−−−! Ωn−m
c (M)∗

η 7−−−−−! PD(η) : µ 7−!
∫
M
η ∧ µ

Following de Rham, we call n−m-currents the elements of Ωn−m
c (M)∗; they are related to the

notion of distribution. The de Rham differential on compactly supported n−m-forms induces
a degree −1 differential d′ : Ω•c(M)∗ −! Ω•−1

c (M)∗ defined by d′Φ(µ) = Φ((−1)|Φ|dµ). Then,
one can show that PD commutes with the differentials: PD(dη)(µ) = d′PD(η)(µ). This result
implies that PD induces a map at the cohomology level, which turns out to be an isomorphism:

Theorem 3.91. Poincaré duality Let M be a smooth orientable manifold, then:

Hm
dR(M) ' Hn−m

c (M)∗

Proof. See Exercise 16.6 in [Lee, 2003].

We conclude this section by mentioning Stokes’ theorem. This result relies on the notion
of manifold with boundary. We will not enter into the details of this notion, because it would
take too much time, but many informations can be found in [Baez and Muniain, 1994] and [Lee,
2003]. The main idea is that a manifold with boundary is locally homeomorphic to the euclidean
upper half-plane:

Hn =
{
(x1, . . . , xn) ∈ Rn

∣∣xn ≥ 0
}

It means that a chart on a manifold with boundary M is either homeomorphic to an open subset
(with respect to the subspace topology) of the interior of Hn, or to an open subset of Hn which
intersects the boundary. The boundary of M is the set ∂M of points of M which are sent to
the boundary ∂Hn of the upper half plane through the coordinate maps. By construction, the
boundary of M is a closed embedded submanifold of M (see Exercise 8.5 in [Lee, 2003]). If the
manifold M has an orientation, there is a distinguished orientation on its boundary ∂M . In
that case, one can define integration of differential n-forms on M and at the same time define
integration of differential n − 1-forms on the boundary ∂M . Stokes’ theorem is a statement
about the relationship between those two integrals:

Theorem 3.92. Stokes’ theorem Let M be a smooth, oriented n-dimensional manifold with
boundary, and let ω be a compactly supported smooth n− 1-form on M . Then:∫

M
dω =

∫
∂M

ω

The meaning of the integral on the right hand side and of this theorem are discussed in details
in [Baez and Muniain, 1994] and [Lee, 2003].
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3.6 Pseudo-Riemannian manifolds and Laplace-de Rham operator

In the last section we used the fact that smooth manifolds admit a tangent bundle, that associates
a tangent space to every point, to define an orientation on manifolds. We can use the same
strategy to define pseudo-Riemannian metrics on smooth manifolds. First we define a pointwise
metric, and we require it to vary smoothly over the manifold.

Definition 3.93. Let M be an n-dimensional smooth manifold and let x ∈M . A metric tensor
on M is a smooth section g of the vector bundle S2(T ∗M) that restricts at every point x ∈M to
a pseudo-Riemannian metric gx : TxM × TxM −! R. We call a smooth manifold equipped with
a metric tensor a pseudo-Riemannian manifold; it is said Riemannian when the metric tensor
is positive definite at every point.

We know that the tangent space at a point is the best linear approximation of the manifold
at that point. The metric tensor at this point is then fed by tangent vectors. However, since g
is a smooth tensor, it can be fed by vector fields, and the result defines a smooth function (that
is actually a way of characterizing smoothness of g):

g(X,Y ) = g(Y,X) ∈ C∞(M) for every X,Y ∈ X(M)

The smoothness of the metric tensor g is characterized by the fact that the map x 7−! gx(Xx, Yx)
is a smooth map, for every two smooth vector fields X and Y . The metric tensor g can be locally
decomposed in a coordinate cotangent basis dx1, . . . , dxn over a coordinate chart U as:

g = gij dx
i � dxj

where gij ∈ C∞(U) are smooth functions. So, in particular, with respect to the coordinate
tangent frame:

gij = g(∂i, ∂j)

Obviously since the metric tensor varies smoothly, its pointwise signature is constant over U
(and more generally, over M), and is determined by the eigenvalues of the matrix-valued smooth
function G ∈ C∞

(
U,Mn(R)

)
.

Remark 3.94. Let D be a regular smooth distribution on M . Then, assume that we have a
smoothly varying metric gx defined on each subspace Dx and that is smoothly varying, in the
sense that for every two smooth sections X,Y ∈ Γ(D), the map x 7−! gx(Xx, Yx) is a smooth
map over M . It is as if the metric was defined in the directions defined by D. We call this ‘metric
tensor’ a sub-Riemannian metric, and the smooth manifold M a sub-Riemannian manifold. This
metric defines a distance function on the manifold by integrating it over any horizontal path
joining the two points:

dγ(x, y) =
∫ 1

0

√
gγ(t)

(
γ̇(t), γ̇(t)

)
dt

The Carnot-Carathéodory distance is then the infimum of all such distance, over all the horizontal
paths:

dCC(x, y) = inf
horizontal γ

{
dγ(x, y)

}
This distance is very useful in sub-Riemannian geometry. For example, Chow-Rashevskii theo-
rem 3.68 can be restated as the following: ”the topology induced by the Carnot-Carathéodory
metric is equivalent to the intrinsic (locally Euclidean) topology of the manifold”.

A pseudo-Rimannian manifold that is additionally an oriented manifold has a distinguished
volume form, that we now present. By Corollary 3.82, the fact that M is oriented means that
there exist a nowhere vanishing globally defined volume form ω that is positively orientated at
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every point. The following argument explain that we can chose ω in a certain, adapted form.
Since a metric tensor g induces a pointwise metric g−1 on the cotangent bundle that varies
smoothly, then the following map

√
|det(G−1)| = 1√

|det(G)|
is a smooth function which is well

defined and nowhere vanishing. We also sometimes write
√
|g| instead of

√
|det(G)|. Since

the metric associated to the coordinate cotangent frame dx1, . . . , dxn is g−1, at the price of
multiplying ω by a nowhere vanishing positive smooth function, we can always have:

ω =
√
|g|dx1 ∧ . . . ∧ dxn (3.15)

This formula is the counterpart of Equation (1.24) in the context of smooth manifolds, where
the exterior algebra

∧•(E) is the vector bundle
∧• T ∗M . Equation (3.15) is the local form of

the standard volume element on a pseudo-Riemannian oriented manifold (M, g).
Following the discussion in Section 1.2, the pseudo-Riemannian metric g on M induces a

pairing on the fibers of the exterior algebra of the cotangent bundle:

〈 . , . 〉 : Ωm(M)× Ωm(M) −−−−−! C∞(R)
(η, µ) 7−−−−−! 〈η, µ〉 : x −! 〈ηx, µx〉

for every 0 ≤ m ≤ n. It is fiberwisely non-degenerate, but one needs to integrate the function
on the right-hand side in order to define an inner product ( . , . ) on differential forms, via the
following formula:

(η, µ) =
∫
M
〈η, µ〉ω (3.16)

for every η, µ ∈ Ωm(M), and every 0 ≤ m ≤ n, and where ω is the distinguished volume form
defined in Equation (3.15). This product may be divergent if the support of one of the arguments
does not have compact support. It defines a L2 norm on those differential forms η that are such
that (η, η) < +∞ (in particular compactly supported differential forms satisfy this condition).

The volume form defined in Equation (3.15) and the fiberwise inner product 〈 . , . 〉 also allow
to define a Hodge star operator ? : Ωm(M) −! Ωn−m(M), as in Equation (1.25). One can then
define a C∞(M)-linear operator δ : Ω•(M) −! Ω•−1(M) that is ‘dual’ in some sense to the de
Rham differential. On m-forms, it is defined as:

δ = −(−1)n(m−1)+q ? d ?

and sends m-forms to m− 1-forms. By construction, on 0-forms it is zero. Using the definition
of the inverse star operator (see Equation (1.29)) ?−1 :

∧n−m−1(M) −!
∧m−1(M), one deduces

that δ : Ωm(M) −! Ωm−1(M) can also be written as:

δ = (−1)m ?−1 d ? (3.17)

Then, for every differential m-form η, and any differential m+ 1-form µ, one has the following
identity:

?
(
〈dη, µ〉 − 〈η, δµ〉) = d(η ∧ ?µ) (3.18)

The right-hand side is a n-form, that is why we used a star operator on the scalar in parenthesis
on the left-hand side so that it becomes a n-form as well. Thus Equation (3.18) implies that δ is
the adjoint of the de Rham differential, with respect to the inner product on differential forms:

(η, δµ) = (dη, µ)

for every η ∈ Ωm(M) and µ ∈ Ωm+1(M), where 0 ≤ m ≤ n− 1.
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Exercise 3.95. Prove Equation (3.17).
Exercise 3.96. Prove that the identity d2 = 0 implies that δ2 = 0.

Definition 3.97. We call the C∞(M)-linear operator δ : Ω•(M) −! Ω•−1(M) the codifferential.
We define the Laplace-de Rham operator as the C∞(M)-linear operator ∆dR : Ω•(M) −!
Ω•(M) such that:

∆dR = d ◦ δ + δ ◦ d

The first term of the Laplace-de Rham operator vanishes on smooth functions, i.e. 0-forms,
so that we obtain minus the Laplace-Beltrami operator13:

∆dR(f) = −(−1)q ? d ? df = −∆(f)

The difference in sign is a convention and descends from the additional sign in δ. The Laplace-
de Rham operator is defined to be positive definite, whereas the Laplace-Beltrami operator is
usually taken to be negative definite. Since the Laplace-Beltrami operator reads, in coordinates:

∆(f) = 1√
|g|
∂i

(√
|g|gij∂j(f)

)
(3.19)

we deduce that, in Minkowski space-time with signature (3, 1) or, in physics notation, (−,+,+,+),
the Laplace-de Rham operator is the d’Alembertian:

∆dR = � = ∂2

∂t2
− ∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 (3.20)

Be aware however that, under the convention that the signature of the Minkowski metric is
(1, 3) = (+,−,−,−), the right-hand side can be written ∂µ∂µ. On the contrary, with our
convention of signature and using Equation (3.19), the right-hand side of Equation (3.20) reads
−∂µ∂µ.

The codifferential δ and the Laplace-de Rham operator ∆dR allow to characterize more
precisely differential forms and de Rham cohomology. A differential form η that is such that
δη = 0 is called co-closed, while if there is another differential form µ such that η = δµ, we
say that η is co-exact. Differential forms that lie in the kernel of the Laplacian, i.e. those
η such that ∆dR(η) = 0, are called harmonic. We denote by Hm(M) the space of harmonic
differential m-forms, for 0 ≤ m ≤ n. Exact, co-exact and harmonic differential forms provide a
nice decomposition of the space of differential forms:

Theorem 3.98. Hodge decomposition Let M be a compact Riemannian manifold, then for
every 0 ≤ m ≤ n, we have the following decomposition:

Ωm(M) = d
(
Ωm−1(M)

)
⊕ δ

(
Ωm+1(M)

)
⊕Hm(M)

This direct sum is orthogonal with respect to the inner product defined in Equation (3.16).

This decomposition is very useful to find a distinguished representative of de Rham coho-
mology classes, because the following corollary proves that each cohomology class has a unique
harmonic representative:

Corollary 3.99. Let M be a compact Riemannian manifold, then for every 0 ≤ m ≤ n we have
an isomorphism:

Hm
dR(M) ' Hm(M)

13We cannot justify yet that the Laplace-Beltrami operator div ◦−−!grad corresponds (−1)q ? d ? d but it will be
shown later in the course.
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Proof. Both proofs of the theorem and of the corollary can be found in Chapter 6 of [Warner,
1983].

We conclude this section by the following beautiful remark: integrals and the Hodge star
operator allow to write actions in a rather nice way. For example, integrating the Lagrangian
density of Maxwell’s electromagnetism FµνF

µν over a pseudo-Riemannian n-dimensional mani-
fold M can be synthesized as (physical notation is on the left):

SM = 1
4

∫
M
FµνF

µν
√
|g|dnx = 1

2

∫
M
F ∧ ?F

One can also write Einstein-Hilbert action (without cosmological constant) as:

SEH =
∫
M
R
√
|g|dnx =

∫
M
?R

where R is the Ricci scalar. Then, more generally, integrating a Lagrangian density L over an
oriented pseudo-Riemannian smooth manifold M provides the following action:

S =
∫
M
?L

Obviously in both cases there is a possible problem of convergence of the integral but we may
either work only locally (physical quantities in classical physics do not have non-local properties)
so that we can assume that the Lagrangian densities are compactly supported, or we can accept
that the integral is not properly defined although while we admit only compactly supported
variations of the fields (e.g. δA would be the compactly supported ‘variation’ of a connection
1-form A), then the induced variation δS would be well-defined (see Section II.4 of [Baez and
Muniain, 1994]). This opens the possibility to work on physical theories from a geometric point
of views. Gauge theories are precisely theories which benefit from such an approach.
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4 Poisson geometry

Poisson geometry draws on the work of mathematicians in the 1960s-1970s striving to formalize
Hamiltonian mechanics14. Recall that in Hamilton’s formulation of classical mechanics, a phys-
ical system is characterized by a set of positions qi and conjugate momenta pi (where 1 ≤ i ≤ n)
defining a point in a phase space P = R2n, and the evolution of the system is governed by a
function H(q, p) called the Hamiltonian, so that Hamilton’s equations are:

q̇i = ∂H

∂pi
and ṗi = −∂H

∂qi
(4.1)

for every 1 ≤ i ≤ n. In this context, the classical Poisson bracket is a skew-symmetric differential
operator { . , . } : C∞(P ) × C∞(P ) −! C∞(P ) defined as on any two smooth functions f, g ∈
C∞(P ) by:

{f, g} =
n∑
i=1

∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
(4.2)

Using the Poisson bracket, Hamilton’s equations (4.1) become:

q̇i = {qi, H} and ṗi = {pi, H}

for every 1 ≤ i ≤ n, where qi and pi are considered to be the coordinate functions on P . Then,
for every solution γ : t 7−!

(
q1(t), . . . , qn(t), p1(t), . . . , pn(t)

)
of the differential equations (4.1),

one has:
d(f ◦ γ)
dt

(t) = {f,H}(γ(t))

for any smooth function f ∈ C∞(P ). Then, the Hamiltonian defines a vector field XH = {H, . }
on P , whose integral curves describe the time evolution of the physical system.

The Poisson bracket is central in Hamilton’s description of classical mechanics: Poisson
had already noticed that the set of functions which are invariant along the integral curves
of XH – the so-called constants of motion – is stable under Poisson bracket. Liouville then
showed that the existence of a set of n independent constants of motion commuting under the
Poisson bracket allows to integrate Hamilton’s equations. This result was then later improved
by the infamous action-angle theorem which, in the situation where the leaves of the constants
of motion are compact, provides a distinguished choice of local coordinates which are such
that the Hamiltonian takes a very specific and nice form. The Poisson bracket on R2n can be
generalized to smooth manifolds and the aim of this chapter is to show that there are several
deep mathematics that are raised by this new notion.

4.1 Poisson manifolds

Keeping in mind the correspondence between algebra and geometry, we first emphasize that
Poisson geometry relies on the notion of Poisson algebra. Recall that every associative algebra
(A, ·) gives rise to a Lie bracket:

[a, b] = a · b− b · a (4.3)

In particular, because of the associativity, a short computation shows that this Lie bracket is a
derivation of the associative product:

[a, b · c] = [a, b] · c+ b · [a, c] (4.4)
14This section relies on four main sources: [Dufour and Zung, 2005], [Laurent-Gengoux et al., 2013] and [Vais-

man, 1994], [Crainic et al., 2021] as well as these lectures notes.
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However, the right hand side of Equation (4.3) is trivial when the associative product is commu-
tative, and hence the Lie bracket vanishes. Then, a non-trivial Lie bracket on such a commuta-
tive associative algebra should necessarily form exterior, additional data. A Poisson algebra is
precisely such an object, where the commutative associative product is compatible with the Lie
bracket so that they satisfy Equation (4.4):

Definition 4.1. A Poisson algebra is a R-vector space A equipped with two bilinear products ·
and { . , . }, such that:

1. (A, ·) is a commutative associative algebra;

2. (A, { . , . }) is a Lie algebra;

3. the Lie bracket is a derivation of the associative product:

{a, b · c} = {a, b} · c+ b · {a, c}

for any elements a, b, c ∈ A.

We call { . , . } a Poisson bracket. A morphism of Poisson algebras is a map φ : A −! B that is
both a morphism of associative algebras and a morphism of Lie algebras.

Since a Poisson algebra has two main algebraic structures, there are several kinds of ideals
and subalgebras: we need to carefully emphasize which product is used in their definitions. We
use the denomination ideal and subalgebra when we refer to these algebraic structure defined with
the help of the associative product, and we use the denomination Lie ideal and Lie subalgebra
when we refer to the Poisson bracket. A Poisson ideal (resp. subalgebra) is an ideal (resp.
subalgebra) with respect to the associative product and to the Poisson bracket. This notions
will have a geometric counterpart when we study Poisson manifolds and their submanifolds.

Definition 4.2. A Poisson manifold is a smooth manifold M together with a R-bilinear Lie
bracket { . , . } on the commutative associative algebra of smooth functions C∞(M) which makes
it a Poisson algebra. The bracket { . , . } is called a Poisson structure on M . A Poisson morphism
between two Poisson manifolds M and N is a smooth map ϕ : M −! N such that the pullback
ϕ∗ : C∞(N) −! C∞(M) is a morphism of Poisson algebras.

Example 4.3. The phase space P = R2n, parametrized with the generalized coordinates qi

and their conjugate momenta pi, together with the Poisson bracket defined in Equation (4.2).
In that particular case, the Poisson bracket actually descends from the canonical symplectic
structure ω =

∑n
i=1 dpi ∧ dqi. Then the so-called canonical transformations correspond to

Poisson isomorphisms (which in the present case coincide with symplectomorphisms).
Example 4.4. To every finite dimensional Lie algebra (g, [ . , . ]) we can associate a linear Poisson
structure on g∗. Elements of g can then be seen as linear forms on the dual g∗: indeed, every
x ∈ g defines a linear map:

x : g∗ −−−−−! R
ξ 7−−−−−! ξ(x)

Let (e1, . . . , en) be a basis of g. Then by the above assignment they define a system of linear
coordinates on g∗, denoted e1, . . . , en. Every real analytic function on g∗ can then be expressed
in terms of such coordinates functions, and every smooth function on g∗ can be differentiated
with respect to these coordinates. In particular, the commutators [ei, ej ] = Cij

k ek define a
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linear function ηij = [ei, ej ] = Cij
k ek on g∗. These data allow to define a Poisson structure on

the dual space g∗, called the linear Poisson structure of g∗:

{f, g} =
∑

1≤i,j≤n
ηij

∂f

∂ei

∂g

∂ej

for every f, g ∈ C∞(g∗). It is the unique Poisson structure on g∗ that satisfies the following
identity:

{x, y} = [x, y]

for every x, y ∈ g.
Example 4.5. Example 4.4 applies for example to so(3): let e1, e2, e3 its generators, and [ei, ej ] =∑3
k=1 εijkek be the Lie bracket, where εijk is the Levi-Civita symbol on three elements. Denoting

X = e1, Y = e2 and Z = e3, the corresponding linear Poisson structure on so(3)∗ satisfies:

{X,Y } = Z, {Y, Z} = X, {Z,X} = Y.

Example 4.6. One can change the former example to the following: instead of {X,Y } = Z, set
{X,Y } = −Z2 + 1

4 , and preserve the other two brackets. This choice defines a non-linear Poisson
structure on so(3)∗ ' R3.
Example 4.7. Example 4.4 extends to Lie algebroids: every Lie algebroid structure on a vector
bundle A induces a Poisson manifold structure on A∗. In particular this implies that for every
smooth manifold, T ∗M is a Poisson manifold. If M is the configuration space associated to
a given physical system, with local coordinates q1, . . . , qn, then the cotangent bundle T ∗M is
considered to be the associated phase space, admitting fiberwise local coordinates p1, . . . , pn, i.e.
pk(dql) = δlk. The Poisson bracket on T ∗M is then the canonical one, defined in Equation (4.2).

Let us now deduce some properties of a given Poisson bracket { . , . } on a Poisson manifold
M . Vector fields on M which are derivations of the Poisson bracket are called Poisson vector
fields. More precisely, such a vector field X satisfies the following identity:

X
(
{f, g}

)
=
{
X(f), g

}
+
{
f,X(g)

}
(4.5)

for every f, g ∈ C∞(M). Given a Poisson bracket, it is not straightforward to deduce which vector
fields are Poisson vector fields. However, it turns out that a subclass of those are easily obtained.
Recall from Remark 2.14 that to any element x of a Lie algebra one can associate a derivation,
called the adjoint action of x, denoted adx = [x,−]. This remark applies to Poisson algebras,
since they are particular cases of Lie algebras. In particular, let us study how this materializes
in C∞(M), when the smooth manifold M is a Poisson manifold. For every f ∈ C∞(M), we
call Xf = adf = {f, . } the Hamiltonian vector field associated to f . In particular, for any two
smooth functions f, g ∈ C∞(M) we have:

dg(Xf ) = Xf (g) = {f, g} (4.6)

Equation (4.6), together with the Jacobi identity imply that the Hamiltonian vector fields
have the following nice property:

[Xf , Xg] = X{f,g} (4.7)

In other words the linear map C∞(M) −! X(M) sending a smooth function to its hamiltonian
vector field is a morphism of Lie algebras. Another useful application of Equation (4.6) is in
showing that Hamiltonian vector fields are Poisson vector fields because the Jacobi identity for
the Poisson bracket can be written as:

Xh

(
{f, g}

)
=
{
Xh(f), g

}
+
{
f,Xh(g)

}
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for every smooth functions f, g, h. A smooth function of C∞(M) whose hamiltonian vector
field is zero is called a Casimir element, because it commutes with any other element of the
algebra. When M is connected, constant functions on M are always Casimir elements. In Lie
theoretic words, the space of Casimir elements corresponds to the center of the Lie algebra(
C∞(M), { . , . }

)
. There may then exists many linearly independent such objects.

Exercise 4.8. Show that the Poisson structure on R3 as defined in Example 4.6 indeed satisfies
Equation (4.7).
Exercise 4.9. Show that the function C = X2 + Y 2 + Z2 is a Casimir element of the linear
Poisson structure on so(3)∗. Turning to the non-linear structure defined in Example 4.6, check
that it admits as a Casimir element (together with constant functions):

C = X2 + Y 2 − 2
3Z

3 + 1
2Z

Given a Poisson bracket, it is not at all evident to deduce which function are Casimir, and
which vector fields are Poisson vector fields (up to hamiltonian vector fields). We will give a
partial answer to this question using cohomological techniques. The mathematical machinery set
up to describe this so called Poisson cohomology will eventually provide another, more geometric
point of view on Poisson brackets. We first need to generalize the Lie bracket of vector fields
to the whole graded algebra X•(M) =

⊕n
i=1 X

i(M). Recall that the space Xi(M) represents
the sheaf of smooth sections of the vector bundle

∧i TM . Every multivector field is locally
decomposable because

∧i TM admits elements of the form ∂k1 ∧ . . . ∧ ∂ki (for 1 ≤ k1 < . . . <
ki ≤ n) as local frames. Evaluating an element of Xi(M) on i smooth functions – which gives
back another smooth function – is then done by using Equation (1.17). Moreover, the pair(
X•(M),∧

)
is a graded commutative algebra:

Xi(M) ∧ Xj(M) ⊂ Xi+j(M)

More precisely, for P ∈ Xi(M) and Q ∈ Xj(M) and i+ j smooth functions f1, . . . , fi+j , one has:

P ∧Q(f1, . . . , fi+j) =
∑

σ∈Un(i,j)
(−1)σP (fσ(1), . . . , fσ(i))Q(fσ(i+1), . . . , fσ(i+j))

where Un(p, n− p) represents the set of (p, n− p)-unshuffles (other people call it shuffles), i.e.
those permutations σ ∈ Sn satisfying the following two unshuffling conditions:

σ(1) < σ(2) < . . . < σ(p) and σ(p+ 1) < σ(p+ 2) < . . . < σ(n− 1) < σ(n)

At level 0, i.e. for X0(M) = C∞(M), we understand that wedging with respect to a smooth
function f consists in multiplying by this function: f ∧ P = fP , for any P ∈ X•(M).
Example 4.10. Let P = ∂x ∧ ∂y ∧ ∂z be a multivector field on M = R3. For any three smooth
functions f, g, h, we have:

P (f, g, h) = ∂xf∂yg∂zh− ∂xf∂yh∂zg + 	

where 	 symbolizes circular permutation of the three functions.

While vector fields on a smooth manifold are derivations of smooth functions, multivector
fields are multiderivations: Xi(M) ' Deri

(
C∞(M)

)
(see Lemma 1.2.2 in [Dufour and Zung,

2005]). By multiderivation, we mean the following: for every P ∈ Xi(M) and f1, . . . , fi, g ∈
C∞(M), we have:

P (f1, . . . , fi g) = P (f1, . . . , fi) g + fi P (f1, . . . , g)
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In particular, since P is fully skew-symmetric with respect to permutations of its variables, the
derivation property is true for every slot. Multiderivations can be composed: for P ∈ Xi(M) and
Q ∈ Xj(M) two multiderivations (here 1 ≤ i, j ≤ n), the composite P ◦Q is not a multiderivation,
but a priori no more than a multi-operator on C∞(M) (this was already observed for mere vector
fields). More precisely, it acts on i+ j − 1 smooth functions f1, . . . , fi+j−1 as:

P ◦Q(f1, . . . , fi+j−1) =
∑

σ∈Un(j,i−1)
(−1)σP

(
Q(fσ(1), . . . , fσ(j)), fσ(j+1), . . . , fσ(i+j−1)

)
(4.8)

while if Q is a smooth function (whatever P is) then we set P ◦ Q = 0. Equation (4.8) shows
that although P has degree i and Q has degree j, the composite P ◦ Q does not respect this
graduation because it has i + j − 1 arguments. This is why we decide to create a new grading
on X•(M), by shifting the original grading by −1. We denote by V i(M) (for −1 ≤ i ≤ n − 1)
the vector space Xi+1(M) shifted by a degree −1:

V i(M) = Xi+1(M)

In other words, we have the following correspondence:

V−1(M) V0(M) V1(M) . . . Vn−1(M)

X0(M)︸ ︷︷ ︸
C∞(M)

X1(M) X2(M) . . . Xn(M)

In particular, smooth functions now belong to V−1(M) = X0(M), vector fields belong to
V0(M) = X1(M), and multivector fields of degree i belong to V i−1(M). We label by P the
degree (with respect to the new convention, in V•(M)) of the homogeneous element P . In
particular, if P ∈ Xi(M), we have P = i− 1. Given these conventions, we set:

Definition 4.11. The Schouten-Nijenhuis bracket is the R-bilinear graded skew-symmetric
bracket on V•(M) =

⊕n−1
i=−1 V i(M) defined by its action on any two homogeneous multivector

fields P,Q of degree ≥ 0:
[P,Q]SN = P ◦Q− (−1)P ·QQ ◦ P (4.9)

while, for any function f ∈ C∞(M):

[P, f ]SN = P (f, ...) (4.10)

Remark 4.12. Equation (4.10) means that, if for example in local coordinates P = P i1...ik∂xi1 ∧
. . . ∧ ∂xik (summation implied), then:

[P, f ]SN =
∑

i1,...,ik

(−1)j+1P i1...ik∂
xij

(f)∂xi1 ∧ . . . ∧ ∂̂xij ∧ . . . ∧ ∂xik

where ∂̂
xij

means that we omit this term in the wedge product of k − 1 partial derivatives.

Being graded skew-symmetric means that for any two homogeneous multivector fields P,Q,
one has:

[P,Q]SN = −(−1)P ·Q[Q,P ]SN (4.11)

This implies in particular that, when one considers P,Q as elements of X•(M) of respective
degrees i and j, the Schouten-Nijenhuis bracket reads:

[P,Q]SN = −(−1)(i−1)(j−1)[Q,P ]SN
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We see that this definition of the bracket – although equivalent to Equation (4.9) – is not so
convenient because of the exponents that do not match the degrees of P and Q. For degree
reasons, the bracket of two functions is zero because the sum of their degrees is −2, and the
graded vector space V•(M) does not possess a vector space of degree −2.

A more explicit formula for Equation (4.9) when P and Q are decomposable multivector
fields, may be the following:[
X1∧. . .∧Xi, Y1∧. . .∧Yj

]
SN

=
∑

1≤k≤i
1≤l≤j

(−1)k+l[Xk, Yl]∧X1∧. . .∧X̂k∧. . .∧Xi∧Y1∧. . .∧Ŷl∧. . .∧Yj

(4.12)
together with, for Equation (4.10):

[X1 ∧ . . . ∧Xi, f ]SN =
i∑

k=1
(−1)k+1Xi(f)X1 ∧ . . . ∧ X̂k ∧ . . . ∧Xi

for every vector fields X1, . . . , Xi, Y1, . . . , Yj , and smooth function f ∈ C∞(M). The latter
expression is convenient because we then have:

[X, f ]SN = X(f) and [X ∧ Y, f ]SN = X(f)Y − Y (f)X

Exercise 4.13. Using Equation (1.17), you may check the identity between formula (4.9) and
(4.12) on small decomposable multivector fields, such as P = X and Q = Y1 ∧ Y2.

The Schouten-Nijenhuis bracket has several nice properties. In particular it coincides with
the Lie bracket on vector fields when P,Q ∈ X1(M), since in that case P = Q = 0. It is thus
legitimate to wonder whether this bracket generalizes the notion of Lie algebra to that of a
graded Lie algebra on the graded vector space V•(M).

Definition 4.14. A graded Lie algebra is a graded vector space V =
⊕

i∈Z Vi, equipped with a
R-bilinear aperation [ . , . ] : V × V −! V called a graded Lie bracket, and which satisfies the
following identities:

graded skew-symmetry [x, y] = −(−1)|x||y|[y, x]
graded Jacobi identity [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]]

for every x, y, z ∈ V. A derivation of degree d of V is an endomorphism δ : V • −! V •+d such
that:

δ
(
[x, y]

)
=
[
δ(x), y

]
+ (−1)|x|d

[
x, δ(y)

]
We denote Derd(V ) the vector space of derivations of degree d of V .

Remark 4.15. Another, more symmetric form of the graded Jacobi identity exists, but it is not
very convenient to use:

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0

Moreover, the graded Jacobi identity appearing in Definition 4.14 shows that the adjoint action
of any element of V is a derivation of V : adx ∈ Der|x|(V ), for every x ∈ V .

The two conditions satisfied by the graded Lie bracket in Definition 4.14 are slight gen-
eralizations of what characterizes a Lie algebra because Lie algebras are graded Lie algebras
concentrated in degree 0. The idea with grading is very intuitive: for any two homogeneous ele-
ments x, y ∈ E, when we swap x and y to form a new term (either in the bracket or by ‘jumping’
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over), we add a sign (−1)|x||y| in front of the new term hence created, compared to the classical
(non-graded) situation. You can see this phenomenon on the right-hand sides of both equations.
The same phenomenom happens for differential forms: η∧µ = (−1)|η||µ|µ∧η, making the wedge
product graded commutative (and not merely commutative). Here, this has interesting conse-
quences: in a graded Lie algebra, we do not necessarily have [x, x] = 0 because the graded Lie
bracket is not skew-symmetric anymore when |x| is odd because [x, x] = −(−1)1×1[x, x] hence
we cannot conclude on the vanishing of [x, x].
Exercise 4.16. Using the graded Jacobi identity, show that if x = y and |x| is odd, we have:[

x, [x, z]
]

= 1
2
[
[x, x], z

]
These observations enable us to formulate the following important result:

Proposition 4.17. The Schouten-Nijenhuis bracket extends the Lie bracket of vector fields to
a graded Lie algebra structure on V•(M). In particular, the Scouten-Nijenhuis bracket satisfies:

[P, fQ]SN = [P, f ]SNQ+ f [P,Q]SN

for any smooth function f and multivector fields P and Q.

Proof. First of all, one needs to check that the graded vector space V•(M) is stable under this
bracket. This can be proven on decomposable vector fields, using Equation (4.12). From Equa-
tion (4.11), the bracket is obviously graded skew-symmetric. It is just a matter of computation
to check with Equation (4.12) that it satisfies the graded Jacobi identity (on decomposable
vector fields). See Theorem 1.8.1 in [Dufour and Zung, 2005] for more details.

Remark 4.18. Actually, the Schouten-Nijenhuis bracket is the unique extension of the Lie bracket
of vector fields to a graded Lie bracket on the space of alternating multivector fields that makes
it into a Gerstenhaber algebra.

The Schouten-Nijenhuis bracket on vector fields allows us to characterize Poisson structures
in a more geometric flavored approach. Let (M, { . , . }) be a Poisson manifold and let x1, . . . , xn

be local coordinates on M . Then the Poisson bracket between two functions f, g is locally of
the form (see Proposition 1.14 in [Fernandes, 2005]):

{f, g} =
∑

1≤i,j≤n
{xi, xj} ∂f

∂xi
∂g

∂xj
(4.13)

This Equation is valid locally in the coordinate neighborhood of any point of a smooth manifold,
and it is invariant under change of coordinates xi 7−! x′k. Indeed, using Equations (3.6)-(3.7),
we have that (omitting the sum signs):

{xi, xj} ∂f
∂xi

∂g

∂xj
= {xi, xj}∂x

′k

∂xi
∂x′l

∂xj
∂f

∂x′k
∂g

∂x′l
= {x′k, x′l} ∂f

∂x′k
∂g

∂x′l

Then we see from Equation (4.13) that the Poisson bracket can be locally seen as a bivector
field 1

2{x
i, xj} ∂i ∧ ∂j which, when evaluated on two smooth functions f, g, give {f, g}, as the

following short calculation (where we have omitted the sum signs) shows:
1
2{x

i, xj} ∂i ∧ ∂j(f, g) = 1
2{x

i, xj}
(
∂if∂jg − ∂ig∂jf

)
= {xi, xj} ∂f

∂xi
∂g

∂xj

We used Equation (1.18) between the first and the second step. We denote π the unique bivector
field whose component in local coordinates is πij = {xi, xj}. Thus, the Poisson bracket uniquely
defines a bivector field π ∈ X2(M) via the following identity:

π(f, g) = {f, g} (4.14)
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Exercise 4.19. By applying the Jacobi identity satisfied by the Poisson bracket to the coordinate
functions xi, xj , xk, show that the components of the bivector field π satisfies (this is a local
expression):

n∑
s=1

πis
∂πjk

∂xs
+ πjs

∂πki

∂xs
+ πks

∂πij

∂xs
= 0 (4.15)

Obviously, not every bivector field satisfies Equation (4.15). However, those that satisfy it
define a Poisson structure on M via Equation (4.14). This translates as the following funda-
mental fact, due to Lichnerowicz:

Proposition 4.20. There is a one-to-one correspondence between Poisson structures on a
smooth manifold M and bivector fields π ∈ X2(M) such that:

[π, π]SN = 0 (4.16)

Exercise 4.21. Prove that [π, π]SN = 0 is equivalent to Equation (4.15), when evaluated in local
coordinates.
Remark 4.22. By the correspondence established by Proposition (4.20), we will now either use
the notation (M, { . , . }) or (M,π) (depending on the context) to denote a Poisson manifold.
Example 4.23. The bivector field associated to the canonical Poisson bracket of Example 4.3 is
the following:

π =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
(4.17)

So, in particular, if one relabels the coordinates as xi = qi and xn+i = pi for 1 ≤ i ≤ n, then
πij(q, p) = 0 except when j = i + n or i + n = j, and in that case we have πi(i+n) = 1 and
π(i+n)n = −1, so that π = 1

2π
ij∂i ∧ ∂j .

Example 4.24. On R3 one picks the following Poisson bracket:

{f, g} = x
∂f

∂x

∂g

∂z
+ y

∂f

∂y

∂g

∂z
− x∂g

∂x

∂f

∂z
− y∂g

∂y

∂f

∂z

This Poisson bracket corresponds to the following Poisson bivector field:

π =
(
x
∂

∂x
+ y

∂

∂y

)
∧ ∂

∂z

Exercise 4.25. Check that the Poisson bivector defined in Example 4.23 indeed satisfies Equation
(4.14), where the Poisson bracket is that of Equation (4.2).
Exercise 4.26. Given two Poisson structures π0 and π1 on a smooth manifold M , show that, if
πt = (1− t)π0 + tπ1 is a Poisson structure for some t 6= 0, 1, then it is a Poisson structure for all
t ∈ R. We then call the smooth family (πt)t a Poisson pencil.

Seen from X•(M), bivectors fields have degree 2, while seen from V•(M), they have degree 1.
Bivector fields satisfying Equation (4.16) are called Poisson bivector fields (not to be confused
with the Poisson vector fields defined in Equation (4.5)). We now show how a Poisson bivector
field makes V•(M) a chain complex. Let dπ : V•(M) −! V•+1(M) be the unique R-linear
morphism defined on any element P ∈ V•(M) as:

dπ(P ) = [π, P ]SN (4.18)

This operator is well defined, and is indeed of degree 1; it corresponds to the adjoint action of
π on the graded Lie algebra V•(M) =

⊕n−1
i=−1 V i(M). Moreover, the graded Jacobi identity (via

Exercise 4.16) together with Equation (4.16) imply that dπ squares to zero:

d2
π(P ) =

[
π, [π, P ]SN

]
SN

= 1
2
[
[π, π]SN , P

]
SN

= 0
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This operator is often called the Poisson differential. These successive facts imply that (V•(M), dπ)
is a chain complex:

0 V−1(M)︸ ︷︷ ︸
C∞(M)

V1(M)︸ ︷︷ ︸
X(M)

V1(M) . . . Vn−1(M) 0dπ dπ dπ dπ

Notice that the above results can equivalently be expressed with respect to the grading on
X•(M). The Poisson differential is still defined from Equation (4.18), at the cost of expressing
the Schouten-Nijenhuis with respect to the grading of X•(M), via Equation (4.11). Then, we
obtain that (X•(M), dπ) is a chain complex concentrated in degrees 0, . . . , n. This is the natural
setup to define a cohomology theory:

Definition 4.27. Let (M,π) be a Poisson manifold. The cohomology of the chain complex
(X(M), dπ) is called the Poisson cohomology of (M,π) and is denoted, for 0 ≤ i ≤ n:

H i
π(M) =

Ker
(
dπ : Xi(M) −! Xi+1(M)

)
Im
(
dπ : Xi−1(M) −! Xi(M)

)
The map dπ is called the Poisson differential.

Notice that Equation (4.18) can be rewritten in a way that shows a huge similarity with de
Rham differential (2.31) (and Chevalley-Eilenberg differential as well):

(−1)m−1 dπ(P )(f1, . . . , fm, fm+1) =
m+1∑
i=1

(−1)i−1Xfi

(
P (f1, . . . , f̂i, . . . , fm+1)

)
(4.19)

+
∑

1≤i<j≤m+1
(−1)i+jP

(
{fi, fj}, f1, . . . , f̂i, . . . , f̂j , . . . , fm+1

)

for every P ∈ Xm(M). The sign (−1)m could have been got rid of if the Poisson differential
had been defined following the alternative, although equivalent, convention: dπ(P ) = −[P, π]SN .
As can be explicitly be seen in Equation (4.19), the Poisson differential carries information on
the Poisson structure on M . The next subsection clarifies the relationship between de Rham
cohomology and Poisson cohomology.
Exercise 4.28. Show that the map dπ is a derivation of the Schouten-Nijenhuis bracket.

Let us compute the first few cohomology groups. The 0-th Poisson cohomology is given by:

H0
π(M) = Ker

(
dπ : C∞(M) −! X(M)

)
By definition of the Schouten-Nijenhuis bracket involving functions, we have dπ(f) = [π, f ]SN =
−π(f,−) = −{f,−}. Then, the smooth functions that belong to H0

π(M) consists of those that
are such that {f, g} = 0, i.e. they are Casimir elements of the Lie algebra

(
C∞(M), { . , . }

)
:

H0
π(M) = Casimir elements of

(
C∞(M), { . , . }

)
The dimension of H0

π(M) as a vector space is at least 1, because constant functions on M are
Casimir elements (assuming M is connected). Going to the next level, we have:

H1
π(M) =

Ker
(
dπ : X(M) −! X2(M)

)
Im
(
dπ : C∞(M) −! X(M)

)
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Elements of Ker
(
dπ : X(M) −! X2(M)

)
are characterized by the following property: they are

vector fields X such that [π,X]SN = 0. It corresponds to Equation (4.5), hence such vector fields
are Poisson vector fields. The space Im

(
dπ : C∞(M) −! X(M)

)
consists of Hamiltonian vector

fields on M . These are Poisson vector fields of a particular kind: they are somehow ”trivial” in
the sense that are the easiest Poisson vector fields to find, for they are automatically given as
soon as a Poisson structure is defined. The interesting Poisson vector fields are thus those that
are not hamiltonian or, more precisely, the classes of Poisson vector fields up to hamiltonian
vector fields, which is precisely what the first cohomology group is:

H1
π(M) = classes of non-trivial Poisson vector fields

So, in particular, if H1
π(M) 6= 0 there are Poisson vector fields which are not Hamiltonian vector

fields. Higher Poisson cohomology groups arise naturally in deformation theory: H2
π(M) may

be interpreted as the moduli space of formal infinitesimal deformations of π, while H3
π(M) may

be interpreted as the space of obstructions of such deformations [Dufour and Zung, 2005].
Example 4.29. Using the fact that H1

dR(R2n) = 0, we will show in Remark 4.36 that H1
π(R2n) = 0

(where the Poisson structure is the canonical one). It implies that on R2n equipped with the
Poisson bracket defined in Equation (4.2), every Poisson vector field is hamiltonian, i.e. descends
from a smooth function. However, contrary to de Rham cohomology which is locally trivial on a
smooth manifold, Poisson cohomology needs not be locally trivial on a Poisson manifold because
the Poisson structure needs not be non-degenerate.

An alternative view on Poisson vector fields can be made through Lie derivatives. First,
define the Lie derivative of a vector field Y along the vector field X by the Lie bracket:

LX(Y ) = [X,Y ] (4.20)

Then, to be consistent with Schouten-Nijenhuis bracket, it implies that on smooth functions,
Lie derivatives act as derivations:

LX(f) = [X, f ]SN = X(f) (4.21)

More generally, on any multivector field P , the Lie derivative acts as:

LX(P ) = [X,P ]SN

Then, one notices that the condition (4.5) of X being a Poisson vector field (with respect to the
Poisson bivector π) is equivalent to the following equality:

LX(π) = 0

Exercise 4.30. Show that the condition that a bivector field B is a Poisson bivector is equivalent
to the following identity:

L
B
\(df)(B) = 0 for every smooth function f

To conclude this subsection, we show that the Lie derivative can naturally act on differential
forms. Using Equations (4.20) and (4.21), one can deduce that the Lie derivative LX of a vector
field X acts on differential one-forms since it should satisfy a kind of ‘derivation property’:

X
(
ξ(Y )

)
= LX(ξ)(Y ) + ξ

(
LX(Y )

)
(4.22)
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for every ξ ∈ Ω1(M) and Y ∈ X(M). Defining the interior product on differential forms as the
linear operator defined, for every x ∈ X(M), as:

ιX : Ω•(M) −−−−−! Ω•−1(M)
η 7−−−−−! ιXη = η(X, . . .)

we notice that Equation (4.22) is equivalent to writing:

LX(ξ)(Y ) = X
(
ξ(Y )

)
− ξ

(
[X,Y ]

)
= Y

(
ξ(X)

)
+ dξ(X,Y ) =

(
dιX(ξ) + ιXdξ

)
(Y )

This allows us to find the following characterization:

Definition 4.31. The Lie derivative of a vector field X ∈ X(M) is the unique derivation of
both X•(M) and Ω•(M), defined on any multivector field P and differential form η as:

LX(P ) = [X,P ]SN
LX(η) = dιX(η) + ιXdη

Then, we have a nice result involving Lie derivatives, which is often used in geometry:

Proposition 4.32. For any two vector fields X,Y ∈ X(M), one has:[
LX ,LY

]
= L[X,Y ]

Proof. This is a direct consequence of the properties of the Schouten-Nijenhuis bracket or the
operators d and ιX .

4.2 Properties of Poisson bivectors

Let M be a smooth manifold and let B = 1
2b
ij∂i∧∂j be a (non-necessarily Poisson) bivector field.

The local components (bij)1≤i,j≤n are smooth functions bij : x −! bij(x) on U . For simplicity,
the latter expression bij(x) will be denoted bijx . Such functions define a smooth function:

B : U −−−−−! gln(R)

x 7−−−−−!


b11
x b12

x . . . b1nx
b21
x b2nx
. . . . . .
bn1
x . . . . . . bnnx


where n = dim(M). Because bij = −bji, this function takes values in skew-symmetric n × n
matrices. We say that the matrix is a contravariant tensor because indices appear as exponents
and any change of coordinates induce a transformation of the functions bij following that of the
components of vector fields: bkl = ∂xk

∂xi
∂xl

∂xj
bij (summation is implicit). The rank of B at a point x

is the rank of the corresponding matrix B(x). The rank is obviously invariant under coordinate
change. We say that a bivector field is non-degenerate when it has maximal rank n at every
point of M . Since the rank of an anti-symmetric matrix is even, it means that such situation
can occur only when M is even dimensional.

To make further sense of B, let us introduce the notation for the natural pairing between
differential two-forms and bivector fields on M . Indeed, the pairing 〈 . , . 〉 between covector and
and tangent vectors on M can be extended to decomposable differential 2-forms and bivector
fields by the following identity:

〈ξ ∧ η,X ∧ Y 〉 = 2
(
ξ(X)η(Y )− ξ(Y )η(X)

)
(4.23)
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The factor 2 comes from the fact that we have two wedges products on the left-hand side,
compared to Equation (1.17) for example. These conventions imply that, for a bivector B, we
have:

B(f, g) = 1
2〈df ∧ dg,B〉 (4.24)

for any two smooth functions f, g ∈ C∞(M). Indeed, in local coordinates the bivector field B
reads B = 1

2b
ij∂i∧∂j . Then, applying Equation (4.23) to the right hand side of Equation (4.24)

gives (summation on repeated indices is implicit):

1
2〈df∧dg,B〉 = 1

4b
ij〈df∧dg, ∂i∧∂j〉 = 1

2b
ij(∂i(f)∂j(g)−∂j(f)∂i(g)

)
= 1

2b
ij∂i∧∂j(f, g) = B(f, g)

Remark 4.33. Equation (4.24) straighforwardly applies to B = π a Poisson bivector field, al-
though in the litterature the left hand side is often written π(df, dg) (not to be confused with
〈df ∧ dg,B〉 then).

Using the pairing between differential two-forms and bivector fields defined in Equation
(4.23), the bivector field B induces a vector bundle morphism:

B
\ : T ∗M −−−−−! TM

(x, ξx) 7−−−−−! 1
2
〈
ξx ∧ d(−), Bx

〉
where Bx denotes the evaluation of the bivector field B at x. The term on the right-hand side
should be read as follows:

1
2
〈
ξx ∧ d(−), Bx

〉
: f 7−! 1

2
〈
ξx ∧ df |x, Bx

〉
One can check that it is indeed a derivation of smooth functions. More generally, evaluating
any differential form η on B

\(ξ) corresponds to the following pairing:

η
(
B
\(ξ)) = 1

2〈ξ ∧ η,B〉 (4.25)

The definition of B\ has been made so that, when evaluated on exact differential forms (every
sufficiently local section of T ∗M is exact), it is the unique vector bundle morphism satisfying:

B
\(df) = B(f,−)

The right hand-side is a vector field on M (or at least an open set U), so the smooth map
B
\ indeed takes values in the tangent bundle and defines a vector bundle morphism. Since in

local coordinates, the right hand side of Equation (4.25) reads ξi,xbijx ∂j(f) – where the ξi,x are
the components of the covector ξx in the basis dx1, . . . , dxn – the rank of the map B

\ is the
rank of the map B : M −! gln(R). The morphism B

\ extends as a vector bundle morphism
∧iT ∗M −! ∧iTM , for 1 ≤ i ≤ n, compatible with the wedge product. It means that, setting the
action of B\ on Ω0(M) = X0(M) = C∞(M) to be the identity map, B\ extends to a morphism
of graded commutative algebras B\ : Ω•(M) −! X•(M):

B
\(η ∧ µ) = B

\(η) ∧B\(µ)

This perspective on bivector fields is quite useful regarding the relationship between de
Rham cohomology and Poisson cohomology. Indeed, if B = π is a Poisson bivector field, then
the Hamiltonian vector field associated to the smooth function f is precisely Xf = π

\(df). More
generally, the vector bundle morphism π

\ : ∧iT ∗M −! ∧iTM commutes with the respective
differentials:
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Proposition 4.34. The graded commutative algebras morphism π
\ : Ω•(M) −! X•(M) is a

chain map:
π
\ ◦ ddR = dπ ◦ π

\
The proof is made by induction on the form degree, and can be found in Proposition 2.1.3

in [Dufour and Zung, 2005]. Then, closed (resp. exact) differential form are sent to closed (resp.
exact) multivector fields. The chain map π

\ : (Ω•(M), ddR) −! (X•(M), dπ) is an algebra
homomorphism, and then induces a homomorphism between cohomology groups that we denote
π
\ as well:

Corollary 4.35. For any Poisson manifold (M,π), there is a natural homomorphism, called the
Lichnerowicz homomorphism, between the de Rham cohomology and the Poisson cohomology:

π
\ : H•dR(M) −! H•π(M)

Remark 4.36. Then, if π is a non-degenerate bivector field, the Lichnerowicz homomorphism is
an isomorphism. This Corollary proves that H1

π(R2n) = 0 so that every Poisson vector field on
R2n (equipped with the standard Poisson bracket) is a Hamiltonian vector field, and that this
Poisson structure is ‘rigid’ in the sense that H2

π(R2n) = 0.

The importance of the vector bundle morphism π
\ : T ∗M −! TM is the following: for

every x ∈M its image in TxM spans the directions taken by the hamiltonian vector fields at x.
As it is, this might be useless, but actually it allows us to understand that hamiltonian vector
fields do not necessarily span the entire tangent space, and thus that the transport along these
vector fields are constraints in some directions. Hence, for a physical hamiltonian, it means that
the Poisson structure on M constraints the set of reachable points in the phase space, given an
initial point. In particular, if the Poisson bivector is degenerate at a point x, there is no bijection
between T ∗xM and TxM and the integral curves of Hamiltonian vector fields passing through
x will not be able to reach every point in the neighborhood of x. This can be explained by
the fact that the vector bundle morphism π

\ defines an integrable distribution, as the following
proposition shows:

Proposition 4.37. Let (M,π) be a Poisson manifold. Then T ∗M is Lie algebroid – called the
cotangent Lie algebroid, with anchor π\ : T ∗M −! TM and with Lie bracket:

[ . , . ]T ∗M : Ω1(M)× Ω1(M) −−−−−! Ω1(M)

(α, β) 7−−−−−! [α, β]T ∗M = L
π
\(α)(β)− L

π
\(β)(α)− 1

2d
(
〈α ∧ β, π〉

)
Remark 4.38. Usually, the last term on the last hand side is often written as d(π(α, β)), where
the bivector π ∈ X2(M) is here seen as a bilinear form on Ω1(M). We chose to use the pairing
given by Equation (4.23) for it seems more transparent; see Remark 4.33 for a comparison
between the two notations.

Proof. We already know that π\ is vector bundle morphism and the bracket [ . , . ]T ∗M is obviously
skew-symmetric. Then we only need to show that the bracket satisfies the Jacobi identity and
that it is compatible with the anchor map in the sense that they satisfy the Leibniz rule. Since
every differential one-form is locally exact, and that the bracket is defined only locally, we will
evaluate both the Jacobi identity and the Leibniz rule on exact differential one-forms. Then we
can observe the following fact:

Lemma 4.39. On exact differential one forms, the bracket [ . , . ]T ∗M satisfies the following
identity:

[df, dg]T ∗M = d{f, g}
for every f, g ∈ C∞(M).
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Exercise 4.40. Prove this lemma by using Proposition (4.31), the definition of π\ and the prop-
erties of the Lie derivatives given in Proposition 4.31.

Let us now show that [ . , . ]T ∗M satisfies the Jacobi identity on exact differential one-forms;
let f, g, h ∈ C∞(M), then by Lemma 4.39 we obtain:[

df, [dg, dh]T ∗M
]
T ∗M

=
[
df, d{g, h}

]
T ∗M

= d
{
f, {g, h}

}
= d

({
{f, g}, h

}
+
{
g, {f, h}

})
=
[
d{f, g}, dh

]
T ∗M

+
[
dg, d{f, h}

]
T ∗M

=
[
[df, dg]T ∗M , dh

]
T ∗M

+
[
dg, [df, dh]T ∗M

]
T ∗M

Notice that the Jacobi identity for [ . , . ]T ∗M is a consequence of the Jacobi identity for the
Poisson bracket. Now let us check the Leibniz rule (3.1):

[df, gdh]T ∗M = L
π
\(df)(gdh)− L

π
\(gdh)(df)− 1

2d
(
〈df ∧ gdh, π〉

)
= LXf (gdh)− LgXh(df)− 1

2d
(
g〈df ∧ dh, π〉

)
= LXf (g) dh+ gLXf (dh)− d

(
gXh(f)

)
− d

(
g{f, h}

)
= Xf (g) dh+ g {f, h} − d

(
g{h, f}

)
− d

(
g{f, h}

)
= π

\(df)(g) dh+ g [df, dh]T ∗M

We used the definition of the Lie derivative as given by Definition 4.31, as well as the definition
of Hamiltonian vector fields (see Equation (4.6)).

The fact that T ∗M is a Lie algebroid over M implies that the image of the anchor map π
\

is a (possibly singular) smooth involutive distribution on M . If the distribution is regular – i.e.
has constant rank – Frobenius theorem 3.64 implies that it is integrable to a regular foliation. If
the distribution is singular – i.e. if its rank is not constant – then, because it is finitely generated
and involutive, it turns out that it also integrates, to what is called a singular foliation. The
latter notion generalizes the notion of regular foliation in the following way:

Definition 4.41. A singular foliation is a partition
⊔
α Lα of M by disjoint connected weakly

embedded submanifolds Lα called leaves, such that the induced distribution D : x 7−! TxLα(x) is
smooth. Here α(x) denotes the index α such that Lα is the unique leaf passing through x.

An alternative formulation, closer to that relying on foliated atlases for regular foliations,
involves the notion of distinguished atlas. We say that M admits a distinguished atlas (with
respect to a partition L =

⊔
α Lα of M into immersed submanifolds, if for every x ∈ M there

exists a chart (U,ϕ) such that [Stefan, 1974]:

1. ϕ(U) decomposes as a product of connected open sets ϕ(U) = V ×W ⊂ Rp × Rn−p;

2. ϕ(x) = (0, 0);

3. for any L ∈ L, ϕ(L ∩ U) = V × lL, with lL =
{
y ∈W

∣∣ϕ−1(0, y) ⊂ L
}
.

In particular, the last condition implies that the leaves intersecting U have higher than or equal
dimension to that passing through x. It is equivalent to requiring that the map x 7−! dim(Lx)
(where Lx is the leaf passing through x), going from the topological space M – equipped with
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Figure 15: Two examples of partition of R2: the first one consists of horizontal lines for x 6= 0
and the vertical line for x = 0, while the second one has points on the vertical axis. The figure
on the left is not a singular foliation because any tangent vector to the submanifold at x = 0
does not satisfy the smoothness condition: any smooth extension of ∂y in any neighborhood of
the origin necessarily contains a vertical part, which is then not tangent to the horizontal leaves
outside the vertical axis. On the contrary, the figure on the right is a singular foliation.

the distinguished atlas – to the integer, is continuous. Since the target space has the discrete
topology, the map is lower semi-continuous, hence the result. Moreover, it also implies that the
map is locally constant on a dense subset of M , which means that the singular leaves are quite
rare actually.
Example 4.42. The distribution defined in Example 3.60, although integrable, is not a singu-
lar foliation because the leaf passing through the origin (0, 0) has higher dimension than its
neighbors. Thus it does not admit a distinguished atlas as item 3. fails to be satisfied.

Frobenius’ result about integrability can then be generalized to singular distributions thanks
to Hermann’s theorem:

Theorem 4.43. Hermann Theorem. A locally finitely generated singular smooth distribution
D on a smooth manifold is integrable (to a singular foliation) if and only if it is involutive.

Remark 4.44. The first assumption, that the distribution is locally finitely generated means the
following: for every point x ∈M , there exist an open neighborhood U of x and a finite number
of smooth sections X1, . . . , Xm ∈ Γ(U,D) such that, for every open set V such that V ⊂ U ,
the space of smooth sections Γ(V,D) is generated as a C∞(V )-module by the restrictions of
X1, . . . , Xm to V . The definition seems complicated but it is made so that the corresponding
notion is local.

The idea behind integration of a singular smooth distribution is that the smooth manifold
M is foliated by a set of weakly embedded submanifolds called leaves such that, given any point
x, the tangent space to the leaf through x – denoted Lx – coincides with Dx:

TxLx = Dx

This identity being actually true for every point y of the leaf: TyLx = Dy. Since the rank of
the distribution jumps, the dimension of the leaves will jump as well. A reservoir of examples
of integrable distributions come from the following observation:

Proposition 4.45. The (possibly singular) distribution generated by the anchor of a Lie alge-
broid is integrable.
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Proof. Let A be a Lie algebroid with anchor map ρ, and set Dx = Im
(
ρ(Ax)

)
. This is a smooth

distribution because each element Xx of Dx admits a preimage ax ∈ Ax, and it is then sufficient
to take any smooth section of A passing through ax, and to project it to X(M) via ρ. The image
is a vector field X such that Xy ∈ Dy for every y is some neighborhood of x. The distribution
is locally finitely generated because A is a vector bundle of finite rank, so it admits local frames
that induce local generators of Γ(D). Finally, it is involutive because ρ : Γ(A) −! X(M)
is a homomorphism of Lie algebras. Then, by Hermann Theorem 4.43, the distribution D is
integrable to a (possibly singular) foliation.

Since, for a Poisson manifold (M,π), Proposition 4.37 implies that T ∗M is a Lie algebroid,
the vector bundle morphism π

\ defines an integrable generalized distribution Dπ = Im
(
π
\) ⊂

TM . The (possibly singular) foliation integrating this distribution is called the characteristic
foliation. Since the rank of the distribution D at the point x equates that of the image of π\ at
x and is thus even, the leaves of the foliation induced by a Poisson bivector field will always be
even dimensional. We will now explain that they are, in fact, symplectic manifolds:

Definition 4.46. A symplectic manifold is a smooth, even dimensional manifold, equipped with
a non-degenerate closed two-form ω.

Remark 4.47. Here, non-degeneracy means that the canonical vector bundle morphism ω
Z =

ιX(ω) : TM −! T ∗M induced by ω by contraction with tangent vectors is an isomorphism of
vector bundles.
Example 4.48. For every smooth manifold M , the cotangent bundle T ∗M is naturally a sym-
plectic manifold: let denote qi the local coordinate functions on M and pi the local coordinate
functions on the fibers of T ∗M , i.e. pi(dxj) = δji . Then the differential 2-form ω ∈ Ω2(T ∗M)
defined as ω =

∑n
i=1 dpi ∧ dqi is a non-degenerate closed 2-form on T ∗M . This result shows

that the isomorphism ω
Z : TM −! T ∗M then associates the tangent vector ∂

∂qi
to dpi. In

Hamiltonian mechanics, the coordinate function pi is the conjugate momentum associated to
qi. Hence, symplectic manifolds represent the canonical setup to do classical mechanics (when
it is well-defined). When working in a physical context we may call M the configuration space
and T ∗M the phase space. In particular the phase space R2n presented in Example 4.3 actually
corresponds to T ∗Rn.

Now let us draw the relationship between symplectic manifolds and Poisson manifolds. At
this point, we need not assume that ω is a closed differential form, although we still assume that
it is non-degenerate. Then, the vector bundle morphism ω

Z : TM −! T ∗M can be inverted. Its
inverse is thus a vector bundle morphism B

\ : T ∗M −! TM satisfying:

ω
Z ◦B\(α) = α

for every differential one-form α ∈ Ω1(M). We denote Xf the vector field B
\(df) and call

it Hamiltonian vector field of f (we will soon see that it is not contradictory with the earlier
denomination). Then, by construction we have:

ω
(
Xf , Xg

)
= ω

Z(Xf )(Xg) = df
(
Xg
)

= B
\(dg)(f)

for any two smooth functions f, g ∈ C∞(M). Then, by Equations (4.24) and (4.25), there exists
a unique non-degenerate bivector field B (hence the notation) such that:

ω
(
Xf , Xg

)
= −1

2〈df ∧ dg,B〉 = −B(f, g) (4.26)

This bivector field is actually not any bivector field:
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Proposition 4.49. ω is a symplectic form if and only if B is a Poisson bivector, that is to say:

dω = 0 ⇐⇒ [B,B]SN = 0

Proof. Let f, g, h ∈ C∞(M), and we set Xf = B
\(df), Xg = B

\(dg) and Xh = B
\(dh). Then,

by Equation (2.31) the de Rham derivative of ω satisfies:

dω
(
Xf , Xg, Xh

)
= Xf

(
ω
(
Xg, Xh

))
− ω

(
[Xf , Xg], Xh

)
+ 	 (4.27)

where 	 symbolizes circular permutation of the three functions. Using successively Equations
(4.26), (4.25) and (4.24), one deduces that the first term on the right hand side of Equation
(4.27) is −B(f,B(g, h)). On the other hand, the second term on the right-hand side of Equation
(4.27) can be rewritten as:

−ω
(
[Xf , Xg], Xh

)
= ω

(
Xh, [Xf , Xg]

)
= ω

Z ◦B\(dh)
(
[Xf , Xg]

)
= [B(f,−), B(g,−)](h)
= B

(
f,B(g, h)

)
−B

(
g,B(f, h)

)
Thus, noticing that −B

(
g,B(f, h)

)
= −B

(
B(h, f), g

)
and writing explicitly the circular permu-

tation, Equation (4.27) can be rewritten:

dω
(
Xf , Xg, Xh

)
= −B

(
B(f, g), h

)
−B

(
B(g, h), f

)
−B

(
B(h, f), g

)
On the right-hand side, one can recognize minus the Schouten-Nijenhuis bracket of B with itself,
so that:

dω
(
Xf , Xg, Xh

)
= −[B,B]SN (f, g, h)

This prove the claim.

Thus a symplectic manifold is a Poisson manifold where the Poisson bivector is non-degenerate.
Conversely, using Proposition (4.49), one can show the converse statement: any non-degenerate
bivector field B on a smooth manifold M gives rise to a non-degenerate differential 2-form ω
which is closed – i.e. symplectic – if and only if B is a Poisson bivector. We can summarize
these results in the following general statement:

Proposition 4.50. Let M be an even dimensional smooth manifold. Then there is a one-to-one
correspondence between non-degenerate Poisson structures and symplectic structures on M .

Let M be an even dimensional smooth manifold, equipped with a symplectic form ω, to
which correspond a non-degenerate Poisson bivector π. Let us now determinate the relationship
between ω = 1

2ωkldx
k ∧ dxl and π = 1

2π
ij ∂
∂xi
∧ ∂
∂xj

in local coordinates x1, . . . , xn. Evaluating ω
on the hamiltonian vector fields Xxi = πij ∂

∂xj
, Equations (4.26) is equivalent to:

ωklπ
ikπjl = −πij (4.28)

where summation on repeated indices is implicit. We denote the coefficients of the inverse matrix
of π = (πrs)rs by πrs, with indices at the bottom to allow contractions, so that πrsπst = δrt .
Then, multiplying both sides of Equation (4.28) with πjm and summing over j we obtain:

πikωkm = δim (4.29)
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Thus, the components ωkl turns out to precisely be πkl, i.e. the coefficients of ω form a matrix
that is the inverse matrix of π. Thus, a symplectic form and its associated non-degenerate
Poisson bivector somehow represent dual, equivalent pictures.

We have so far shown that when the characteristic foliation of a Poisson manifold consists
of one leaf – i.e. when the Poisson bivector is non-degenerate – then the leaf is a symplectic
manifold. We want to generalize this result to degenerate Poisson bivectors, by studying the
local picture of symplectic manifolds. Recall that the standard Poisson bivector on R2n is of the
form (4.17). It is a non-degenerate Poisson bivector, and the corresponding symplectic form is
given in Example 4.48:

π =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
⇐⇒ ω =

n∑
i=1

dpi ∧ dqi

One can check that their respective components πij and ωkl satisfy Equation (4.29). It turns out
that this structure is quite central in symplectic geometry, because every symplectic manifold
is locally symplectomorphic to R2n:

Theorem 4.51. Darboux theorem. Let (M,ω) be a symplectic manifold and let x ∈ M .
Then there exists local coordinates (qi, pi) centered at x, with respect to which the symplectic
form ω is expressed as:

ω =
n∑
i=1

dpi ∧ dqi

In other words, Darboux theorem states that locally, every symplectic manifold locally looks
the same. It implies that there are no local invariants in symplectic geometry, contrary to Rie-
mannian geometry for example. The above result occurs when M is symplectic or, equivalently,
when it is a non-degenerate Poisson manifold, so that the characteristic foliation consists of one,
unique leaf: the total manifold. By Proposition 4.50 we can reformulate Darboux theorem in
terms of non-degenerate Poisson structures:

Theorem 4.52. Darboux theorem (Poisson version). Let (M,π) be a Poisson manifold
manifold such that π is non-degenerate, and let x ∈ M . Then there exists local coordinates
(qi, pi) centered at x, with respect to which the symplectic form ω is expressed as:

π =
n∑
i=1

∂

∂qi
∧ ∂

∂pi

Remark 4.53. This theorem sheds light on why the standard Poisson structure on R2n is ‘rigid’
in the sense that H2

π(R2n) = 0 and more generally every non-degenerate Poisson bivectors (by
Remark 4.36). This is because any small (formal) deformation of such Poisson bivector is still
non-degenerate, so they locally still look like the standard structure on R2n. Thus, we cannot
‘deform’ them.

Now what happens when the Poisson bivector is degenerate, i.e. when its rank does not
equate the dimension of the manifold at every point? In that case, the generalized distribution
Dπ associated to the Poisson bivector π is integrable and its leaves are even dimensional. The
following important result generalizing Darboux theorem 4.51 to Poisson manifolds sheds light
on what happens locally:

Theorem 4.54. Weinstein splitting theorem. Let (M,π) be a Poisson manifold of dimen-
sion n and let x ∈ M be an arbitrary point. Denote the rank of the Poisson bivector π at x by
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2r, and let s = n− 2r. Then, there exists local coordinates q1, ..., qr, p1, ..., pr, z1, ..., zs centered
at x, such that the Poisson bivector reads:

π =
r∑
i=1

∂

∂qi
∧ ∂

∂pi
+

∑
1≤k,l≤s

φkl
∂

∂zk
∧ ∂

∂zl
(4.30)

where the functions φkl = −φlk are smooth functions, which depend on z = (z1, . . . , zs) only,
and which vanish when z = 0.

Weinstein’s theorem is not a result about local coordinates, but a result about the possibility
of choosing a special subset of local coordinates satisfying some nice property regarding the
Poisson bivector. It is a result of foliation theory that leaves are weakly embedded submanifolds.
Then by Proposition 3.52, it always possible to choose, in a vicinity of the point x, coordinates
adapted to the leaf Lx: the first 2r coordinates are local coordinates on Lx, while the last s
coordinates represent transversal ones. In particular, the zero locus of the last s coordinates
represent the leaf through x in that vicinity, see Figure 16. Weinstein’s theorem states that,
additionally, a choice of such local coordinates can be made so that, in a vicinity of the point
x, the rank of the Poisson bivector field has constant rank 2r on the leaf through x, this rank
coinciding by definition with the dimension of Lx. This implies in turn that the restriction of the
Poisson bivector to Lx is a non-degenerate Poisson bivector π|Lx and its form is the standard
one, of Theorem 4.52. By Proposition 4.50, this makes Lx a symplectic manifold. This fact
being true for every point x and thus every leaf of the characteristic foliation, we have finally
obtained a full characterization of the latter:

Proposition 4.55. The leaves of the characteristic foliation of a Poisson manifold are sym-
plectic manifolds.

Figure 16: Representation of the local coordinates centered at the point x appearing in Weinstein
splitting theorem 4.54. The z-coordinates are transversal to the leaf Lx passing through x.

Example 4.56. The linear Poisson structure defined on the dual of a Lie algebra g induces of
foliation of g∗ by symplectic leaves. These actually correspond to the coadjoint orbits of g on
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g∗. Polynomial functions on g∗ (i.e. elements of the universal enveloping algebra of g) that
are constant along these orbits are called Casimir operators. This convention explains why, in
Poisson geometry, functions whose hamiltonian vector field is zero are called Casimirs.
Example 4.57. As a particular case of the last example, the Poisson bivector field associated to
the Poisson structure of Example 4.5 is the following:

π = z∂x ∧ ∂y + x∂y ∧ ∂z + y∂z ∧ ∂x

where we transformed capital letters into small ones. The symplectic leaves are the concentric
spheres or radius r (2-dimensional) and the origin (0-dimensional).
Example 4.58. The Poisson manifold

(
R3, π

)
defined in Example 4.24 induces a distribution Dπ

generated by the following three hamiltonian vector fields:

Xx = x
∂

∂z
, Xy = y

∂

∂z
and Xz = −x ∂

∂x
− y ∂

∂y

This distribution is integrable into a singular foliation: the singular leaves are points of coordi-
nates (0, 0, z) because the three vectors fields vanish, while the regular leaves are 2-dimensional
vertical planes escaping radially from the vertical axis because then Xz is radial and either Xx,
Xy or both are vertical (see Figure 17).

Figure 17: The singular leaves of the characteristic foliation of the Poisson bivector π = (x ∂x +
y ∂y) ∧ ∂z are points on the z-axis (in orange, 0-dimensional submanifolds), while the regular
leaves are vertical, radial planes (in purple, 2-dimensional submanifolds).

Let us work in the half-space with x > 0, and use polar coordinates (x, y, z) 7−! (r, θ, z),
where r =

√
x2 + y2 > 0 and θ = arctan( yx) ∈] − π

2 ,
π
2 [. Then, the constant vectors ∂

∂x and ∂
∂y

become respectively:
∂

∂x
= cos(θ) ∂

∂r
− sin(θ)

r

∂

∂θ
and ∂

∂y
= sin(θ) ∂

∂r
+ cos(θ)

r

∂

∂θ
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Then, since x = r cos(θ) and y = r sin(θ), the Poisson bivector of Example 4.24 becomes:

π = r
∂

∂r
∧ ∂

∂z
(4.31)

Now, if one performs the following new change of radial coordinate: r 7−! ρ = ln(r), one then
obtains ∂

∂r 7−!
1
r
∂
∂ρ , so that the Poisson bivector (4.31) becomes:

π = ∂

∂ρ
∧ ∂

∂z
(4.32)

We have then found the expression of the Poisson bivector π in a set of coordinates (ρ, θ, z)
adapted to the situation, although they are not those of Weinstein splitting theorem for they
are not centered at any point. Expression (4.31) is valid even for x ≤ 0 (unless x = y = 0),
because there is no dependence on θ.

Now, to make the connection explicit with Equation (4.30), let (x0, y0, z0) be a point such
that x0 > 0, let ρ0 = ln

(√
x2

0 + y2
0
)

and θ0 = arctan( y0
x0

). Denoting q = ρ − ρ0, p = z − z0
and ϕ = θ − θ0, we have a set of (local) coordinates centered at the point (x0, y0, z0), such that
(q, p) span the leaf through (x0, y0, z0) – a vertical radial plane – and ϕ encodes the transversal
direction and vanishes on the leaf. Moreover, since we have ∂

∂ρ = ∂
∂q , ∂

∂z = ∂
∂p and ∂

∂θ = ∂
∂ϕ , one

can write Equation (4.32) as:

π = ∂

∂q
∧ ∂

∂p
+ sin(ϕ) ∂

∂ϕ
∧ ∂

∂ϕ

The last term automatically vanishes because of the antisymmetry of the wedge product. How-
ever, we have nonetheless provided a smooth function φ : ϕ 7−! sin(ϕ) which only depends on
ϕ and vanishes on the level set ϕ = θ − θ0 = 0, and managed to write the Poisson bivector as
in Equation (4.30). Thus, the set of (local) coordinates (q, p, ϕ) are those whose existence is
claimed by Weinstein splitting theorem. For other regular point with x ≤ 0, one uses the same
argument. For singular points (on the z-axis), the Poisson bivector is zero.

Notice that, since a symplectic manifold is always even dimensional, when the smooth man-
ifold M is odd-dimensional, there will necessarily be zero-dimensional leaves (hence trivial sym-
plectic manifolds). In the case where the rank of π is locally constant at x – i.e. on some open
neighborhood U of x – then 1. the foliation induced by the Poisson bivector on U is regular,
and 2. there exist s Casimirs such that the symplectic leaves correspond to the level sets of
the Casimirs (and then can be taken to be the coordinates zk). That is why one often call the
local coordinates (q1, . . . , qr, p1, . . . , pr, z

1, . . . , zs) Casimir-Darboux coordinates. Knowing that
a singular foliation forms a partition of the ambient manifold M , a corollary of Proposition 4.55
is the following:

Corollary 4.59. Every point of a Poisson manifold is contained in a unique symplectic leaf.

We conclude this subsection by the following very beautiful and nice result: one can show
that the Poisson bracket can be entirely reconstructed from the data of the symplectic forms on
the leaves of the characteristic foliation. One defines a smooth family of symplectic leaves on a
manifold M as the data of a singular foliation such that each leaf L is a symplectic manifold
(L, ωL), and such that for every f ∈ C∞(M), the family of tangent vectors (Xf,x)x∈M defined
at each point by ωL,x(Xf,x,−) = dfx (where L is the leaf through x) is a smooth vector field on
M . A Poisson manifold obviously induces a smooth family of symplectic leaves, and Vaisman
has shown the converse statement [Vaisman, 1994]:
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Theorem 4.60. Let M be a smooth manifold equipped with a smooth family L of symplectic
leaves. Then there exists a unique Poisson structure on M such that the characteristic foliation
coincide with the foliation L (as well as the symplectic structures on the leaves).

Proof. See Theorem 2.14 in [Vaisman, 1994]. One implication has been proven by the discussion
surrounding Weinstein’s splitting theorem, the other implication relies on defining {f, g} =
Xf (g) (since the hamiltonian vector fields are smooth).

4.3 Submanifolds and reduction in Poisson geometry

The study of submanifolds in Poisson geometry is slightly more intricate than in differential
geometry, because one needs to evaluate if the Poisson bracket originally defined on the ambient
manifold M descends to the submanifold S ⊂ M . In this section, unless otherwise stated,
the word ‘submanifold’ designates any kind of submanifolds: immersed, weakly embedded or
embedded.

Definition 4.61. A Poisson submanifold of a Poisson manifold M is a submanifold S ι
↪−!M

admitting a Poisson structure such that the inclusion map ι is a Poisson map.

The immersed or (weakly) embedded submanifold S can always be seen as the image of a
injective immersion/weak embedding/smooth embedding F : N −! M , such that S = F (N).
Then one may equivalently consider that the submanifold S is a Poisson submanifold if N is a
Poisson manifold and F is a Poisson map. Denoting { . , . } (resp. { . , . }N ) the Poisson bracket on
M (resp. on N), this definition implies that the Poisson submanifold S = F (N) is characterized
by the fact that: {

F ∗(f), F ∗(g)
}
N

= F ∗
(
{f, g}

)
(4.33)

for every f, g ∈ C∞(M). We shall see that in terms of bivector fields, Equation (4.33) can be
restated as the fact that the Poisson bivector π defined on M is tangent to S at every point of
S: πx ∈

∧2 TxS ⊂
∧2 TxM for every x ∈ S. There are additional equivalent characterizations

of Poisson submanifolds, both geometric and algebraic:

Proposition 4.62. Let (M,π) be a Poisson manifold and let S be a submanifold of M . The
following are equivalent:

1. S is a Poisson submanifold;

2. π|S takes values in
∧2 TS;

3. π\(TS◦) = 0;

4. π\(T ∗M |S) ⊂ TS;

5. all Hamiltonian vector fields are tangent to S.

Remark 4.63. The notation TS◦ stands for the annihilator of TS. It is the vector bundle over
S consisting of all the covectors vanishing on TS. More precisely, for every x ∈ S, one sets:

TxS
◦ =

{
ξx ∈ T ∗xM | ξx(TxS) = 0

}
If M is n-dimensional and if S is a r-dimensional submanifold, TS◦ is a rank n−r vector bundle
over S.
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Proof. 1. ⇐⇒ 2. Suppose that the submanifold S is obtained as the image of an injective
immersion F : N ↪−! M (weak and smooth embeddings are injective immersions). Then we
define

∧2 TS as the pushforward of the vector bundle
∧2 TN on M via F∗ ∧ F∗, and we have∧2 TS ⊂

∧2 TM |S .
First, assume that S is a Poisson submanifold of M , i.e. that N admits a Poisson structure

{ . , . }N , and that F is a Poisson map. In full generality, Equation (4.33) can be rewritten in
terms of Poisson bivectors as:〈

F ∗(df ∧ dg), πN
〉
N

= F ∗
(
〈df ∧ dg, π〉M

)
(4.34)

where π (resp. πN ) is the Poisson bivector corresponding to { . , . } (resp. { . , . }N ). On the
left hand-side the pairing is taken with respect to TN and T ∗N , while on the right-hand side
it is taken with respect to TM and T ∗M . Equation (4.34) is to be understood as an equality
on N or, equivalently, on S = F (N). Restricting Equation (4.34) to S has the following two
consequences: one can rewrite the left-hand side as 〈df ∧ dg, F∗ ∧F∗(πN )〉M , while dropping F ∗
on the right-hand side: 〈

df ∧ dg, F∗ ∧ F∗(πN )
〉
M

∣∣∣
S

= 〈df ∧ dg, π〉M
∣∣∣
S

(4.35)

where both sides here have to be understood as the restriction to S of the underlying smooth
functions. Since the functions f and g are arbitrary, one obtains that, on S, π

∣∣
S

= F∗ ∧F∗(πN ),
which proves item 2 since by definition

∧2 TS = F∗ ∧ F∗(
∧2 TN).

Conversely, still assumming that S = F (N) is a submanifold of M , then item 2. implies
that there exists a bivector field πN on N such that π

∣∣
S

= F∗ ∧ F∗(πN ). Since F is an injective
immersion, it is unique. Moreover, for every open set U ⊂ M the bivector field πN satisfies
Condition (4.16) on F ∗

(
C∞(U)

)
. Let us show that this implies that Condition (4.16) is satisfied

in the neighborhood of every point of N . Let x ∈ S and let x1, . . . , xn be local coordinates
adapted to the submanifold S in a neighborhood of x, in the sense of Proposition 3.54. That
is to say, there exists a connected coordinate chart V ⊂ N centered at y = F−1(x) in N and a
coordinate chart (U,ϕ) centered at x such that:

ϕ
(
U ∩ F (V )

)
= ϕ(U) ∩

{
Rk × 0

}
In other words, if the dimension of N is k, we can assume that the first k coordinates x1, . . . , xk

of the chart ϕ are those parametrizing both V and U ∩ F (V ) ⊂ S, so that the function F
becomes (x1, . . . , xk) 7−! (x1, . . . , xk, 0, . . . , 0). Then any function g ∈ C∞(V ) can be written
as the pull-back of a smooth function on C∞(U): let µ : (x1, . . . , xn) 7−! (x1, . . . , xk) be the
projection along the last n− k coordinates, and let f = g ◦ µ. Then g = f ◦ F = F ∗(f). Since
C∞(V ) = F ∗

(
C∞(U)

)
, then πN satisfies Condition (4.16) on V . This result being true in the

neighborhood of each point of N , we deduce that πN is a Poisson bivector. Then, since Equation
(4.35) holds for arbitrary functions f and g, implying in turn that Equation (4.34) holds, the
map F : N ↪−!M is a Poisson map, turning S into a Poisson submanifold of M .
2. ⇐⇒ 5. Again suppose that S is obtained (at least) as an injective immersion. Let x ∈ S
and let x1, . . . , xn be local coordinates adapted to the submanifold S in a neighborhood of x,
as in the proof of the last item. In particular, letting V be a sufficiently small neighborhood of
y = F−1(x) as in Proposition 3.54, the first k coordinates x1, . . . , xk parametrize V ' F (V ),
while the last n − k coordinates are transverse to F (V ). Then the Poisson bivector π can be
decomposed as:

π = 1
2

k∑
i,j=1

πij
∂

∂xi
∧ ∂

∂xj
+

k∑
i=1

n∑
j=k+1

πij
∂

∂xi
∧ ∂

∂xj
+ 1

2

n∑
i,j=k+1

πij
∂

∂xi
∧ ∂

∂xj
(4.36)
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For any smooth function f ∈ C∞(M), the association hamiltonian vector field is then:

Xf =
k∑

i,j=1
πij

∂f

∂xi
∂

∂xj
+

k∑
i=1

n∑
j=k+1

πij
(
∂f

∂xi
∂

∂xj
− ∂f

∂xj
∂

∂xi

)
+

n∑
i,j=k+1

πij
∂f

∂xi
∂

∂xj
(4.37)

Only the first term on the right-hand side of Equation (4.36) is a section of
∧2 TS. Thus,

if item 2. holds, then the second and third sums are zero on S, proving, using Equation (4.37),
that every Hamiltonian vector field is necessarily tangent to S. Conversely, if item 5. holds, the
last term of Equation (4.37) necessarily vanishes on S as it is not tangent to S, while in the
parenthesis there is a term tangent to S and the other is not. Applying successively Equation
(4.37) to the coordinate functions x1, . . . , xk give:

Xxl =
k∑
j=1

πlj
∂

∂xj
+

n∑
j=k+1

πlj
∂

∂xj

Since these hamiltonian vector fields have to be tangent to S for every 1 ≤ l ≤ k, we deduce
that on S, we have πlj = 0 for very 1 ≤ l ≤ k and k + 1 ≤ j ≤ n. This proves that the Poisson
bivector field π reduces to the first term of Equation (4.36) on the submanifold S, i.e. item 2.
3.⇐⇒ 4. Let ξ ∈ Ω1(M) such that ξx ∈ TxS◦ for every x ∈ S and let η be a differential 1-form
on M . Then by Equation (4.25) we have, for every x ∈ S:

ξx
(
π
\
x(ηx)

)
= 1

2〈ηx ∧ ξx, πx〉 = −ηx
(
π
\
x(ξx)

)
This identity being true for every differential one-form η on M and every ξ taking values in TS◦
on S, this implies that the right-hand side equals 0 if and only if item 3. holds and the left-hand
side equals zero if and only if item 4. holds. Then item 3. is equivalent to item 4.
4. ⇐⇒ 5. The direct implication is straighforward, while for the reverse implication, assume
that every Hamiltonian vector field is tangent to S. Since through every point of the cotangent
bundle of M passes an exact form, then for every point x ∈ S and ξx ∈ T ∗xM , there exists a
smooth function f defined on M such that dfx = ξx. Then π

\
x(ξx) = π

\
x(dfx) = Xf,x, which

shows that π\(ξx) actually takes values in TxS. Since this is true for every point of the cotangent
bundle over the submanifold S, one deduces that item 4. holds.

Example 4.64. Obvious examples of Poisson submanifolds are the symplectic leaves of the char-
acteristic foliation induced by π

\. They have the property that their Poisson bracket is non-
degenerate. More generally, Poisson submanifolds are unions of (open subsets of) symplectic
leaves (see Proposition 4.95).
Example 4.65. As seen in Example 4.58, using polar coordinates allow to write the Poisson
bivector π = (x∂x + y∂y) ∧ ∂z on R3 as π = r∂r ∧ ∂z. One then straightforwardly sees that the
2-dimensional symplectic leaves (the vertical radial planes) are Poisson submanifolds of (R3, π).
Exercise 4.66. This exercise is a continuation of Example 4.57, where the symplectic leaves are
the concentric spheres in R3 and aims at showing that they are indeed Poisson submanifolds.
The hemi-sphere of radius r > 0 located in the positive y half-space admits adapted spherical
coordinates (r, θ, ϕ) on it, where r > 0 is the distance from the origin, θ ∈ ]0, π[ is the angle
between the positive z axis and the vector and ϕ ∈ ]0, π[ is the angle between the x axis and the
projection of the vector on the Oxy plane. Show that in these spherical coordinates the Poisson
bivector of Example 4.57 reads:

π = 1
rsin(θ)∂θ ∧ ∂ϕ
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and deduce from it that the hemi-sphere of radius r > 0 equipped with this Poisson bivector
is a Poisson submanifold of (R3, π) (we know that it should be, as it is (a submanifold of) the
level set of the Casimir element C = x2 + y2 + z2 − r of π).

As seen earlier, one can always characterize geometric objects by algebraic ones and vice-
versa. This is the goal of the following proposition:

Proposition 4.67. Let S be a Poisson submanifold of the Poisson manifold M . Then, the
multiplicative ideal:

IS =
{
f ∈ C∞(M) such that f |S ≡ 0

}
is a Lie ideal of the Lie algebra

(
C∞(M), { . , . }

)
.

Proof. Since every hamiltonian vector field is tangent to S on S, then for any smooth functions
f ∈ C∞(M) and g ∈ IS , one has by definition of TS Xf (g) = 0 on S, which can be equivalently
be written as {f, g}(x) = 0 for every x ∈ S, that is to say: {f, g} ∈ IS . This proves that IS is
a Lie algebra ideal with respect to the Poisson bracket.

The condition stated in Proposition 4.67 is not sufficient to characterize Poisson manifolds,
unless they are embedded. Indeed, for immersed or weakly embedded submanifolds, the tangent
space at a point does not necessarily coincide with the set of tangent vectors on M at that point
that vanish on IS (see counter-Example 3.56):

TxS ⊂
{
Xx ∈ TxM

∣∣∣Xx(f) = 0 whenever f ∈ IS
}

(4.38)

The fact that IS is a Poisson ideal in C∞(M) means that for every f ∈ IS and g ∈ C∞(M),
the smooth function Xg(f) = {g, f} vanishes on S, which implies that Hamiltonian vector
fields belong to the set on the right hand-side of Equation (4.38). When S is an embedded
submanifold, we can conclude that these hamiltonian vector fields are tangent to S, and hence
that S is a Poisson submanifold.
Example 4.68. If C is a Casimir function on a Poisson manifold M , then the levels sets of regular
values of C are closed embedded submanifolds of M (see Theorem 3.44). Let S be such the
level set of such a regular value λ ∈ R, then it is a closed embedded submanifold of M . The
ideal of functions vanishing on S is then spanned by the function x 7! C(x) − λ (see Theorem
1.1 in [Henneaux and Teitelboim, 1994] or pages 95-96 of [Sudarshan and Mukunda, 2015]),
and we write IS = 〈C − λ〉. This forms a Lie ideal of

(
C∞(M), { . , . }

)
(independently of λ

being a regular value or not), as the following argument shows: any smooth function f satisfies
{f, C−λ} = {f, C} = −XC(f), which vanishes on M by definition of C being a Casimir function,
hence in particular it vanishes on S, so {f, C − λ} ∈ IS . This also shows that any hamiltonian
vector field Xf vanishes on IS and, since S is an embedded submanifold because λ is a regular
value, inclusion (4.38) becomes an equality. These facts imply that every hamiltonian vector
fields are tangent to S, proving that it is a Poisson submanifold of M by item 5. of Proposition
4.62. For example the level sets of the Casimir element of Exercice 4.9 correspond to concentric
spheres in R3, and coincide with the symplectic leaves of so3(R), i.e. its coadjoint orbits.

Poisson submanifolds are actually very rare. As in symplectic geometry, there are weaker
notions of submanifolds in Poisson geometry, that possess specific features leading to important
applications in mathematical physics: Poisson-Dirac submanifolds and coisotropic submanifolds.
The Poisson bracket of the ambient manifold descends on the former via the so-called Poisson-
Dirac reduction, while one has to further take a quotient of the latter to define a Poisson bracket:
this is the topic of coisotropic reduction.
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The notion of Poisson-Dirac submanifold relies on the following notion: let S be a – immersed
or (weakly) embedded – submanifold, f ∈ C∞(S) and x ∈ S, then a local extension of f at x is
the data (V,U, f̃) of an open neighborhood V of x in S (which then can be embedded into M
via Proposition 3.54), an open neighborhood U ⊂ M of x in M such that V ⊂ S ∩ U , and a
smooth function f̃ ∈ C∞(U), such that f̃ and f coincide on V : f̃ |V = f |V .

Lemma 4.69. Let S be a – immersed or (weakly) embedded – submanifold of M :

1. every smooth function on S can be locally extended;

2. if S is closed and embedded, then every smooth functions on S admit global extensions.

Proof. The proof of the second statement can be found in Lemma 2.27 in [Lee, 2003] and Propo-
sition 1.36 in [Warner, 1983], and heavily rely on the closedness of the submanifold. This state-
ment can be alternatively be described as the following isomorphism: C∞(S) ' C∞(M)

/
IS .

Let us now prove the first statement: let x ∈ S and let V be an open neighborhood of x; Propo-
sition 3.54 tells us that V forms a slice of U , i.e. a closed embedded submanifold of U . In that
case, applying the already proven second statement, one can extend f ∈ C∞(V ) to a smooth
function f̃ on U .

Next, we say that a local extension (V,U, f̃) of a function f at x is horizontal if the Hamilto-
nian vector field X

f̃
is tangent to S, i.e. if X

f̃ ,y
∈ TyS for every y ∈ V . Although every function

on S admits local extensions, it may not be true that it admits horizontal local extensions.
Poisson-Dirac submanifolds are precisely those submanifolds in Poisson geometry which have
such a property:

Definition 4.70. A Poisson-Dirac submanifold of a Poisson manifold M is a submanifold
S

ι
↪−! M which is such that for every point x ∈ S, every smooth function f on S admits an

horizontal local extension (V,U, f̃) at x.

Remark 4.71. The definition comes from subsection 5.3.2 of [Laurent-Gengoux et al., 2013]. It
implies in particular that the pull-back to S of the so-called Dirac structure on M corresponding
to the Poisson bivector π is a Dirac structure on S. See Section 6 of these lectures notes.

Obviously, every Poisson submanifold is a Poisson-Dirac submanifold since every hamilto-
nian vector field is tangent to a Poisson submanifold. Definition 4.70 however shows that this
condition has been profoundly weakened for Poisson-Dirac submanifolds. The main interest of
the latter – and the definition has been explicitly chosen to this purpose – is that the Poisson
bracket on M descends to S in a unique way to turn S into a Poisson manifold in its own way:

Proposition 4.72. Poisson-Dirac reduction. Let S be a Poisson-Dirac submanifold of the
Poisson manifold (M, { . , . }). Then there exists a unique Poisson bracket { . , . }S on S such that
for every x ∈ S and every two smooth functions f, g ∈ C∞(S), one has:

{f, g}S = {f̃ , g̃}
∣∣
V

(4.39)

for any horizontal local extensions (V,U, f̃) and (V,U, g̃) of f and g at x.

Proof. The proof can be found in Proposition 5.24 of [Laurent-Gengoux et al., 2013].

Example 4.73. This example is taken from [Fernandes, 2005]: let M be a Poisson manifold and
let G be a Lie group properly acting on M via Poisson diffeomorphisms. Then the fixed points
set MG is a Poisson-Dirac submanifold of M .
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A Poisson-Dirac submanifold possesses at most one Poisson structure satisfying Equation
(4.39), and this Poisson structure is completely determined by the Poisson structure of M .
Notice that the Poisson bracket on S is defined from picking up two local extensions whose
hamiltonian vector field is tangent to S. It does not work with every local extension, although
any other choice of extensions (such that their hamiltonian vector field is tangent to S) gives the
same result in Equation (4.39). The fact that not every extension would satisfy Equation (4.39)
can be explained from the following observation: contrary to Poisson submanifolds, where the
Poisson bivector, restricted to S, takes values in

∧2 TS (see item 2. of Proposition 4.62), on a
Poisson-Dirac submanifold S the Poisson matrix (πij)ij , with respect to a choice of coordinates
adapted to S (see e.g. Proposition 3.54 or Proposition 1.35 in [Warner, 1983]) can be decomposed
into blocks and take the form:

(πij)ij =
(

A B
−Bt D

)
(4.40)

Then one can show that on S, the anti-diagonal components B and −Bt identically vanish so
that the Poisson bivector reduces to two independent terms: π|S = π1+π2, where π1 corresponds
to the A component in the matrix and takes values in

∧2 TS, while π2 corresponds to the D
component. Thus, the Poisson bracket on S by Proposition 4.72 corresponds to π1, although on
S the Poisson bivector π|S contains another component π2, which only vanishes when evaluated
on local extensions whose hamiltonian vector fields are tangent to S. A nice presentation of
this issue (in a slightly less general case, however allowing to split TM into a direct sum) is
made in the discussion surrounding Lemma 2.15 in these lecture notes. Although Poisson-Dirac
submanifolds are very useful for the possibility that Poisson-Dirac reduction offer, Definition
4.70 is a bit obscure so that it is not very clear what does it look like in geometric terms. This
is the role of the next proposition:

Proposition 4.74. Let S be a submanifold of a Poisson manifold M . Then, the following are
equivalent:

1. S is a Poisson-Dirac submanifold;

2. for every α ∈ Ω1(S) there exists open sets V ⊂ S and U ⊂ M such that V ⊂ S ∩ U , and
a differential one-form α̃ ∈ Ω1(U) such that α|V = ι∗(α̃|U ) and π\(α̃) is tangent to S;

3. for each x ∈ S, there exist local coordinates on M centered at x such that, if the matrix
of π with respect to these coordinates can be written in a block form, then there exists a
neighborhood V of x in S such that the matrix is diagonal by block on V ;

4. TS ∩ π\(TS◦) = 0 and the bivector field πS induced from π on S via Equation (4.39) is
smooth.

Proof. For item 2. see Lemma 3.29 of these lectures notes, for item 3. see Proposition 5.25
in [Laurent-Gengoux et al., 2013], while for item 4. see subsection 9.2 in [Crainic and Fernandes,
2004].

This proposition is similar to Proposition 4.62, when S is a Poisson-Dirac submanifold. Since
such a submanifold is precisely defined from the behavior of Hamiltonian vector fields of local
extensions, the counterpart of item 5. of Proposition 4.62 is item 1. of Proposition 4.74. Item 3.
of Proposition 4.62 corresponds to item 2. of Proposition 4.74, via a slight reformulation because
not every Poisson-Dirac submanifold S admits a normal bundle N such that TxM = TxS ⊕Nx

for every x ∈ S and π|S takes values in
∧2 TS ⊕

∧2N . The fact that the Poisson bivector,
restricted to S, does not coincide with the component of π|S in

∧2 TS, implies in particular
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that the inclusion ι : S ↪−!M is certainly not a Poisson map (except of course if S is a Poisson
submanifold). Item 3. is useful to further segregate different kinds of submanifolds within the
family of Poisson-Dirac submanifolds. Poisson submanifolds form one extremity of this family,
for which π

\(TS◦) = 0. The other extremity is represented by the following condition:

Definition 4.75. Let S be a Poisson-Dirac submanifold of a Poisson manifold M . We say that
S is a cosymplectic submanifold (or a Poisson transversal) if TM |S = TS ⊕ π\(TS◦)
Example 4.76. In Example 4.58, any one-dimensional submanifold of R3 − {z − axis} that is
transversal to the symplectic leaves is a cosymplectic submanifold of (M,π), on which the
Poisson structure is zero (see [Crainic et al., 2021]).
Exercise 4.77. This exercise is taken from [Crainic et al., 2021]. Let (M,π) be a Poisson manifold
and let S be a cosymplectic submanifold. Let πS be the induced Poisson structure obtained by
Poisson-Dirac reduction (see Proposition 4.72). Show that if C is a Casimir element of π, then
C|S is a Casimir element of πS .

For Poisson submanifolds, π\(TS◦) has rank zero, while for cosymplectic manifolds, it is of
maximal rank n− dim(S). Subsection 2.2 of these lecture notes give plenty of informations on
cosymplectic manifolds. Their main use is that their class contain what are called second class
constraint surfaces in Hamiltonian mechanics. To any physical system in hamiltonian mechanics
corresponds a configuration manifold Q (with local coordinates the generalized coordinates)
and a canonically associated phase space T ∗Q (with fiber coordinates the conjugate momenta).
The phase space is a symplectic manifold, characterized by the canonical symplectic form ω =∑
i dpi∧dqi, dual to a non-degenerate Poisson bivector π =

∑
i
∂
∂qi
∧ ∂
∂pi

. A state of the physical
system corresponds to a point in the phase space. The equations of motions then govern the
evolution of the state of the system and, accordingly, the trajectory of the point to which it is
associated.

Sometimes, it may happen that the states that the physical system can occupy are constrained
(by some physical constraint, such as e.g. the length of the thread of the pendulum). A constraint
is thus a smooth function on T ∗M such that physical states are points of its zero level set.
A physical system may admit several (non-necessarily functionally independent) constraints
φ1, . . . , φm, so that the physical state is contained to the constraint surface Σ = Φ−1(0), where
Φ : T ∗Q −! Rr is uniquely defined as Φ(x) = (φ1(x), . . . , φm(x)). There are two main kinds of
constraints: first-class constraints and second-class constraints. First class constraints are those
constraints whose Poisson bracket with any function vanishing on Σ is zero; we denote them
ϕ1, . . . , ϕs. Second-class constraints are those which are not first-class, and are often denoted
χ1, . . . , χr (so that r + s = m). In particular it means that for any second class constraint χk,
there exist at least another second class constraint χl such that {χk, χl} 6= 0 on Σ. We define
the zero level set of the second-class constraints Σ0 – it obviously includes Σ. Then Dirac has
shown that at least in the neighborhood of the zero level set of the second-class constraints Σ0,
one can define a Poisson bracket on T ∗Q (or at least on some tubular neighborhood of Σ0),
because the matrix of functions C =

(
{χk, χl}

)
k,l

is invertible:

{f, g}Dirac = {f, g} − {f, χk}(C−1)kl{χl, g} (4.41)

This bracket, called the Dirac bracket, is such that the second-class constraint become Casimirs
of this new bracket and that Σ0 is a symplectic leaf – hence a Poisson submanifold – of
(T ∗Q, { . , . }Dirac.
Exercise 4.78. Show that any second class constraint χl is a Casimir element of the Dirac bracket.

Let us now explain in geometric terms what is happening. Let M be a symplectic manifold,
whose corresponding non-degenerate Poisson bracket is denoted { . , . }. Let Φ : M −! Rr

122

https://faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf


(where r ≤ dim(M)) be a smooth map and assume that 0 is a regular value of Φ. It means that
Φ∗,x : TxM −! TΦ(x)Rr is surjective for every x ∈ Φ−1(0). Since Φ is a smooth map then the
map x 7! rk(Φ∗,x) is lower semi-continuous, so it means that there exists an open neighborhood
U of the origin of Rr such that Φ∗ is surjective on the open set Φ−1(U). By the regular
level set Theorem 3.44, the level sets of every points of U are closed embedded submanifolds
of M , which form a regular foliation of Φ−1(U). We denote Σ0 = Φ−1(0) the level set of 0.
Decomposing the map Φ on the basis of Rr: Φ(x) =

(
χ1(x), χ2(x), . . . , χr(x)

)
gives r smooth

functions χi ∈ C∞(M), 1 ≤ i ≤ r, called constraints. They are said irreducible because they are
functionally independent, i.e. if there are smooth functions fi such that

∑
i fiχi = 0 then all the

fi are zero. Then, the level sets of Φ on U are n− r dimensional closed embedded submanifolds.
Moreover, the regularity condition can now be stated as follows: dχ1 ∧ . . . ∧ dχr ∈ Γ(

∧r T ∗M)
is non vanishing on Φ−1(U).

Let C be the anti-symmetric matrix of functions whose i, j-th component is:

Cij = {χi, χj}

We further assume that:
det(C) 6= 0 on Σ0 (4.42)

This condition on the smooth functions (χi)i characterizes second class constraints, and Σ0 is
called the second class constraints surface. Since condition (4.42) is an open condition, there
exists a tubular neighborhood V ⊂ Φ−1(U) of Σ0 (because Σ0 is embedded, see Theorem 10.19
in [Lee, 2003]) such that det(C) 6= 0 on the whole of V . Let us show that this condition is
central in the properties of Σ0:

Proposition 4.79. The second class constraint surface Σ0 is a cosymplectic submanifold of
(M, { . , . }). In particular it is not a Poisson submanifold.

Proof. Just for the sake of the exercise, let us first show that Σ0 is not a Poisson submanifold.
Since it is embedded in M , by the discussion below Proposition 4.67, the condition for Σ0
to be a Poisson submanifold is that the multiplicative ideal IΣ0 of smooth functions on M
vanishing on Σ0 is a Lie subalgebra of (C∞(M), { . , . }). Since Σ0 is an embedded submanifold,
the multiplicative ideal IΣ0 is generated – as a sub-algebra of C∞(M) – by the second class
constraints χ1, . . . , χr (see Theorem 1.1 in [Henneaux and Teitelboim, 1994] or pages 95-96
of [Sudarshan and Mukunda, 2015]). Then, if it ever occurred that IΣ0 was a Lie ideal of
C∞(M), then it would mean that {IΣ0 , IΣ0} ⊂ IΣ0 . In other words, every Poisson bracket
{χi, χj} would vanish on Σ0. But this would contradict condition (4.42). Hence Σ0 is not a
Poisson submanifold.

Now let us proof that on the contrary, Σ0 is quite far from being a Poisson submanifold, as
it is a cosymplectic submanifold. Let us first proof that it is Poisson-Dirac. Since Σ0 is a closed
embedded submanifold, by Lemma 4.69, we know that every smooth function f ∈ C(Σ0) admits
a global extension, i.e. a smooth function F ∈ C∞(M) on M such that F |S = f . Actually,
we have the following isomorphism: C∞(Σ0) ' C∞(M)

/
IΣ0

. So, any other choice of function
F +

∑
i λ

iχi (where the λi’s are smooth functions on M) is another global extension for f . Let
us find such an extension which is horizontal, i.e. whose hamiltonian vector field is tangent to
Σ0. Let us set θi = {F, χi} and let us set f̃ = F − θkCklχl (summation implied), where for
simplicity the Ckl denote the coefficients of the inverse matrix C−1. Then one has:

X
f̃
(χi) = {F − θkCklχl, χi} = {F, χi}︸ ︷︷ ︸

=θi

−
(
{θk, χi}Ckl + θk{Ckl, χi}

)
χl︸ ︷︷ ︸

vanishes on Σ0 because of χl

− θkCklC li︸ ︷︷ ︸
=θkδki =θi
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which then vanishes on Σ0. Since the multiplicative ideal IΣ0 is generated by the constraints
χi, it means that X

f̃
(IΣ0) ⊂ IΣ0 , i.e. all functions in X

f̃
(IΣ0) vanish on Σ0. Then, since Σ0 is

embedded, we have the equality (see beginning of subsection 3.4):

TxΣ0 =
{
Xx ∈ TxM

∣∣∣Xx(g) = 0 whenever g ∈ IΣ0

}
(4.43)

Since X
f̃

belongs to the right-hand side, it means that it is tangent to Σ0. Hence, the smooth
function f̃ = F−θkCklχl is a horizontal (global) extension of f . This proves that Σ0 is a Poisson
Dirac submanifold of M .

Now, as the constraints χi generate IΣ0 , and that equality (4.43) holds, we deduce that
the differential one-forms dχi form a frame of TΣ◦0, for they are independent and dχi(X) =
X(χi) = 0 if and only if the vector field X takes values in TΣ0. Then, since the Poisson bivector
field π is non-degenerate, it sends the rank r subbundle TΣ◦0 to a rank r subbundle of TΣ0.
Since the rank of the vector bundle TΣ0 is n− r and that a Poisson-Dirac submanifold satisfies
TΣ0 ∩ π

\(TΣ0) = 0, we conclude that TM |Σ0 = TΣ0 ⊕ π
\(TΣ0). In other words, Σ0 is a

cosymplectic submanifold of M .

Since Σ0 is a Poisson-Dirac submanifold of (M, { . , . }), we denote by { . , . }Σ0 the Poisson
bracket inherited by Σ0 via Poisson-Dirac reduction. More generally using the same arguments
as in the proof of Proposition 4.79, one can show that every level sets of the smooth map Φ
are cosymplectic submanifolds of (M, { . , . }) (at least on Φ−1(U)), so they all inherit the a
Poisson structure from that on M via Poisson-Dirac reduction. Now, the Dirac bracket defined
in Equation (4.41) is another choice of Poisson structure on M (or at least on some tubular
neighborhood V of Σ0), relative to which the second class constraints χi are Casimirs. Then, by
Example 4.68, we deduce that the level sets of Φ are the symplectic leaves of (M, { . , . }Dirac) (but
not of (M, { . , . })). Then, the second-class constraint surface Σ0 is a cosymplectic submanifold of
(M, { . , . }) but is a Poisson submanifold of (M, { . , . }Dirac) (or at least the tubular neighborhood
V ). What is even more interesting is the following result:

Proposition 4.80. For simplicity assume that { . , . }Dirac is defined on the whole of M . Then
the Poisson structure on Σ0 making it a Poisson submanifold of (M, { . , . }Dirac) is precisely the
Poisson bracket { . , . }Σ0 inherited from { . , . } via Poisson-Dirac reduction.

Proof. We need to show that for any two smooth functions f, g ∈ C∞(Σ0), one has on Σ0:

{ι∗(f), ι∗(g)}Σ0 = {f, g}Dirac|Σ0 (4.44)

Since the second class constraints χi are Casimirs elements of the Dirac bracket, we have, for
every smooth functions f, g ∈ C∞(M):

{f, g}Dirac
∣∣
Σ0

= {f − λiχi, g − µjχj}Dirac
∣∣
Σ0

(4.45)

for any family of functions λi, µj (notice that the equality only holds on Σ0). In particular, one
can make special choices of λi and µj as in the proof of Proposition 4.79 so that the hamiltonian
vector fields of f − λiχi and g − µjχj are tangent to Σ0. Then, the very definition of the Dirac
bracket implies that we have the following equality:

{f − λiχi, g − µjχj}Dirac
∣∣
Σ0

= {f − λiχi, g − µjχj}
∣∣
Σ0

(4.46)

Again, the identity holds only on Σ0. Now, the fact that f and f − λiχi coincide on Σ0 can be
written as ι∗(f) = ι∗(f − λiχi) ∈ C∞(Σ0), where ι : Σ0 7−! M is the inclusion map. Moreover,
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since we have that C∞(Σ0) ' C∞(M)
/
IΣ0

, the smooth function f is a global extension of ι∗(f),
and f − λiχi is an horizontal one. Then, together with Equations (4.39), (4.45) and (4.46), we
deduce that:

{ι∗(f), ι∗(g)}Σ0 = {ι∗(f − λiχi), ι∗(g − µjχj)}Σ0

= {f − λiχi, g − µjχj}
∣∣
Σ0

= {f − λiχi, g − µjχj}Dirac
∣∣
Σ0

= {f, g}Dirac
∣∣
Σ0

which is Equation (4.44), as desired.

Another way of making sense of Proposition 4.80 is the following: for any two smooth
functions f, g ∈ C∞(Σ0), one has:

{f, g}Σ0 = {f̃ , g̃}
∣∣
Σ0

= {f̂ , ĝ}Dirac
∣∣
Σ0

(4.47)

where on the one hand, f̃ , g̃ ∈ C∞(M) are any horizontal local extensions of f, g (they are
required in Poisson-Dirac reduction), and on the other hand f̂ , ĝ ∈ C∞(M) are any local exten-
sions of f, g (since in that case ι∗(f̂) = f and ι∗(ĝ) = g, making Equation (4.44) valid). This is
the formalized content of Theorem 2.5 in [Henneaux and Teitelboim, 1994]. Let us give a final,
alternative formulation: since the second class constraint surface Σ0 is a cosymplectic submani-
fold of (M, { . , . }), the tangent bundle restricted to Σ0 is a direct sum of the two subbundles TΣ0
and π\(TΣ◦0), so that one can see the term {−, χk}(C−1)kl{χl,−} in the formula (4.41) defining
the Dirac bracket as a bivector field taking values in π\(TΣ◦0), which precisely compensates the
block D in formula (4.40). Then, the matricial representation of the Dirac bracket with respect
to adapted local coordinates around a point x ∈ Σ0 becomes(

A B
−Bt 0

)
(4.48)

Thus, to create the Dirac bracket one has removed the lower right component of the original
Poisson bracket represented matricially in formula (4.40). Moreover we can see from the above
matrix (Equation (4.48)) that on Σ0, the bivector associated to { . , . }Dirac reduces to A, which
takes values in

∧2 TΣ0, as is characteristic for a Poisson submanifold. See subsection 5.1 of [Calvo
et al., 2010] for more details on this background story.
Example 4.81. Let M = T ∗R2 be the cotangent bundle of R2, and let denote the coordinate
functions (x, y, px, py). The canonical (non-degenerate) Poisson bracket on M is then π =
∂
∂x ∧

∂
∂px

+ ∂
∂y ∧

∂
∂py

. Let us set χ1 = py and χ2 = px +x− 2y; these two smooth functions on M
make Φ = (χ1, χ2) : M −! R2 a submersion. Then, the level set of Φ at 0 is a 2-dimensional
plane in M that we denote Σ0. The Poisson bracket of χ1 and χ2 is:

{χ1, χ2} = 2

So in particular, denoting Cij = {χi, χj}, one obtains:

C =
(

0 2
−2 0

)

which is constant on the whole of M . Then det(C) 6= 0, and the inverse matrix is:

C−1 =
(

0 −1
2

1
2 0

)
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Being defined over the whole of M , the Dirac bracket will be defined on the whole of M :

{f, g}Dirac = {f, g} − {f, χ1} ×
(
− 1

2
)
× {χ2, g} − {f, χ2} ×

1
2 × {χ1, g}

= {f, g}+ 1
2
∂f

∂y

(
− ∂g

∂x
+ ∂g

∂px
− 2 ∂g

∂py

)
− 1

2
(
− ∂f

∂x
+ ∂f

∂px
− 2 ∂f

∂py

)∂g
∂y

One can check that χ1 and χ2 are Casimir elements of the Dirac bracket.
Example 4.82. Another example of a situation where the matrix is invertible on the whole of M
is the following: let M = T ∗R3 and let denote the coordinate functions (x, y, z, px, py, pz). Let
us define the following four linear functions:

χ1 = x+ y, χ2 = px, χ3 = py + pz and χ4 = z − x

The level set of Φ = (χ1, χ2, χ3, χ4) : M −! R4 at 0 is a 2-dimensional plane, that we denote
Σ0. This plane is not a Poisson submanifold of M (with respect to its canonical non-degenerate
Poisson structure) because the Poisson brackets of the constraints χi do not all vanish on Σ0.
Indeed, the matrix C whose i, j-th component is {χi, χj} is:

C =


0 1 1 0
−1 0 0 1
−1 0 0 −1
0 −1 1 0


It has determinant 4 and is invertible on the whole of M , with inverse matrix:

C−1 = 1
2


0 −1 −1 0
1 0 0 −1
1 0 0 1
0 1 −1 0


The corresponding Dirac bracket is so that the constraints χi are Casimirs elements, and the
plane Σ0 is a Poisson submanifold of (M, { . , . }Dirac).
Example 4.83. Let M = TR2 and let χ1 = xy−1 while χ2 = px. The smooth map Φ = (χ1, χ2) :
M −! R2 is so that Φ∗ is surjective on Φ−1(0). Then, the preimage Σ0 = Φ−1(0) is a closed
embedded submanifold of M . It has two connected components because the preimage of the
first constraint χ1 has such. The Poisson bracket of the two constraints is:

{χ1, χ2} = y

Interestingly, this Poisson bracket vanishes on the hyperplane of equation y = 0, but this
hyperplane does not intersect Σ0 so the Poisson bracket never vanishes on Σ0. Hence, the
matrix C is:

C =
(

0 y
−y 0

)
Then det(C) 6= 0 on Σ0 (not on the whole of M) because y 6= 0 on the surface, and the inverse
matrix is (only defined in a neighborhood of Σ0):

C−1 =
(

0 − 1
y

1
y 0

)
The Dirac bracket will then be defined only in a tubular neighborhood of Σ0:

{f, g}Dirac = {f, g} − {f, χ1} ×
(
− 1
y

)
× {χ2, g} − {f, χ2} ×

1
y
× {χ1, g}

= {f, g}+ 1
y

( ∂f
∂px

y + ∂f

∂py
x
)∂g
∂x
− 1
y

∂f

∂x

( ∂g
∂px

y + ∂g

∂py
x
)

The constraints χ1 and χ2 are Casimirs of this bracket.
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Coming back to our problem in Hamiltonian mechanics, first-class constraints define a sub-
manifold Σ in the embedded cosymplectic submanifold Σ0. This submanifold is however not
a Poisson-Dirac submanifold because first-class constraints satisfy a nullity condition on Σ:
{ϕp, ϕq} = 0 (so Σ does not satisfy item 4. of 4.74). Rather, the submanifold Σ is what is
called a coisotropic submanifold. Poisson brackets cannot descend to them, but under some cir-
constances, to a quotient of them, through a procedure called Poisson reduction. The notion of
coisotropy is well-known in symplectic geometry, and is attached to submanifolds S whose sym-
plectic orthogonal TS⊥ω is a sub-bundle of TS. Since, for a non-degenerate Poisson structure,
one has π\(TS◦) = TS⊥ω , the condition that a submanifold is coisotropic is straighforwardly
transported to the realm of Poisson geometry:
Definition 4.84. A coisotropic submanifold of a Poisson manifold (M,π) is a submanifold
S

ι
↪−!M such that π\(TS◦) ⊂ TS.

Example 4.85. Any codimension 1 submanifold S of a Poisson manifold is coisotropic because
TS◦ is 1-dimensional, implying that the right-hand side of Equation (4.25) is zero, implying in
turn that π\(TS◦) ⊂ TS.
Example 4.86. An interesting example of a coisotropic submanifold is provided by a theorem of
A. Weinstein [Weinstein, 1988]: A smooth map ϕ : (M1, π1) −! (M2, π2) is a Poisson map if
and only if its graph Gr(ϕ) ⊂M2 ×M−1 is a coisotropic submanifold (where M−1 is the smooth
manifold M1 equipped with the opposite Poisson structure −π1). This statement is the Poisson
equivalent of the well-known result in symplectic geometry stating that if M1,M2 are symplectic
manifolds, then a diffeomorphism ϕ : (M1, ω1) −! (M2, ω2) is a symplectomorphism if and only
if its graph Gr(ϕ) ⊂M2 ×M−1 is a Lagrangian submanifold.

There are two distinguished sub-families of coisotropic subamnifolds: those for which π\(TS◦) =
0, i.e. Poisson submanifolds, and on the other extreme those for which π\(TS◦) = TS; they are
called Lagrangian submanifolds as they correspond to their counterparts in symplectic geometry.
Obviously, given the condition established in Definition 4.84 and item 4. of Proposition 4.74,
the intersection of the set of coisotropic submanifolds and the set of Poisson-Dirac submanifolds
is precisely the set of Poisson submanifolds. As for the other kinds of submanifolds, coisotropic
submanifolds have equivalent alternative definitions:
Proposition 4.87. Let S be a submanifold of a Poisson manifold M . Then, the following are
equivalent:

1. S is a coisotropic submanifold;

2. for every smooth function f ∈ C∞(M) vanishing on some open set V ⊂ S, the Hamiltonian
vector field Xf is tangent to S at every point of V ;

3.
〈∧2 TS◦, π

〉
= 0, where 〈 . , . 〉 is the pairing between T ∗M and TM .

Proof. The direction 1. =⇒ 2. is straightforward because f |V = 0 means that df ∈ TS◦|V , so
let us turn to the direction 2. =⇒ 1. Let f be such a function vanishing on V and suppose
Xf,x ∈ TxS = TxV for every point x ∈ V . Let ξ ∈ Γ(TS◦) then, one has on V :

0 = ξ(Xf ) = −df
(
π
\(ξ)) (4.49)

We know for sure that df ∈ Γ(TS◦|V ) but the fact that, upon shrinking it, V is an embedded
submanifold of M (see Proposition 3.54), implies that TV ◦ = (TS)◦|V is spanned by the point-
wise evaluation of exact differential one-forms df for those functions f ∈ C∞(M) vanishing on
V . Since Equation (4.49) holds for every such function, and every ξ ∈ Γ(TS◦), one deduces
that π\(ξ) is necessarily a tangent vector to S at every point of V . The proof of the equivalence
1.⇐⇒ 3. is straightforward, using Equation (4.25).
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Remark 4.88. Notice that in the second item of Proposition 4.87, we did not ask f to vanish
on S but on an open set of V precisely because we needed to characterize TS◦|V = TV ◦ as
spanned by the exact differential one-forms df . And to do that we needed at least an embedded
submanifold, which is true for V but not necessarily for S if immersed.

We have another characterization of coisotropic submanifolds, mimicking Proposition 4.67 for
Poisson submanifolds. Indeed, it admits the following counterpart for coisotropic submanifolds:

Proposition 4.89. Let S be a coisotropic submanifold of the Poisson manifold M . Then, the
multiplicative ideal:

IS =
{
f ∈ C∞(M) such that f |S ≡ 0

}
is a Lie subalgebra of the Lie algebra

(
C∞(M), { . , . }

)
.

The proof of Proposition 4.89 is a straightforward application of Definition 4.84. Notice however
that, as for Poisson submanifolds, the converse implication – that the ideal IS being a Lie
subalgebra of C∞(M) implies that S is a coisotropic submanifold of M – is true only when S is
embedded in M .
Example 4.90. Taken from [Crainic et al., 2021]: let g be a finite dimensional real Lie algebra
and g∗ be the associated linear Poisson manifold, described in Example 4.4. Let ξ ∈ g∗, then
the definition of the linear Poisson structure on g∗ implies that, for any two elements x, y ∈ g:

{x, y}(ξ) = [x, y](ξ) = ξ
(
[x, y]

)
(4.50)

where x is the notation used in Example 4.4 to symbolize the linear form on g∗ defined as
x(ξ) = ξ(x). Using Equations (4.24) and (4.25), the left-hand side of Equation (4.50) can be
written as:

{x, y} = dy(π\(dx)
)

(4.51)

Let V be a subspace of the Lie algebra g, and let V ◦ ⊂ g∗ be its annihilator, that we will denote
S in the following. Then, the annihilator of TS is spanned by the elements dx for every x ∈ V .
This implies that S is a coisotropic submanifold of g∗ if and only if, for every x, y ∈ V , the
right-hand side of Equation (4.51) – evaluated at a point ξ ∈ S = V ◦ – vanishes, i.e. if and
only if the right-hand side of Equation (4.50) vanishes for every ξ ∈ V ◦. This implies in turn
that V ◦ is a coisotropic submanifold of g∗ if and only if V is a Lie subalgebra of g. Since IV ◦
is generated by V ◦◦ = V (because g is finite dimensional), we deduce that V ◦ is a coisotropic
submanifold of g∗ if and only if IV ◦ is a Lie subalgebra of C∞(g∗). As a final remark, notice
that V ◦ is a Poisson submanifold if and only if V is a Lie ideal, if and only if IV ◦ is a Lie ideal
of C∞(g∗).

Contrary to what happens for Poisson-Dirac submanifolds, coisotropic submanifolds are
rarely equipped with an induced Poisson bracket. Rather, one may only have a Poisson reduction
on a quotient of coisotropic submanifolds. Let us first define what is meant by this concept (we
use the terminology of subsection 5.2.2 in [Laurent-Gengoux et al., 2013]):

Definition 4.91. Let (M, { . , . }) be a Poisson manifold and S be a submanifold, N a smooth
manifold and p : S −! N a surjective submersion:

S ⊂M

N

p
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Figure 18: Schematic map of the various families of submanifolds in Poisson geometry. Pois-
son submanifolds are both coisotropic and Poisson-Dirac submanifolds. Cosymplectic and
Lagrangian submanifolds are opposite to Poisson submanifolds in their respective families.
See [Zambon, 2011] for additional informations about relationships between various kinds of
submanifolds in Poisson geometry.

We say that the triple (M,S,N) is Poisson reducible if there exists a Poisson structure { . , . }N
on N such that, for all open subsets V ⊂ S and U ⊂ M such that V ⊂ U ∩ S, and for all
functions f, g ∈ C∞(p(V )), one has:

{f, g}N (p(x)) = {f̃ , g̃}(x) (4.52)

for every x ∈ V , and arbitrary local extensions f̃ , g̃ ∈ C∞(U) of functions f ◦ p|V and g ◦ p|V .

Remark 4.92. Poisson reduction is a particular case of what is called Marsden-Ratiu reduction
on Poisson manifold, which also generalize Mayer-Marsden-Weinstein reduction on Hamiltonian
G-spaces. See these lectures notes, as well as this paper [Falceto and Zambon, 2008].
Example 4.93. If S is a submanifold of M , and f, g are two smooth functions on S, admitting
local extensions f̃ and g̃, then ι∗f̃ = f and ι∗g̃ = g. Assuming that S is a Poisson submanifold,
we set N = S, p = idS , so that Equation (4.33) becomes (4.52). This property being true for
every smooth functions f, g, the triple (M,S, S) is Poisson reducible.

It turns out – by Proposition 5.11 of [Laurent-Gengoux et al., 2013] – that a triple (M,S,N)
satisfying the conditions of Definition 4.91 is Poisson reducible if and only if:

1. for every function f̃ ∈ C∞(U) whose restriction to V is constant of the fibers of p, the
hamiltonian vector field X

f̃
is tangent to S at every point of V ;
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2. for every pair of functions f̃ , g̃ ∈ C∞(U) whose restriction to V is constant of the fibers of
p, the restriction of their Poisson bracket to V is constant of the fibers of p.

Then, one can show that in such a case S is a coisotropic submanifold of M . It is thus legitimate
to ask under which circumstances a coisotropic S allows a Poisson reduction to some quotient
of itself:

Proposition 4.94. Let S be a coisotropic submanifold of M , and assume that π\(TS◦) has
constant rank over S (i.e. defines a regular smooth distribution). Then it is integrable in the
sense of Frobenius and if the space of leaves N of the corresponding regular foliation is a smooth
manifold, the triple (M,S,N) is Poisson reducible.

Proof. We will show that items 1. and 2. above are satisfied (see also Remark 5.15 in [Laurent-
Gengoux et al., 2013]). In the present context, p is the quotient map sending S to the leaf space
N , so the fibers of p are the leaves.

First, let f̃ ∈ C∞(U) such that it is constant on the leaves, and let ξ a differential one-form
taking values in TS◦ on S. Since S is a coisotropic submanifold, π\(ξ) is a vector field taking
values in the regular integrable distribution, that is to say it is tangent to the leaves. Since f̃
is constant along the leaves, df̃

(
π
\(ξ)) = π

\(ξ)(f̃) = 0 on S. By Equation (4.25), the left-hand
side of the former equation is equal to −ξ

(
π
\(df̃)

)
. Then it vanishes on S and since ξ takes

values in TS◦, and that the vanishing of −ξ
(
π
\(df̃)

)
is valid for any such ξ, we deduce that

X
f̃

= π
\(df̃) is tangent to S.

Secondly, let f̃ , g̃ ∈ C∞(U) be two smooth functions which are constant along the leaves and
let ξ be a differential one form taking values in TS◦. Then, by the first point just proven, X

f̃

and Xg̃ are tangent to S, so is their Lie bracket, and we have:

0 = ξ
(
[X

f̃
, Xg̃]

)
= ξ(X{f̃ ,̃g}) = ξ

(
π
\(d{f̃ , g̃})) = −d{f̃ , g̃}

(
π
\(ξ)) = −π\(ξ)({f̃ , g̃})

Since by definition, π\(ξ) is a vector field tangent to the leaves, and that π\(TS◦) generate
all such tangent vector fields, we deduce that the Poisson bracket {f̃ , g̃} is constant along the
leaves, as required.

This proposition is quite useful to study Hamiltonian under constraints. We have seen earlier
that second-class constraints define an embedded cosymplectic submanifold of a Poisson manifold
M . On the other hand, first class constraint define an embedded coisotropic submanifold of M
(here we assume M to be a symplectic manifold). A quick way to see this is by using the
converse of Proposition 4.67, which holds for embedded submanifolds. Assume that we have s
constraints ϕ1, . . . , ϕs which are irreducible – i.e. functionally independent – and regular – i.e.
the differential s-form dϕ1 ∧ . . . ∧ dϕs is nowhere vanishing on the zero level set Σ defined by
the smooth map Φ = (ϕ1, . . . , ϕs) : M −! Rs. This proves that Φ∗ is surjective on this level
set (actually on a tubular neighborhood), proving in turn that Σ is an embedded submanifold
of M .

Being first-class means that {ϕi, ϕj} = 0 on Σ for every 1 ≤ i, j ≤ s, which is actually
equivalent to saying that {ϕi, f} = 0 for every f ∈ IS , because every such function is functionally
dependent on the constraints since Σ is an embedded submanifold (see Theorem 1.1 in [Henneaux
and Teitelboim, 1994] or pages 95-96 of [Sudarshan and Mukunda, 2015]). But this is just the
condition that IS is a Lie subalgebra of C∞(M). Being embedded, this implies that Σ is a
coisotropic submanifold of M . Since the differential one forms dϕi span TΣ◦, the hamiltonian
vector fields Xϕi = π

\(dϕi) span π\(TΣ◦) and define a regular distribution on Σ (the rank of π

130



is constant over Σ). By Frobenius theorem this distribution is integrable and the leaf space P
is called the reduced phase space because its points are the physical states of the system: on the
one hand they all satisfy the constraints, and on the other hand we have got rid of the gauge
freedom (symbolized by the leaves of the foliation). By Proposition 4.94, if the reduced phase
space is a smooth manifold, the Poisson bracket of M descends to P .

However, in most situation, we have a mixed set of constraints, i.e. some of them are first-
class and some of them are second-class. Then, the strategy to obtain the physical phase space
is first, to perform a Poisson-Dirac reduction on the second-class constraint surface Σ0, which
is then a symplectic embedded submanifold of (T ∗Q, { . , . }Dirac), and second, to consider the
first-class constraint surface Σ as a coisotropic submanifold of (Σ0, { . , . }Σ0) (or equivalently of
(T ∗Q, { . , . }Dirac) because the former second-class constraint become first class with respect to
the Dirac bracket). By proceeding to a Poisson reduction on Σ, one obtains the physical phase
space of the theory. See this chapter for a clear presentation of this approach.

To conclude this section, let us discuss a bit more the relationship between the symplectic
leaves of a Poisson manifold and its submanifolds. We know from Theorem 4.60 that there is a
one-to-one correspondence between Poisson structures on M and smooth families of symplectic
leaves on M . Then a way of defining a Poisson structure on a given submanifold S of M would
be to to study the properties of the intersection of S with the symplectic leaves of M :
Proposition 4.95. Let M be a Poisson manifold and let S ⊂ M be a submanifold. Then we
have the following statements:

1. S is a Poisson submanifold if and only if for each symplectic leaf L, the intersection S ∩L
is an open set of L;

2. S is a Poisson-Dirac submanifold if and only if for each symplectic leaf L, the intersection
S ∩ L is clean15 and a symplectic submanifold of L, such that these symplectic structure
turn the connected components of the intersections S∩L into a smooth family of symplectic
leaves on S, when L ranges over the symplectic leaves of M .

In both cases, the symplectic leaves induced by the Poisson bivector πS on S are the connected
components of the intersections S ∩L, where L ranges over all symplectic leaves of M . Finally,
for coisotropic submanifolds, one has the following statement:

3. assuming that S has clean intersection with all the symplectic leaves of M , S is a coisotropic
submanifold if and only if for each symplectic leaf L, the intersection S∩L is a coisotropic
submanifold of L.

Proof. For Poisson submanifolds, the proof can be found in Proposition 2.12 in [Laurent-
Gengoux et al., 2013] or in Proposition 3.26 of these lectures notes. For Poisson-Dirac sub-
manifolds, the proof can be found in Proposition 6 of [Crainic and Fernandes, 2004], and for
coisotropic submanifolds it can be found in Proposition 3.29 of the same lectures notes.

Remark 4.96. The latter statement is more stringent because in general coisotropic submanifolds
are far from havin clean intersections with symplectic leaves. See Remark 1. of [Zambon, 2011].
Remark 4.97. There exist plenty of other kinds of submanifolds in Poisson geometry, e.g.
isotropic submanifolds are those submanifolds S such that TS ⊂ π

\(TS◦), pre-Poisson sub-
manifolds are those submanifolds S such that the vector bundle TS + π

\(TS◦) has constant
rank, etc.

15A clean intersection of two submanifolds S and L means that S ∩L is a submanifold satisfying the following
condition: T (S ∩ L) = TS ∩ TL. It implies, by the implicit function theorem, that for every x ∈ S ∩ L, there
exists open neighborhoods U ⊂ S and V ⊂ L such that U ∩ V is an open neighborhood of x in S ∩ L. See e.g.
this page or the proof of Proposition 5.26 in [Laurent-Gengoux et al., 2013].
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4.4 Poisson-sigma model

In Physics, a sigma model is a way of encoding an action functional from a smooth map some-
times denoted σ : Σ −!M , where Σ and M are smooth manifolds called respectively the source
and target manifolds. Their dimension and the possibly additional structures (such as a pseudo-
Riemannian metric or a Poisson structure on M) that these manifolds possess characterize the
so-called sigma model. Sigma models are useful for the following reason: the dynamical fields
of the physical theory correspond to the composite functions σi = xi ◦ σ on the target space.
For example the relativistic particle can be seen as a sigma model X : R −! M4 (where M4 is
Minkowski space), given by the action:

S ∝
∫
R
ηij
(
X(τ)

)
Ẋi(τ)Ẋj(τ)dτ

The trajectory of the particle in space time is parametrized by the proper time τ and is called
the world-line of the particle. Notice that integration is made over the manifold Σ and not over
M , because the independent variables are the coordinates over Σ.

Another example is the Nambu-Goto action for the bosonic relativistic open string is obtained
from a sigma modelX : Σ −!M , where Σ is a 2-dimensional smooth manifold (with boundaries)
called a world-sheet, parametrized by a timelike coordinate τ and a spacelike coordinate σ, and
M is a pseudo-Riemannian manifold representing spacetime. Then the Nambu-Goto action is:

SNG ∝
∫

Σ

√
(gµν(X)ẊµX ′ν)2 − ẊµẊµX ′νX ′νdτdσ

where Ẋ = ∂X
∂τ and X ′ = ∂X

∂σ , and where gµν is the metric on M .
A gauge theory on a pseudo-Riemannian oriented manifold M may be seen a a particular

kind of sigma model: it is characterized by a set of gauge fields corresponding to the component
of a Lie-algebra valued one-form A = Aµ dx

µ = Aaµ Ta ⊗ dxµ ∈ Ω1(M, g), where the Ta form a
basis of g. The Yang-Mills action is then written as:

SYM = 1
2α

∫
M

tr
(
F ∧ ?F

)
(4.53)

where the F is the field strength associated to A: F a = dAa + 1
2 [A,A]a. Usually, g is a semi-

simple matrix Lie algebra so that the trace is the usual trace on matrices, however in the more
general case, one should think of the trace as symbolizing the Killing form κ on g16. The Lie
bracket is that of g, while the differential form component of A is wedged. More precisely:

F aµν = ∂µA
a
ν − ∂νAaµ + [Aµ, Aν ]a (4.54)

Moreover, the notation F ∧ ?F means that the wedge acts with respect to the forms, whereas
the Lie algebra components of F is composed with that of ?F (via the adjoint action, say).
Much more details can be found in Chapter 3 of Part 2 of [Baez and Muniain, 1994]. It can
be seen as a sigma model via the observation that the gauge field is a Lie algebroid morphism
A : TM −! g. The source manifold is thus TM while the target manifold is g.
Exercise 4.98. Show that, decomposing F = dA + 1

2 [A,A] as 1
2F

a
µνTa ⊗ dxµ ∧ dxν , one indeed

finds Equation (4.54).
16For finite dimensional semi-simple matrix algebras such as sln, son, sun, sp2n, the Killing form κ(u, v) – for

any two elements u, v ∈ g – is proportional to tr(u ◦ v), where u, v are in the latter case seen as endomorphisms
of Rn (or R2n for the symplectic algebra).
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The Yang-Mills action can be rewritten by introducing a n−2 differential form X = Xa
µTa⊗

dxµ taking values in g:
SYM =

∫
M

tr
(
X ∧ F + α

2X ∧ ?X
)

(4.55)

Then the Euler-Lagrange equation on X is X = 1
α ? F (at least when M is a Lorentzian four-

dimensional manifold, see Equation (1.28)), so that we retrieve the original action (4.53), upon
replacing X by its value. Something particular occur when the manifold M is two dimensional
(we will call it Σ), because in that case X is a function and ?X = Xω where ω =

√
|g|dx1 ∧ dx2

is the normalized volume form on M , as defined in Equation (3.15). In the case where g is a
finite dimensional semi-simple matrix Lie algebra, the 2-dimensional Yang-Mills action (4.55)
becomes (up to some scalar factor):∫

Σ
κabX

a(dAb + 1
2[A,A]b

)
+ α

2 κabX
aXb ω

where κab = tr(adTa ◦ adTb) are the components of the Killing form on g. Since in this nice
situation, the Killing form is a non-degenerate bilinear form on g, from now on we will use
contracted indices instead. Upon integrating by part the term XadAa (assuming, e.g., that the
source manifold Σ has no boundary), we obtain:∫

Σ
Aa ∧ dXa + 1

2Xa[A,A]a + α

2XaX
a ω (4.56)

Now, observe that g is the linear dual of the Poisson vector space g∗ (see Example 4.4 for
more details on linear Poisson structures). In other words, the smooth function X and the
differential one-form A take values in g∗∗ ' g (because g is finite dimensional). This is true for
any dimension of the source manifold Σ, but what is characteristic of the 2-dimensional case is
that the expression XaX

a in the last term ressembles the quadratic Casimir element of semi-
simple Lie algebras (which usually form the kind of Lie algebras used in gauge theories). More
precisely, for Xa a smooth function on M , the element

∑dim(g)
a=1 XaXaTa � Ta of the symmetric

algebra of g can be seen as a polynomial function on g∗, which actually turns out to be a Casimir
element in the sense of Poisson algebras. Thus, we have shown that the 2-dimensional Yang-
Mills theory can be reformulated in terms of a sigma model involving a linear Poisson structure
(that of g∗). A natural generalization is then to weaken that condition and allow this theory to
be defined on any Poisson manifold:

Definition 4.99. The Poisson-sigma model is a sigma model defined by the following data:

1. the source Σ is a 2-dimensional oriented smooth manifold (possibly with boundary);

2. the target M is a finite dimensional Poisson manifold, with Poisson bivector π;

3. the maps defining the model is a Lie algebroid morphism (X,A) : TΣ −! T ∗M ;

and by the following action functional:

SPSM (X,A) =
∫

Σ
〈A,X∗〉+ 1

2〈A ∧A,X
!π〉 (4.57)

where 〈 . , . 〉 denotes the pairing between TM and T ∗M , and where C ∈ C∞(M) is any Casimir
function of π.
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Let us explain each term in details. The pushforward X∗ : TΣ −! X !TM can be seen
as a one form on Σ taking values in Γ(X !TM). In local coordinates, it can be written as
X∗ = dXi ∂

∂xi
where d is the de Rham differential on Σ and where the xi are coordinates on M .

Then, since A takes values in Γ(X !T ∗M), the pairing in the first term is indeed well defined,
so that it becomes: 〈A,X∗〉 = Ai ∧ dXi. In the second term, the notation X !π symbolizes that
we evaluate the Poisson bivector π on the image of X in M . In other words, X !π is a section
of the pullback vector bundle X !∧2 TM . This is justified by the fact that the differential 2-
form A ∧ A takes values in Γ(X !∧2 T ∗M). Then the second term becomes in coordinates:
1
2〈A ∧ A,X

!π〉 = 1
2π

ij(X)Ai ∧ Aj (because π contains 1
2π

ij). Then, Equation (4.57), the action
functional of the PSM, can be rewritten as:

SPSM (X,A) =
∫

Σ
Ai ∧ dXi + 1

2π
ij(X)Ai ∧Aj

It is usual to add an additional term in the Poisson-sigma model that plays the same role
as α

2XaX
a ω in 2-dimensional Yang-Mills theory. Any choice of Casimir function C ∈ C∞(M)

(relatively to the Poisson bivector π) can be added to the action functional, which then becomes:

SPSM (X,A) =
∫

Σ
Ai ∧ dXi + 1

2π
ij(X)Ai ∧Aj + ?

(
C(X)

)
As for the other terms, the Casimir function is evaluated on Im(X) ⊂M . The constant α

2 that
was appearing in Yang-Mills action functional is not apparent in the above formula because it
can be absorbed in the Casimir C. Obviously, if M = g∗ (where g is a finite dimensional semi-
simple matrix Lie algebra, say), and if the Casimir function is the quadratic Casimir element of g,
then the Poisson-sigma model with Casimir corresponds to the 2-dimensional Yang-Mills action
functional (4.56), under the following considerations: 1. the map X : Σ −! g∗ is considered to
take values in g by using the non-degenerate Killing form on g which allows to identity g and
g∗; 2. the fiber of T ∗g∗ is identified with g so that the differential 1-form A : TΣ −! T ∗g∗ is
actually seen as taking values in g. This can be made explicit by realizing that A is actually a
vector bundle morphism TΣ −! X !T ∗M covering the identity map on Σ, then, evaluating the
differential one-form A on a tangent vector at a point x gives an element of the fiber of T ∗X(x)M ,
i.e. an element of g, as required.

If C(X) = 0 then the Poisson-sigma model becomes a topological field theory, called a
BF-theory. These are characterized by the following action functional:

SBF =
∫

Σ
tr(B ∧ F )

where Σ is a n-dimensional oriented manifold, F is the field strength associated to the gauge
potential A (taking values in some Lie algebra, say), while B is a g valued differential n−2-form.
The Euler-Lagrange equations of such topological field theories are:

F = 0 and dAB = 0

where dA is the covariant derivative associated to the connection A. The solutions of the
equations are purely topological: B is a closed 2-form, while the field strength of A vanishes so
A does not propagate. Under appropriate assumptions (e.g. Σ is compact without boundary),
the Poisson-sigma model is a 2-dimensional BF-theory, since Equation (4.57) can be rewritten
as:

SPSM =
∫

Σ
Xi ∧ Fi

where summation on contracted indices is implicit. Thus, the Poisson-sigma model is a topolog-
ical field theory that, under the addition of a Casimir function, can encode some physical model
such as 2-dimensional Yang-Mills gauge theory.
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Exercise 4.100. Check that the action functional of the Poisson-sigma model is invariant under
the following gauge transformations:

δ(ε,λ)X
i = λjπ

ij and δ(ε,λ)Ai = dλi + ∂πkl

∂xi
Akεl

where ε1, . . . , εn are smooth functions on Σ and λ = λidx
i is a differential 1-form on Σ taking

values in T ∗M . They are obviously nonlinear generalizations of standard gauge transformations.

Another application of the Poisson-sigma model (and actually its original motivation) is
to describe 2-dimensional gravity (without matter field). Let Σ be an oriented, 2-dimensional
Lorentzian manifold, with metric g (of signature (1, 1) then). Let us denote by x0 and x1 local
coordinates on Σ. Recall that in two dimensions, the symmetries of the Riemann tensor impose
that:

Rµναβ = −R2 εµνεαβ (4.58)

where R is some scalar identified with the Ricci scalar, and εµν and εαβ are antisymmetric Levi-
Civita tensors on two indices, i.e. ε01 =

√
|g| and ε10 = −

√
|g|. Due to Equation (4.58) and to

the identity εµνεαβ = gµβgνα − gµαgνβ , the Einstein tensor:

Gµν = Rµν −
1
2Rgµν

identically vanish on Σ. This is problematic since the vacuum Einstein field equation is Gµν = 0.
The fact that it is automatically satisfied in 2-dimensional gravity shows that 2-dimensional
gravity without matter does not yield propagating gravitational modes. That is why physicists
usually allow the Einstein-Hilbert Lagrangian to take more intricate forms in 2-dimensions.
One of particular importance is a the f(R)-gravity, in which the Ricci scalar is replaced by a
well-behaved function: ∫

Σ
?(f(R)) = −

∫
Σ

√
|g|f(R)dx0dx1

Then one may show that under rather common assumptions, this action can be rewritten in
terms of an auxiliary field φ called the dilaton and another well-behaved function V (φ):∫

Σ

√
|g|
(
φR− V (φ)

)
dx0dx1 (4.59)

See for example Section 7 of [Schmidt, 1999] for an explicit treatment of this replacement.
Exercise 4.101. Show that, for f(R) = R2, we have the usual Gaussian integral:

1
2

∫
Σ

√
|g|R2dx0dx1 =

∫
Σ

√
|g|
(
φR− 1

2φ
2)dx0dx1

Let us now rewrite the f(R)-lagrangian using zweibein and a spin connection, á la Palatini
(see Chapter 3 Part III of [Baez and Muniain, 1994] for a treatment of Palatini formalism in n
dimensions). The idea (in two dimensions) is the following: the metric g is locally diagonalizable,
and even better, by a diagonal matrix of the form:

g ∼
(

1 0
0 −1

)

Then, in the neighborhood of every point, there exist two locally defined vector fields e+ and
e− defining a frame of TΣ, such that in the local coordinate defined by this frame g takes the
above diagonal form. We call the pair (e+, e−) a zweibein – the 2-dimensional analogs of tetrads
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in 4-dimensions and of vielbein in n dimensions. In particular, noting ea for the differential one-
form on Σ dual to ea, where a = ±, we have e+ ∧ e− =

√
|g|dx0dx1. While the Einstein-Hilbert

Lagrangian in n dimensions is invariant under diffeomorphisms, its reformulation in terms of
vielbein is only invariant under the gauge group SO(n− 1, 1) (encoding every possible Lorentz
rotations of the orthonormal frame). In two dimensions, this group is one dimensional, hence
abelian. The gauge invariance under the Lorentz group is encoded by a connection ω called
the spin connection. It is a differential 1-form on Σ taking values in so(1, 1) (or so(1, 1) when
working on a n-dimensional space-time), satisfying the following compatibility condition:

Dea ≡ dea + ωab e
b = 0 (4.60)

This condition implies that ω is uniquely expressed in terms of the zwiebein and it dual. Since
the gauge group SO(1, 1) is abelian, the curvature of the spin connection reduces to dω, so that
we have:

R
√
|g|dx0dx1 = −2dω

To implement the constraint (4.60) in the f(R)-lagrangian, one has to introduce two Lagrange
multiplicators X+, X−, so that the action (4.59) can be rewritten as:∫

Σ
φdω +XaDe

a + 1
2V (φ) e+ ∧ e− =

∫
Σ
ω ∧ dφ+ ea ∧ dXa︸ ︷︷ ︸

Ai dXi

+Xa ω
a
b e
b + 1

2V (φ) e+ ∧ e−︸ ︷︷ ︸
1
2π

ij(X)Ai∧Aj

The expression on the right-hand side corresponds to a Poisson-sigma model, where the Poisson
manifold M is R3, where the scalar function X : Σ −!M is the triplet (X+, X−, φ) and where
the differential one-form A ∈ Ω1(Σ, X !T ∗M) is the triplet (e+, e−, ω). This shows that the action
functional of f(R) 2-dimensional gravity (without matter) can be expressed as a Poisson-sigma
model. There are additional applications of this model to other topological field theories.
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5 A geometric perspective on Bergmann-Dirac formalism

From the 1930s physicists have tried to find a way of ‘quantizing’ existing classical physical theo-
ries in order to find out what would a quantum field theory look like [Rosenfeld, 1932]. Classical
mechanics appeared as a limit of non-relativistic quantum mechanics, formulated in terms of a
Hamiltonian and of position and momenta operators. Physicists then were hoping to develop
the canonical formalism associated with Hamiltonian mechanics to relativistic field theories.
In particular, a possible goal was to obtain quantum electrodynamics by quantizing Maxwell
electromagnetism, and some quantum theory of gravity by quantizing general relativity. Un-
fortunately, both of those theories possess inner symmetries (gauge symmetries and coordinate
invariance) which prevent to straightforwardly obtain the Hamiltonian from the Lagrangian, as
is usually possible in classical mechanics. Indeed, it has been shown that if a Lagrangian is
covariant under a set of symmetries – i.e. if its expression stays invariant – then the Legendre
transform form the the Lagrangian to the Hamiltonian cannot be performed. On the contrary,
one has to add several constraints in the hamiltonian picture to account for the non-invertibility
of the Legendre transform. Existence of constraints characterize physical theories with internal
symmetries such as gauge symmetries.

Although another alternative path was followed in the 1940s to provide the first central
example of a quantum field theory – namely: quantum electrodynamics – Peter Bergmann and
Paul Dirac proposed in the late 40s-early 50s an alternative approach to quantization [Bergmann,
1949, Dirac, 1950]. This canonical quantization procedure relied on obtaining first the Hamil-
tonian corresponding to the given Lagrangian characterizing the action principle, and then
quantize the Hamiltonian as well as the various position and momenta operators, together with
the several constraints emerging from the procedure. More generally, any smooth function f of
the canonical coordinates should be sent to an operator via a quantization map Q: Q(f) = F ,
having natural properties such that Q(1) = Id – the identity operator. In this latter step,
Dirac requires that the Lie bracket of operators and the Poisson brackets of observables (smooth
functions on the phase space) obey the following compatibility condition:

Q{f,g} = 1
i~

[Qf ,Qg] (5.1)

Although the procedure seems perfectly viable on the paper, and that the first part of the
procedure is well-known, there is actually no unique way of quantizing a classical theory. Indeed,
one usually promotes the position qk and conjugate momenta pk coordinates to operators Qk, Pk
on a Hilbert space, and require that their Lie Bracket is proportional to i~, but there may exist
alternative choice of coordinates that would thus give other quantized operator. Moreover,
when one has a product of conjugates coordinates – such as qp = pq, say – there is no standard
way of assigning an operator because the operators associated to pk and qk do not commute.
There exists a convention specified by Weyl, which comes close to achieve this task, but a no-go
theorem by Groenewold proves that there is no quantization scheme such that Equation (5.1) is
satisfied at any polynomial order. This is why the canonical quantization proposed by Dirac is
then usually performed only for unambiguous classical theories for which the Hamiltonian has
nice properties.

Another huge problem in Dirac’s quantization procedure is the treatment of constraints. As
we will see, the quantization scheme Q obviously sends every constraint φa to an operator, but
it does not say what convention one should impose on the action of Φa = Q(φa) on the vectors
of the Hilbert space. Additional procedures have been developed to handle this problem which
arise as soon as one wants to quantize a gauge theory: the BV formalism on the one hand (in
the Lagrangian picture) and the BFV/BRST formalism (in the Hamiltonian picture)17. This

17BV stands for Batalin-Vilkovisky and BFV stands for Batalin-Fradkin-Vilkovisky.
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section is devoted to study all those quantization procedures, and we will mostly rely on the
following texts: [Gitman and Tyutin, 1990], [Henneaux and Teitelboim, 1994], and the incredibly
pedagogical [Matschull, 1996] and [Rothe and Rothe, 2010]. Other useful resources [Bergmann,
1949,Bergmann and Goldberg, 1955,Dirac, 1964,Sudarshan and Mukunda, 2015] are of historical
interest and may also be pedagogical on particular aspects of the topic. Eventually, there are
two alternative quantization scheme provided by mathematicians: geometric quantization and
deformation quantization. While the former tries to provide a Hilbert space and an quantization
transformation Q, the second tries to deform the algebra of observables – i.e. smooth functions
on the phase space – so that we obtain a non-commutative associative algebra resembling the
operator algebra physicists look for. None of them give a definite answer to quantization because
they have their own, respective, issues. The problem of quantization is thus a very intricate one,
and is still under investigation.

5.1 Lagrangian and Hamiltonian formalism from a geometric point of view

We begin the review of Dirac’s canonical formalism with a non-relativistic physical model, to
later turn to relativistic field theory. Let us start with a given configuration space represented
by a n-dimensional oriented smooth manifold Q (possibly with boundary). In this section the
points of Q are denoted q – instead of x. The local coordinate functions on Q are denoted by
qi – instead of xi – and can express the position of several particles, the length of a spring, the
charge of a capacitor etc. That is why they are called generalized coordinates. Let us now fix
a trivializing chart U of both TQ and T ∗Q, admitting local coordinates qi on the base U . The
tangent bundle TQ over U admits fiberwise coordinate functions vi : TQ 7−! R that are a mere
rewriting of the constant covector fields on Q denoted dqi. In particular for every tangent vector
X ∈ TqQ, vi(X) = vi

(
Xj ∂

∂qj

)
= Xi. That is why we will often denote tangent vectors at q as

v ∈ TqQ, so that by abuse of notation, we would identify the components of v in the basis ∂
∂qi

with vi.
The cotangent bundle T ∗Q over U also admits fiberwise coordinate functions denoted pi

and defined as expected: pi(ξ) = pi(ξjdqj) = ξi for any covector field ξ. For this reason, the
coordinates pi can be identified to the locally defined constant vector fields ∂

∂qi
. In particular

we set pi(vj) = δji so that the pi are the dual coordinates to the vi, explaining why the former
are called conjugate momenta. This also justifies that we call T ∗Q the phase space – sometimes
denoted P – since it contains the configurations as well as the momenta of the configuration
space Q. We will often denote covector fields as the letter p, so that a point in the cotangent
bundle T ∗Q would be denoted (q, p). By abuse of notation, we identify the components of p
(resp. v) in the basis dqi (resp. ∂

∂qi
) with pi (resp. vi). Since the tangent and cotangent bundles

need not be trivial vector bundles, both vi and pi are only defined locally on Q. More precisely,
the coordinates qi are local coordinates on the trivializing neighborhood U of q, which in turn
implies that the coordinate vi and pi are fiberwise linear coordinates globally defined on the
fiber.
Example 5.1. The cotangent bundle represent the natural setup to do Hamiltonian mechanics.
Let us illustrate this property by analyzing the pendulum (of mass m and length L) from a
Poisson/symplectic geometry perspective. The physical system is parametrized by the angle θ
so that we set the space of all possible angles – i.e. the configuration space – to be the circle
S1. The conjugate momentum to the generalized coordinate q = θ is denoted p so that it is
interpreted as the fiberwise linear coordinate on the phase space T ∗S1. The symplectic structure
on this cotangent bundle is the standard one, i.e. ω = dp∧ dq, where q = θ. The corresponding
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non-degenerate Poisson structure on T ∗S1 is thus given by:

{f, h} = ∂f

∂q

∂h

∂p
− ∂f

∂p

∂h

∂q

for every two smooth functions f, h ∈ C∞(T ∗S1).
Let us define the following smooth function on T ∗S1:

H = p2

2mL +mgL
(
1− cos(θ)

)
(5.2)

where g is a constant positive parameter that may be fixed at 9,8 if one wants to reproduce the
gravitational force equivalent. We call this function (5.2) the ”Hamiltonian of the system” and
compute its hamiltonian vector field XH ∈ X(T ∗S1):

XH = {H,−} = − p

mL

∂

∂θ
+mgL sin(θ) ∂

∂p
(5.3)

An integral curve of the vector field −XH is a smooth path γ : R −! T ∗S1, t 7−! (θ(t), p(t))
which is such that the tangent vector γ̇(t) = θ̇(t) ∂∂θ + ṗ(t) ∂∂p at the point γ(t) = (θ(t), p(t)) is
equal to −XH |(θ(t),p(t)). Alternatively, it corresponds to the level set of the smooth function H.
By isolating the two components θ̇(t) and ṗ(t) forming γ̇(t) at the point γ(t) = (θ(t), p(t)) and
equating them to that of −XH at the same point, one has, for every t:

θ̇(t) = −XH(θ) = {θ,H} = ∂H

∂p

ṗ(t) = −XH(p) = {p,H} = −∂H
∂θ

Thus, the integral curves of the vector field −XH are precisely those path γ : R −! T ∗S1

whose components θ(t) and p(t) satisfy the Hamilton equations of motion. This implies that such
integral curves are the physical solutions of the Hamilton equations which means that, starting
from a point (q0, p0) on the phase space T ∗S1, the physical motion of the pendulum obliges to
follow the integral curve of the vector field −XH passing through (q0, p0). More abstractly, we
say that −XH points towards the flow of physical time18. Drawing such integral curves using
the expression (5.3) gives the well-known phase portrait, Fig. 19.

We have thus seen in Example 5.1 that the mathematics developed in Poisson geometry is
well-adapted to describe physical systems in the Hamiltonian formalism. However, this was only
possible because every point of the phase space could be used as an initial condition. Sometimes
in physics, it may happen that not every point of the phase space can be chosen to be a set
of initial conditions. In that case one cannot straightforwardly apply Hamiltonian formalism to
the model, and a more refined formalism is required: constrained Hamiltonian formalism. We
will spend the rest of this section on this topic.

Definition 5.2. A Lagrangian is a fiberwise convex smooth function L ∈ C∞(TQ) on the tangent
bundle of Q. By fiberwise convex, we mean that, for every q ∈ Q, the function L(q,−) : TqQ −!
R is a smooth convex function, i.e. it is such that its Hessian symmetric matrix (written in local
coordinates):

Hij(q, v) = ∂2L(q, v)
∂vi∂vj

(5.4)

has non negative determinant for every v ∈ TqQ.
18The minus sign comes down to the choice of defining the hamiltonian vector field of a smooth function f as
{f,−} and not as {−, f}, although the latter convention exists.
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Figure 19: Phase portrait of the pendulum build from a purely symplectic/Poisson geometry
perspective. The horizontal axis represents the angular coordinate q = θ between −π and π,
while the vertical axis represents the conjugate momenta p. The arrow heads represent the
direction of −XH (flow of physical time) and the lines its corresponding integral curves. The
separatrix is actually made of four submanifolds: 2 points (singular leaves) at θ = ±π and p = 0,
while the upper (resp. lower) red line is directed toward the right (resp. the left) but never
reaches π (resp. −π). There is an additional singular leaf at (0, 0). Hence this phase portrait is
indeed a singular foliation, integrating the distribution generated by −XH . Picture taken from
Wolfram Alpha.

Recall that, here, we consider that v ∈ TqQ and we identify the coordinate functions vi :
TqQ −! R with the components of v in the basis ∂

∂qi
. To any smooth path γ : R −! M , one

can associate a tangent vector at the point γ(t), which we denote γ̇(t) ∈ Tγ(t)M (see subsection
2.1). One can then evaluate the Lagrangian function along this path: t 7−! L(γ(t), γ̇(t)). A
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priori, one can always pick up any kind of path on Q, but physicists have a recipe to determine
which kind of path would correspond to the time evolution of the physical system whose state is
encoded by the generalized coordinates q. Indeed, such a path γ should satisfy some differential
equations called the Euler-Lagrange equations, under appropriate boundary conditions. Any
other choice of path would be considered as non-physical. They proceed as follows: the (non-
relativistic) physical model is characterized by a so-called action, which depends exclusively on
the choice of path γ:

S(γ) =
∫
R
L(γ(t), γ̇(t)) dt

Often the path admits well-defined boundary conditions so the integral converges. To stick with
physicists’ notation, we will now write the time dependency of the Lagrangian with respect to
the chosen path as L(q, q̇) instead of L(γ(t), γ̇(t)), where q̇ denotes the time derivative of the
generalized coordinate q = γ(t) at time t, which geometrically corresponds to the vector γ̇(t)
tangent to the curve γ at time t.

Assuming that smooth path γ corresponding to physical evolution are extrema of the action –
i.e. stationary points, one requires that an infinitesimal variation of the action with respect to an
infinitesimal change of path would vanish if the original path is a physical path. More precisely,
assume that γ0 is a smooth path in Q corresponding to a physical evolution of the system, then
S(γ0) should be an extremum of the function S, and thus the infinitesimal variations of S around
γ0 should be zero:

0 = δS =
∫
R
δL dt

where the variation should be understood to be taken at γ0 (stationary point of the action).
Computing the variation of L with respect to infinitesimal change of path – i.e. with respect to
coordinates q and v – and with respect to the boundary conditions gives the following identity :

δS = −
n∑
i=1

∫
R
Ei(q, q̇, q̈)δqi dt

where the Ei(q, q̇, q̈) are defined as:

Ei(q, q̇, q̈) = d

dt

∂L(q, q̇)
∂vi

− ∂L(q, q̇)
∂qi

(5.5)

for every 1 ≤ i ≤ n. Hence, a smooth path γ0 corresponding to a physical evolution of the
system (given appropriate initial state and boundary conditions), being a stationary point of
the action, should make Equation (5.5) vanish when (q, q̇) = (γ0(t), γ̇0(t)). In other words, a
path corresponding to a physical evolution of the system should necessarily satisfy the infamous
Euler-Lagrange equations:

d

dt

∂L

∂vi
− ∂L

∂qi
= 0 (5.6)

for every 1 ≤ i ≤ n. Conversely, we will consider that solutions of these equations – i.e. smooth
paths γ : R −! M such that (γ(t), γ̇(t)) are solutions of the Euler-Lagrange equations – are
precisely the paths characterizing physical evolution of the system.

Now, since we assume that the Lagrangian does not have explicit time dependence, expanding
the time derivative in the Euler-Lagrange equations (5.6) gives the following:

Hij(q, q̇) q̈j = ∂L

∂qi
− ∂2L

∂vi∂qj
q̇j (5.7)

One then sees that the accelerations are uniquely solvable in terms of the positions and the veloc-
ities only if the Hessian matrix Hij(q, q̇) is invertible, i.e. if det

(
Hij(q, q̇)

)
6= 0. When this is the
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case, i.e when one can write the Equations (5.7) as q̈i = something depending only on q and q̇
then the theory of ordinary differential equations says that, given a set of initial conditions,
there is a unique solution of this Cauchy problem (at least) in a small neighborhood of these
initial conditions. In other words, it means that the time evolution of the physical system – the
evolution of the couple (q, q̇) – is guaranteed to depend only on the initial conditions. However,
when the Hessian matrix has vanishing determinant, the left hand side of Equation (5.7) van-
ishes so that the Cauchy problem does not admit a unique solution. Such a situation happens
when the Lagrangian admits local symmetries.

Definition 5.3. A (local) symmetry of the physical system is a (local) diffeomorphism of the
configuration space Q – i.e. it is a transformation of the generalized coordinates – such that
the form of the Lagrangian is left unchanged (up to a total derivative), so that the action is
invariant.

It has indeed been shown in the late 1940s that a Lagrangian admitting local symmetries has a
vanishing Hessian (see Appendix A of [Rothe and Rothe, 2010] which is a modern reformulation
of [Bergmann, 1949]). In that case, as is explained in Chapter 2 of [Rothe and Rothe, 2010], one
has to dig into the constraints that the Lagrangian imposes on the system by carefully studying
the null eigenvectors of the Hessian matrix. This opens the treatment of the quantization of
gauge theories via the Batalin-Vilkovisky formalism. Notice however that in Dirac’s canonical
quantization procedure, one quantize the theory from the Hamiltonian perspective because in
quantum mechanics the Hamiltonian has a central role. Let us give a bit more details on how
hamiltonian mechanics enter the picture.

Definition 5.4. Let L : TQ −! R be a Lagrangian (assumed to be a convex function) and
define the canonical hamiltonian to be the following function on the extended tangent bundle
TQ = TQ⊕ T ∗Q:

Hc(q, v, p) = 〈p, v〉q − L(q, v) (5.8)

where 〈p, v〉q denotes the pairing between T ∗qM and TqM .

This function is called the canonical hamiltonian because it corresponds to the usual defi-
nition of the hamiltonian for unconstrained systems. Let U be a trivializing chart of both TQ
and T ∗Q and let qi, vi and pi the corresponding local coordinates on the base, and on the fibers
of TQ|U and T ∗Q|U , respectively. Since 〈p, v〉q =

∑n
i=1 piv

i, by differentiating the canonical
hamiltonian with respect to pi one obtains:

vi = ∂Hc

∂pi

Let us compute the derivative of Hc with respect to vi:

∂Hc

∂vi
= pi −

∂L

∂vi
(5.9)

Then, the points of TqQ for which ∂H
∂vi

= 0 are those such that:

pi = ∂L

∂vi
(5.10)

Now, notice that the Euler-Lagrange equations (5.6) are second-order differential equations,
which can be reformulated as two sets of first-order differential equations:

vi = q̇i and Hij(q, v) v̇j = ∂L

∂qi
− ∂2L

∂vi∂qj
vj
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where we have assumed that some path γ : R −! TQ defines a solution, so that (q(t), q̇(t)) =
(γ(t), γ̇(t)). These equations are equivalent to the following set of equations, called the implicit
Euler-Lagrange equations:

vi = q̇i, pi = ∂L

∂vi
and ṗi = ∂L

∂qi
(5.11)

The equivalence can indeed be straightforwardly calculated, and the latter equations can be ob-
tained as the variation of the following action, where the pi have the role of Lagrange multipliers
in what is called the Hamilton-Pontryagin action:

S =
∫ (

L(q, v) + pi(q̇i − vi)
)
dt (5.12)

The set of Equations (5.11) can then be recasted using the canonical Hamiltonian:

q̇i = ∂Hc

∂pi
,

∂Hc

∂vi
= 0 and ṗi = −∂Hc

∂qi
(5.13)

These equations descend from the variation of the following action:

S =
∫ (

piq̇
i −Hc(q, v, p)

)
dt

which is actually a rewriting of Equation (5.12). Then, we see how Hamiltonian can be a very
efficient way of recasting Euler-Lagrange equations (5.6) into first-order differential equations.

In classical mechanics, the Hamiltonian is the Legendre transform of the Lagrangian. Usually
the Legendre transform of a convex function x 7−! f(x) – with domain of definition I – is a
smooth function p 7−! f∗(p) defined via evaluating the supremum of the concave function
x 7! px − f(x) over I, for each p such that this supremum is finite. Denoting I∗ the subset of
R whose elements p ∈ I∗ are such that sup

x∈I

(
px− f(x)

)
< +∞, one sets:

f∗(p) = sup
x∈I

(
px− f(x)

)
(5.14)

Under the assumption that the derivative of f is invertible there is an explicit formula for f∗:

f∗(p) = px− f(x)
∣∣∣
x=(f ′)−1(p)

(5.15)

where here one really should understand x and p as real numbers so it makes sense to have
(f ′)−1(p). Equation (5.15) is the kind of formula one usually uses in thermodynamics, where
Helmholtz free energy A and Gibbs free energy G are obtained by performing Legendre trans-
forms (up to a sign) of the internal energy U and enthalpy H, respectively. There, we usually
do not explicitly check that the derivative of U and H with respect to the entropy is invertible
although it is implicitly used when we do the Legendre transform using Formula (5.15) instead
of Formula (5.14).

In our context, we precisely chose the Lagrangian to be convex so that we can take its
Legendre transform. We will slightly extend the meaning of the latter by considering that it
is a map from the tangent bundle to the cotangent bundle, thus providing an explanation for
the formula pi = ∂L

∂vi
. The Lagrangian is supposed to be a convex function, i.e. its Hessian H

has non-negative determinant. The Legendre transform is then performed with respect to the
coordinates vi. In geometric terms, the Legendre transform between the Lagrangian and the
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Hamiltonian corresponds to performing a Legendre transform of the function L(q,−) ∈ C∞(TqQ)
for every q. In other words, at a fixed point q, the function H0(q, p) is defined as:

H0(q, p) = sup
v∈TqM

(
Hc(q, v, p)

)
(5.16)

when such supremum exists. The Hamiltonian is a smooth function on (a subset of) T ∗Q, hence it
depends only on the generalized coordinates qi and on the conjugate momenta pi. As for the rest
of the section, we will use the Legendre transform from a more geometrical point of view. We will
adopt an ‘in-between’ perspective where we mostly work in local coordinates over a trivializing
chart U ⊂ M to treat hamiltonian constraints (as physicists do), and at the same time we will
adopt from time to time a global coordinate-free perspective to address issues that will inevitably
arise along the way (as mathematicians do). We will mostly rely on the following resources: on
the mathematical side, the Legendre transform had been investigated by Tulczyjew [Tulczyjew,
1977] and constrained hamiltonians by Marsden and Yoshimura [Yoshimura and Marsden, 2007]
(see also most of references therein), while on the physical side there exist well established sources
ont constrained hamiltonian systems [Gitman and Tyutin, 1990], [Henneaux and Teitelboim,
1994], [Rothe and Rothe, 2010], see also these notes.

To provide a geometric flavour to this discussion, let us then generalize the Legendre trans-
form to the tangent and cotangent bundles:

Definition 5.5. The Legendre transform is a base point preserving smooth map from TQ to
T ∗Q (but not necessarily a vector bundle morphism) given by:

L : TQ −−−−−! T ∗Q

(q, v) 7−−−−−!
(
q, p : w 7! d

ds

∣∣∣∣
s=0

L(q, v + sw)
)

On the right-hand side, the element w is a tangent vector at q. Thus, the element p – image
of v via L – is a linear form on TqQ, sending w to d

ds

∣∣∣
s=0

L(q, v+ sw). This definition does not
depend on the local coordinates, but the function L can be decomposed on the local frame dqi
as:

L (q, v) =
n∑
i=1

Li(q, v)dqi =
n∑
i=1

∂L

∂vi
dqi

so that Li = ∂L
∂vi
∈ C∞(TQ) symbolize the components of the function and we indeed obtain

again that pi
(
L (q, v)

)
= ∂L

∂vi
(q, v). As a base point preserving smooth map from TQ to T ∗Q,

the Legendre transform gives rise to a submanifold NL of the total extended tangent bundle
TQ = TQ⊕ T ∗Q, defined as:

NL =
{
(q, v, p) | (q, p) = L (q, v)

}
⊂ TQ

This submanifold is the disjoint union over the points q ∈ Q of the graphs of the smooth maps
L (q,−) : TQ −! T ∗Q, i.e. NL ∩ TqQ = Gr

(
L (q,−)

)
. Seeing the Legendre transform from

this geometrical viewpoint allows to retrieve the usual definition:

Lemma 5.6. The submanifold NL is the set of points (q, v, p) ∈ TQ such that v is a critical
point of the smooth function x 7−! 〈p, x〉q − L(q, x).

Proof. Let (q, v, p) ∈ TQ = TQ ⊕ T ∗Q, then pi
(
L (q, v)

)
= ∂L

∂vi
(q, v) if and only if v satisfies

∂(〈p,v〉q−L(q,v))
∂vi

= 0, i.e. if and only if v is a critical point of x 7−! 〈p, x〉q − L(q, x).
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By Lemma 5.6, the restriction of the function Hc to NL does not depend on v because for
any given choice of pair (q, p), any critical point v of x 7! 〈p, x〉q−L(q, x) gives the same critical
value (because the supremum is unique). So, in particular:

∂Hc

∂vi

∣∣∣∣
NL

= 0

This equation implies that the canonical hamiltonian induces a smooth function defined on the
image of the Legendre transform Im(L ) ⊂ T ∗Q:

H0(q, p) = Hc(q, v, p) for any triple (q, v, p) ∈ NL

This latter equation can be summarized as:

H0 = Hc

∣∣
NL

(5.17)

The notation is not innocent since Lemma 5.6 tells us that that H0 is precisely the smooth
function H0 defined in Equation (5.16). The Hamiltonian H0 is not defined on the entirety of
the cotangent bundle, except if the function L is invertible. In that latter case:

H0(q, p) =
〈
p,L −1(q, p)

〉
q
− L

(
q,L −1(q, p)

)
When it is not invertible, it is still possible to have an explicit expression for H0 in terms of q and
p but this requires to introduce local sections of the Legendre transform, see Equation (5.21).
The condition for L to be invertible goes down to the non-vanishing of the determinant of its
Jacobian matrix J (q, v) =

(∂Li
∂vj

)
i,j

. But this amounts to the non-vanishing of the determinant
of the Hessian of the Lagrangian, for:

∂Li

∂vj
= ∂2L

∂vi∂vj

In other words, J = H and, in light of the discussion following Equation (5.7), one concludes
that when the Lagrangian admits local symmetries, the Legendre transform is not invertible.
Example 5.7. Let us use Example 1 of [Rothe and Rothe, 2010], p. 8. The configuration manifold
is Q = R2, and the Lagrangian is:

L(q, v) = 1
2v

2
x + vxy + 1

2(x− y)2

where x, y are the standard coordinates on R2 and vx, vy are those on the tangent space. Fix
q = (x, y) ∈ Q, then the Hessian of L is computed using Equation (5.4):

Hij(q, v) =
(

1 0
0 0

)
This is obviously a singular matrix, which means that L is a singular Lagrangian, i.e. it admits
an infinitesimal symmetry, given by the following transformations:

δx = εx(t) and δy = εy(t) such that εy = εx − ε̇x

Since the Hessian is singular, we expect by the above discussion that the Legendre transform is
not bijective. Indeed, applying the definition of the Legendre transform, one has:

Lx(q, v) = L (q, v)(∂x) = vx + y and Ly(q, v) = L (q, v)(∂y) = 0

Then, we obtain that:

Im(L ) =
{
(q, p) such that there exists v ∈ TqQ satisfying p = (vx + y)dx

}
⊂ T ∗Q

One can straightforwardly check that the Jacobian of the Legendre transform coincides with the
Hessian of the Lagrangian.
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Example 5.8. Let us use Example 2 of [Rothe and Rothe, 2010], p. 8, first studied in [Henneaux
and Teitelboim, 1994]. The configuration space is Q = R3, and the Lagrangian is:

L(q, v) = 1
2(vy − ex)2 + 1

2(vz − y)2

At a given point q = (x, y, z), the Hessian matrix is given by:

Hij(q, v) =

0 0 0
0 1 0
0 0 1


The matrix is singular, so is the Lagrangian, which means that it admits a local symmetry.
Indeed, it is given by:

δx = e−x
d2

dt2
α(t), δy = d

dt
α(t) and δz = α(t)

for any smooth function of the time α(t). The Legendre transform should be singular as well.
It is given by:

Lx(q, v) = 0, Ly(q, v) = vy − ex and Lz(q, v) = vz − y

Then, we obtain that:

Im(L ) =
{
(q, p) such that there exists v ∈ TqQ satisfying p = (vy−ex)dy+(vz−y)dz

}
⊂ T ∗Q

One can straightforwardly check that the Jacobian of the Legendre transform coincides with the
Hessian of the Lagrangian.

5.2 Hamiltonian under constraints

Let us now dwelve into the case where L is possibly not invertible, by assuming however that
the rank of the smooth function L (q,−) : TqQ −! T ∗qQ is constant over Q, and we denote this
rank RL , for some 1 ≤ RL ≤ n. Let fix q ∈ Q and let U be a trivializing chart of TQ (and
hence of T ∗Q as well). Let v ∈ TqQ, then there exists a reindexing of the coordinates qi (and
thus of the coordinates vi and pi) such that:

1. the first RL coordinates are labelled with a latin index from the beginning of the alphabet
1 ≤ a ≤ RL , while the last n− RL coordinates are labelled with a greek index from the
beginning of the alphabet RL + 1 ≤ α ≤ n, and

2. the minor
(∂La

∂vb

)
1≤a,b≤RL

of the Jacobian matrix J is non-singular at (q, v)19.

In other words, the RL functions La ∈ C∞(TQ|U ) are functionally independent in some open
neighborhood V ⊂ TQ of the point (q, v). Then, the remaining n − RL functions Lα are
functionally dependent on the former: for each RL + 1 ≤ α ≤ n and each base point q, there
exists a functional relationship which smoothly depend on q:

Lα = ψα(q,La) (5.18)

where we understand that each functional ψα depends on potentially all the La. This argument
is an adaptation of the proof of the Rank theorem in [Lee, 2003], see in particular Equation

19Since the matrix J = H is symmetric, it is always possible to isolate such a minor.
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(7.9). Notice that the relabelling of coordinates utterly depends on the chosen tangent vector
(q, v) ∈ TqQ for the functions Li may vary a lot over TQ|U . Hence, the functional dependency
(5.18) is in theory only defined locally, in the neighborhood of a given tangent vector, while
at another point, we may have another reindexing and correspondingly another dependency.
Moreover, the choice of a different minor in J = H gives different independent coordinates
and thus different functions ψ. However, the number of independent functions would always
stay equal to RL .

For every q ∈ Q let us set Γq = Im
(
L (q,−)

)
and Γ = Im

(
L
)

=
⋃
q∈Q Γq; it is a subset of

T ∗Q and we will now study its property. Any covector (q, p) lying in the subspace Γq satisfies:

pi = Li = ∂L

∂vi
(q, v) (5.19)

for some (q, v) ∈ TqQ and a local choice of coordinates qi, vi, pi. Fix a covector (q̃, p̃) ∈ Γ and a
preimage (q̃, ṽ) through the Legendre transform. Then from the discussion leading to Equation
(5.18), there exists an open neighborhood V ⊂ TQ of (q̃, ṽ) and a reindexing of the coordinates
qi (and thus of the coordinates pi as well) in two sets such that the coordinates of any covector
(q, p) ∈ L (V ) satisfy:

pa = La and pα = ψα(q, pa) (5.20)

This is a mere rewriting of Equation (5.19), where we have replaced the terms Li by pi since
they coincide on Γ. Moreover, we have used Equation (5.18) to pα in terms of the pa. This latter
set of equations is a priori only valid on L (V ). However, since on the open set V the functions
La are independent and coincide with the pa on L (V ), one can see the ψα as functions of paand
locally extend them outside L (V ) by replacing La by pa in their argument. See Equation (7.9)
in the proof of the Rank theorem in [Lee, 2003] to understand the dependency of ψα in terms
of independent functions. Let W be such a small neighborhood of (q̃, p̃) on which we formally
extend these functions ψα ∈ C∞(W ) (it needs not contain the whole of L (V )). Then one can
define the following set of smooth functions on W :

φα(q, p) := pα − ψα(q, pa) for every RL + 1 ≤ α ≤ n

called primary constraints. In particular these functions only depend on the generalized co-
ordinates and on (part of) the conjugate momenta. The adjective primary denotes a further
distinction between additional constraints that we will discuss next. The functions φα actually
emerge naturally in the proof of the Rank theorem in [Lee, 2003]. Notice that the choice of a
different minor in J = H gives different independent coordinates and thus different primary
constraints.
Remark 5.9. For reasons that will soon become clear, the triple (W,pa, φα) is called a constrained
chart adapted to (q̃, p̃) (often we will omit to mention the dependency of these data on the original
choice of point (q̃, p̃)). Since the definition of such charts depend on the choice of preimage of
(q̃, p̃), every point of Γ might admit as many adapted constrained charts as it possesses preimages.

The choice of coordinates on Q has been made precisely so that the functions La form a
set of independent functions on V and that they span the same subspace of W as the first pa
coordinates (see the rank theorem [Lee, 2003]). Moreover, since each primary constraint φα
involves linearly a different pα, they form another independent set of functions, and since they
altogether form an independent set of functions on W , it turns the constrained chart (W,pa, φα)
into a coordinate chart of T ∗Q. Then, since the vanishing of the primary constraints is equivalent
to the second set of equations (5.20), we conclude that the primary constraint characterize the set
W∩L (V ). Indeed, since the primary constraint are functionally independent onW – we say that
they are irreducible – we conclude that the smooth map Φ = (φ1, . . . , φn−RL

) : W −! Rn−RL
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has constant rank. Then, since Φ is surjective (one is free to chose any value for the pα, whatever
value for pa has been chosen), it implies that it is a submersion (Theorem 7.14 in [Lee, 2003]).
Being the zero level set of a submersion, the set W ∩L (V ) is a closed embedded submanifold
of W ⊂ T ∗Q (Corollary 8.9 in [Lee, 2003]). However, it does not imply that W ∩ Γ is an
embedded submanifold of W , for Γ might be an immersed submanifold of T ∗Q and have self
intersection corresponding to the image through L of subset of TQ located far from V . More
precisely the primary constraints depend primarily on the choice of preimage of (q̃, p̃). Although
the matrix J (q̃, v) has rank RL for every v ∈ Tq̃M , another choice of preimage (q̃, ṽ) and of
open set V ′ ⊂ TQ|U may imply another form of dependency from the components Li. That
is to say: another reindexing of the coordinates qi, as well as another dependency between
the corresponding Lα, leading to a redifinition of the ψα and hence of the primary constraints
defined on another neighborhood W ′ of (q̃, p̃). The vanishing of these new constraints would this
turn make the set W ′∩L (V ′) – not necessarily coinciding with W ∩L (V ) – a closed embedded
submanifold. That would certainly not prevent Γ to be an immersed submanifold, with possible
intersections. To avoid such annoying cases, physicists usually assume that the functions φα
satisfy a so-called regularity condition (see alternative formulations on p. 7 of [Henneaux and
Teitelboim, 1994]):

Scholie 5.10. Regularity condition on primary constraints. For every covector (q̃, p̃) ∈ Γ,
and any constrained chart (W,pa, φα) adapted to (q̃, p̃), the subset W ∩Γ is assumed to coincide
with the zero level set of the primary constraints φα.

By Lemma 3.40, the regularity condition presented in Scholie 5.10 implies that Γ is an
embedded submanifold of T ∗Q. For every point (q̃, p̃) ∈ Γ, and any constrained chart (W,pa, φα),
the coordinates (pa, φα) form a set of local coordinates on W adapted to Γ. More precisely, the
coordinates (qi, pa) form a local coordinate chart for Γ (because every point on W ∩ Γ can be
retrieved from these data in a unique and smooth way using the smooth functions ψα), while
the constraints φα are coordinate transverse to Γ.

Definition 5.11. We call the embedded submanifold Γ = Im(L ) (also denoted Γ(1)) the primary
constraint surface.

The fact that Γ is an embedded submanifold of T ∗Q implies in particular that the Legendre
transform L is a submersion. It then admits local sections: for any point (q̃, p̃) ∈ Γ and
adapted constrained chart (W,pa, φα), there exists a smooth injective map ν : Γ −! TQ such
that L (q, ν(q, p)) = (q, p) for any (q, p) ∈ Γ20. This map does actually depend only on RL

momenta, that we can chose to be the pa, i.e. ν(q, p) = ν(qi, pa). This allows to find an explicit
expression of H0 in terms of q and p only, and make sense of Equation (5.17) even when the
Legendre transform is not invertible. The submanifold ν(Γ) ⊕ Γ ⊂ TQ is by construction a
submanifold of NL . Since Hc does not depends on v over NL (and hence, of the section ν),
we deduce that the ‘restriction’ of the canonical hamiltonian Hc to ν(Γ) ⊕ Γ gives an explicit
formulation of the smooth function H0, as defined sloppily in (5.17). In local coordinates in an
adapted constrained chart (W,pa, φα), we indeed have:

H0(q, pa) = paν
a(q, pa) + ψα(q, pa)να(q, pa)− L

(
q, ν(q, pa)

)
(5.21)

The hamiltonian does only depend on the first RL coordinates because ν does, but this implies
in turn that H0 is defined only on Γ = Im(L ).

20To define a section of L one needs only Γ to be a weakly embedded submanifold of T ∗Q, because in that
case one can show using Definition 3.51 that the Legendre transform L defines a smooth map onto Γ, which is a
necessary condition for L to be a submersion. Being an immersed submanifold would certainly not be sufficient.
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Figure 20: This is a situation we do not want: that different choices of preimages of (q̃, p̃) have
neighborhoods V, V ′ whose image through the Legendre transform L do not coincide in the
vicinity of (q̃, p̃). That is why we ask for the regularity condition, so that the primary constraint
surface is an embedded submanifold.

TQ

Γ ⊕ R

T ∗Q

ν
Hc

H0

Notice that we replaced the n − RL conjugate momenta pα by ψα because they are thus
defined on the constraint surface Γ. Hence the hamiltonian H0 does not depend on the n−RL

conjugate momenta pα. Moreover, because of Equation (5.9), H0 does not depend on the choice
of section ν. A careful discussion about this independence can be found in Proposition 1 (section
3.3) of [Rothe and Rothe, 2010]. Moreover, although the local expression of H0 depends on the
original choice of splitting between independent momenta pa and dependent momenta pα on Γ
(and then ultimately on the choice of invertible minor of the matrix J = H ), any other choice
would give a function H ′0 that would coincide with H0 on Γ. Some physicists emphasize that this
discussion is purely local (see e.g. page 24 in [Gitman and Tyutin, 1990]) while other assume
that local coordinates are actually global coordinates (i.e. they work on a vector space), so that
Equation (5.21) is valid globally (see e.g. page 10 in [Henneaux and Teitelboim, 1994]). Under
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this assumption, the hamiltonian H0 is a smooth function on the primary constraint surface,
i.e. H0 ∈ C∞(Γ).

Extending H0 out of the constraint surface is actually necessary to proceed to Hamiltonian
treatment of constrained systems. Indeed, there is no Poisson bracket on Γ so one cannot
formally write Hamilton’s equations with H0 in their classical form. One would need to replace
H0 by a smooth function on the phase space, so that Hamiltonian treatment of the system could
be done. Moreover it would solve the practical issue raised by the fact that Equation (5.21) is
only defined locally. Thus, a smooth function H ∈ C∞(T ∗Q) which coincides with H0 on Γ, i.e.
such that H|Γ = H0, would then be a global smooth extension of H0 to the whole of phase space,
and would be a potential candidate to perform Hamiltonian analysis on T ∗Q. If Γ is not closed,
it may not exist (see Lemma 4.69) but as physicists, we will assume such global extension exists
(this is the case in particular if we assume that the primary constraints are finite and defined
globally). The choice of the map H is physically not relevant because physics only occurs on
the constraint surface. It turns out however that the primary constraints should be explicitly
taken into account so that one prefers to use the following function:

Definition 5.12. Assume that there is a finite number of globally defined constraints φα defining
a closed embedded submanifold Γ ⊂ T ∗Q, and let uα be yet unspecified smooth functions on T ∗Q
(that physicists sometimes identify with velocities). Let H be a smooth function which coincides
with H0 on the primary constraint surface Γ. Then we define the total Hamiltonian to be the
smooth function:

HT = H + uαφα (5.22)

Remark 5.13. By definition, HT |Γ = H0, but we will see that the presence of the constraints are
necessary for the consistency of the dynamics. For more informations on this function see e.g.
the Corollary on page 31 of [Rothe and Rothe, 2010], or a similar but less general discussion
on page 16 of [Dirac, 1964], or a more obscure but quite interesting approach in section 2.1
of [Gitman and Tyutin, 1990].
Example 5.14. Using the Lagrangian of Example 5.7, one observes that the Legendre transform
has rank 1 so the dimension of Γ = Im(L ) is 3 (because Q has dimension 2, to which we
add 1 for the rank of L ). The only dependent function Lα is Ly and it vanishes. Thus, the
only primary constraint is φ = py, and the primary constraint surface is characterized by the
vanishing of this constraint, i.e. Γ = p−1

y (0). The canonical Hamiltonian H is given by:

Hc(q, v, p) = pxvx + pyvy −
(1

2v
2
x + vxy + 1

2(x− y)2
)

On the constraint surface Γ = Im(L ), we know that py = Ly = 0 and px = Lx = vx + y. By
construction, these relations are also valid on NL . Thus, evaluating Hc on the latter gives:

H0(q, p) = px(px − y)−
(1

2(px − y)2 + (px − y)y + 1
2(x− y)2

)
= 1

2p
2
x −

1
2x

2 + xy− ypx (5.23)

Alternatively, one would obtain this expression plugging in Equation (5.21) the following section
of Γ to TQ is νx = px − y and νy = 0. While H0 is supposedly defined only over Γ, one can
straightforwardly extend it to the whole phase space T ∗R2 as a function H, and then define the
total hamiltonian as:

HT = H + upy (5.24)

where u ∈ C∞(T ∗R2) is still an unfixed smooth function acting as a parameter.
Example 5.15. Using the Lagrangian of Example 5.8, one observes that the Legendre transform
has rank 2, so that the constraint surface Γ is a 5-dimensional submanifold of T ∗R3. The only
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primary constraint is px = 0 so that Γ = p−1
x (0). On this submanifold, we have moreover

py = Ly = vy − ex and pz = Lz = vz − y. These identities – together with px = 0 – are also
valid on the submanifold NL ⊂ TQ. Thus, evaluating the canonical Hamiltonian Hc on NL

gives:

H0 = py(py + ex) + pz(pz + y)−
(1

2p
2
y + 1

2p
2
z

)
= 1

2p
2
y + 1

2p
2
z + pye

x + ypz (5.25)

While this function is supposedly defined only over Γ, one can straightforwardly extend it to
the whole phase space T ∗R2 as a function H, so that the total Hamiltonian is:

HT = H + upx

where u ∈ C∞(T ∗R2) is still an unfixed smooth function acting as a parameter.

To justify the use of HT , let us differentiate H0 with respect to the canonical variables q and
p. A detailed discussion about this can be found in Proposition 2 (section 3.3) of [Rothe and
Rothe, 2010]. First, deriving Equation (5.21) with respect to pa and noticing that pi = ∂L

∂vi
on

Γ, one obtains that the terms pa ∂ν
a

∂pi
+ ψα

∂να

∂pi
cancels out with ∂L

∂vj
∂νj

∂pi
so that we obtain:

∂H0
∂pa

= νa + ∂ψα
∂pa

να (5.26)

We see that there is no contribution of the derivatives of ν with respect to pa. Notice however
that this observation is valid only on the primary constraint surface Γ, and thus so is Equation
(5.26). By definition of φα, Equation (5.26) can be straightforwardly rewritten:

∂H0
∂pa

= νa − ∂φα
∂pa

να (5.27)

Unfortunately the set of Equations (5.27) does not include the derivative with respect to the pα
since H0 does not depend on them. However, relying on this fact and that ∂φβ

∂pα
= δαβ on Γ, one

may add a set of additional tautological equations:

∂H0
∂pα

= να − ∂φβ
∂pα

νβ (5.28)

Hence we notice that a priori Equations (5.27) and (5.28) do not involve time whatsoever.
Next, differentiating Equation (5.21) with respect to qi and noticing that pi = ∂L

∂vi
on Γ, one

obtains that the terms pa ∂ν
a

∂qi
+ ψα

∂να

∂qi
cancels out with ∂L

∂vj
∂νj

∂qi
, so that we obtain:

∂H0
∂qi

= −∂φα
∂qi

να − ∂L

∂qi
(5.29)

Notice that we had replaced ψα by −φα since by construction their derivative with respect to
qi coincide. Now, assume that we restrict our study to a smooth curve γ : R −! M so that
q = γ(t) and the vector field corresponding to the velocity at time t is tangent to the curve at
every time t and lives in the image of the section ν, i.e. q̇(t) = γ̇(t) = ν(q(t), p(t)). The image
through L of the path t 7−!

(
q(t), q̇(t)

)
defines a path in the phase space t 7−! (q(t), p(t)).

Then, one may add d
dt

(
∂L
∂vi

)
to Equation (5.29) and substract ṗi (since they compensate one

another on Γ by Equation (5.10)), to obtain:

∂H0
∂qi

= −ṗi −
∂φα
∂qi

να(t) + Ei
(
q(t), ν(t), ν̇(t)

)
(5.30)
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where Ei
(
q(t), ν(t), ν̇(t)

)
is the smooth function defined in Formula (5.5), which vanishes pre-

cisely when the path is a solution of the Euler-Lagrange equations (5.6). Now, assume that the
path γ is a solution of the Euler-Lagrange equations (5.6), and that we have ν(t) = ν(q(t), p(t)) =
γ̇(t) = q̇(t). Then, the image of such a path through the Legendre transform L defines a path
t −! (q(t), p(t)) staying in the primary constraint surface Γ, and whose time derivative satisfy
the infamous Hamilton equations of motion satisfied by qi and pi:

q̇i = ∂H0
∂pi

+ ∂φα
∂pi

να (5.31)

ṗi = −∂H0
∂qi
− ∂φα
∂qi

να (5.32)

We obtained these equations by gathering Equations (5.27), (5.28) with Equations (5.30) and
reordering the terms. Notice that, due to the constraints, they do not precisely respect the usual
form of Hamilton’s equations of motions. We will soon see how one can recast these in this form.

Recall that, although the first Hamilton equations of motion (5.31) are mere consequences
of the Legendre transform (and are valid without assuming that ν is of the form γ̇(t)), the
second ones (5.32) are satisfied if the Euler-Lagrange equations (5.6) are satisfied (this is a
consequence, and not an equivalence). Moreover, in both case we see that, for points of T ∗Q
to be considered as potential candidates for physical states of the system – or equivalently, for
paths to be considered physical trajectories in the phase space – they at least need to live on
Γ, where the Hamiltonian is defined. It does not mean however that every point of the primary
constraint surface Γ is an admissible physical state – and we will see that in general they do
not. Finally, notice that Equations (5.31) and (5.32) can be recasted in a system of Equations
which ressembles more Hamilton equations of motions, at the cost of enforcing the constraint
equations: 

q̇i = ∂
∂pi

(
H0 + φαν

α
)

ṗi = − ∂
∂qi

(
H0 + φαν

α
)

φα = 0
where here φα is evaluated on the smooth path (q(t), p(t)). This set of equations is consistent
with the set of equations (5.13): indeed, if one adds φανα to Equation (5.21), one obtains
Equation (5.8) for v = ν(q, p). Then Equations ∂Hc

∂vi
= 0 imply that Hc(q, ν(q, p), p) does not

depend on the section ν, or equivalently, that we are working on NL , which is alternatively said
by imposing φα = 0 and pa = La.

Unfortunately, since H0 is a priori not defined outside the primary constraint surface Γ,
we cannot write the above set of equations with the help of the Poisson bracket. For this a
function defined all over the phase space would be necessary. However, the presence of the
terms H0 + φαν

α reminds us of the discussion surrounding Equation (5.22) where we said that
replacing H0 by any smooth function H ∈ C∞(T ∗Q) such that H|Γ = H0 would lead to the same
physics and, more importantly, would open the use of the Poisson bracket on the phase space.
Indeed, the corollary of Proposition 3 in [Rothe and Rothe, 2010] shows that for any smooth
function H ∈ C∞(T ∗Q) such that H|Γ = H0, there exists smooth functions uα ∈ C∞(T ∗Q) such
that the Hamiltonian equations of motions can be recasted as:

q̇i = ∂
∂pi

(
H + φαu

α
)

ṗi = − ∂
∂qi

(
H + φαu

α
)

φα = 0

The justification comes from the fact that, since H coincides with H0 on the constraint surface
Γ, it may be written (at least locally) as H0 +φαλ

α (see the proof of Proposition 5.17), and the
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smooth functions λα are so that on the constraint surface, one has λα = ∂H
∂pα

. It then implies
that uα = να − λα. The latter hamiltonian equations of motions are quite convenient because
they are defined outside of Γ, if not on the whole phase space (when the constraints are so
defined).

The fact that the primary constraints appear explicitly in the above set of equations also
justifies that the correct Hamiltonian is not H, but the total Hamiltonian HT = H + uαφα,
as postulated in Equation (5.22). Indeed, denoting { . , . } the canonical Poisson bracket on the
cotangent bundle, associated to the canonical symplectic form on T ∗Q, one can then recast
Hamilton’s equations of motions as:

q̇i = +∂HT
∂pi

= {qi, HT }
ṗi = −∂HT

∂qi
= {pi, HT }

φα = 0
(5.33)

These equations are a consequence of the extended Euler-Lagrange equations (5.13) and thus,
of the original ones as well. Thus, although HT |Γ = H0, the presence of the primary constraints
in its definition are of utter importance. We will see later that we can find a set of equations
extending (5.33) which is equivalent to the Euler-Lagrange equations. The discussion appearing
in section 2.1 of [Gitman and Tyutin, 1990] is quite interesting althoug a bit obscure, because
it justifies that although the splitting into independent conjugate momenta pa and dependent
ones pα on Γ is not unique (one could have chosen another set of independent coordinates pa),
the hamiltonian H0 is uniquely defined and the total hamiltonian forms a class of function
‘equivalent’ to that of H0. See also [Rothe and Rothe, 2010] for additional food for thoughts.

5.3 The Bergmann-Dirac algorithm

The importance of the primary constraint surface in the Hamiltonian formalism of singular
Lagrangian theories can be best shown after introducing some adapted notation:

Definition 5.16. We say that two functions f, g ∈ C∞(T ∗Q) are weakly equivalent if they
coincide on Γ, and we note:

f ≈ g

For clarity, we say that they are strongly equivalent if they coincide on the whole of phase space
T ∗Q.

Being weakly equivalent is an equivalence relation, and this notion will be thoroughly used in
the text. Since Γ is an embedded submanifold of Q defined as a level set of a set of smooth
functions, it turns out that any smooth function vanishing on Γ is functionally locally dependent
on the primary constraints:

Proposition 5.17. Let f ∈ C∞(T ∗Q) be a smooth function that is weakly equivalent to the zero
function: f ≈ 0. Then, for every point (q̃, p̃) ∈ Γ and any choice of adapted constrained chart
(W,pa, φα) there exist fα ∈ C∞(T ∗Q) such that f =

∑
α fαφα on W .

Proof. The proof is given in Appendix of Chapter 1 of [Henneaux and Teitelboim, 1994], or
alternatively in section 3.3 of [Rothe and Rothe, 2010], where it was adopted from [Sudarshan
and Mukunda, 2015].

Remark 5.18. Notice that the statement of Proposition 5.17 is a local one, while in the references
cited for the proof, the statement is a global one. The discrepancy comes from the fact that in
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physics textbooks, the constraints are defined globally over the phase space TM . This is an extra
assumption that is not a consequence of the Legendre transform. On the contrary, we have shown
that using the Rank theorem, only local statement can be made on the form of the constraints.
Then, while physicists usually think of constraints as a finite set of globally defined constraints,
mathematicians should definitely think of them as a locally free and finitely generated subsheaf
of the sheaf of smooth functions C∞(M). One may even weaken this assumption by asking it to
be only locally finitely generated.

Using the notation of Definition 5.16, one can recast equations (5.33) as:

q̇i ≈ {qi, HT } (5.34)
ṗi ≈ {pi, HT } (5.35)

The Poisson bracket has to be evaluated on Γ after it has been computed – i.e. we compute
{qi, H0} but {qi, HT } and then we apply φα = 0. The total Hamiltonian thus defines the flow of
time when we restrict ourselves to the primary constraint surface Γ. Equations (5.34) and (5.35)
imply in turn that the total Hamiltonian computes the dynamics of any smooth function which
is evaluated on any physical path sitting in Γ. More precisely, let f ∈ C∞(T ∗Q) be any smooth
function, and let (q̃, p̃) be any point of Γ. Then for small times t, and under the assumption
that the undefined parameters uα are fixed, there is a unique path t 7! (q(t), p(t)) such that:{

q(0) = q̃

p(0) = p̃
and

{
q̇i(0) = {qi, HT }(q̃, p̃)
ṗi(0) = {pi, HT }(q̃, p̃)

(5.36)

which is contained in Γ, i.e. such that φα(q(t), p(t)) = 0 for all times t. We then define the
following real numbers:

ḟ(q(t), p(t)) = ∂f

∂qi
(q(t), p(t))q̇i(t) + ∂f

∂pi
(q(t), p(t))ṗi(t)

By unicity of the Cauchy problem the value of ḟ only depends on the point, and not on the
path. The right-hand side is not only a smooth function of the time t, but also of the base point
(q̃, p̃). Then, we can define a smooth assignment:

ḟ : Γ −−−−−! R (5.37)

(q̃, p̃) 7−−−−−! ∂f

∂qi
(q̃, p̃)q̇i(0) + ∂f

∂pi
(q̃, p̃)ṗi(0)

where q̇i(0) and ṗi(0) are uniquely defined by Conditions (5.36). Since the primary constraint
surface is an embedded submanifold of T ∗Q, the assignment (5.37) admits at least locally a
smooth extension, and two such extensions coincide on Γ. Then we have the following important
result about dynamics:

Lemma 5.19. Let f ∈ C∞(T ∗Q) be any smooth function, and let ḟ be any smooth extension of
the associated smooth assignment (5.37); then:

ḟ ≈ {f,HT }

Since every physical solution of the Hamilton equations (5.33) should be contained in the
contraint surface Γ, it means that if one evaluates the primary constraints φα on any such
physical path t 7! (q(t), p(t)), one has φ̇α(q(t), p(t)) = 0 because φα(q(t), p(t)) = 0 for all t.
Using Lemma 5.19, this necessary condition reads:

{φα, HT } ≈ 0 (5.38)
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We call this equation the persistence of the primary constraints φα. Developing the total hamil-
tonian, computing the bracket, and eventually evaluating the result on Γ gives:

{φα, H}+ uβ{φα, φβ} ≈ 0 (5.39)

Recall that H is any smooth function on T ∗Q that coincides with H0 on the constraint surface:
H|Γ = H0. Then there are several possible issues for each index α = RL + 1, . . . , n:

1. either the equation reduces to 0 = 0 in that case nothing new is known;

2. either the Poisson bracket of φα with some of the primary constraints does not vanish
weakly and then the equation involves the u’s and thus impose a relationship between
some of them;

3. or the Poisson bracket of φα with all the primary constraints does vanish weakly, i.e.
∀β {φα, φβ} ≈ 0 for this particular α, then the equation reduces to {φα, H} ≈ 0. This
equation is independent of the primary constraints, otherwise it would be of the first kind.
This defines a new second-stage constraint21 φ

(2)
α = {φα, H} ∈ C∞(T ∗Q).

Remark 5.20. The freedom of choice in the parameters uα is thus utterly tied to the existence
of constraints whose Poisson bracket with other constraints vanishes on Γ. As we will see later
these are called first-class constraints and are the markers of gauge symmetries (i.e. arbitrary
transformations of the coordinates through time), through what is called the Dirac conjecture.

The vanishing of this second-stage constraint φ(2)
α (for this particular α) on the smooth path

t 7! (q(t), p(t)) is then interpreted as a necessary condition for the equations φ̇α ≈ 0 to be
satisfied. Notice that one cannot just replace the identities

φα(q(t), p(t)) = 0 for every t (5.40)

by the vanishing of the second-stage constraints (together with some initial condition φα(q(0), p(0)) =
0) because we originally used Equations (5.40) to define the second-stage constraints. From this,
we deduce that physical solutions of Hamilton equations (5.33) should in fact be contained in the
intersection of the contraint surface Γ and of the zero level set of all the second-stage constraints
φ

(2)
α (for every α for which they exist). Thus, let us define Γ(2) to be the subamnifold of T ∗Q

corresponding to the zero level set of the primary (equivalently, first-stage) and second-stage
constraints:

Γ(2) = Γ ∩
⋂
α

(
φ(2)
α

)−1(0)

This definition is consistent because if φ(2)
α = 0 – i.e. there is no second-stage constraint as-

sociated to φα – then
(
φ

(2)
α
)−1(0) = T ∗Q. Moreover, until the next step of the algorithm, the

weak equivalence sign is interpreted to be defined relatively to the submanifold Γ(2) defined by
all the constraints generated up to this point: all the primary (equivalently, first-stage) and
second-stage constraints, and not only the primary ones.

Thus, given that the vanishing of the second-stage constraints are necessary conditions for
Hamilton equations (5.33) to stand, we deduce that any solution of the Hamilton equations lives
in Γ(2). The persistence of the primary constraints being conditioned to the persistence of the
second-stage constraints, one then should necessarily have φ̇(2)

α (q(t), p(t)) = 0 for any physical
path t 7! (q(t), p(t)) (in addition to the condition that φα(q(t), p(t)) = 0 for any such path). In
other words, one needs to impose that φ̇(2)

α ≈ 0 (on Γ(2) then), which translates as:

{φ(2)
α , H}+ uβ{φ(2)

α , φβ} ≈ 0 (5.41)
21The terminology ”second-stage”, ”third-stage”, etc. is taken from [Gitman and Tyutin, 1990].
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This equation then falls into either one of the three kinds of the above cases (see text before
Remark 5.20). In particular, if Equations (5.41) are not trivial, they will either provide a new
relationship between the undefined parameters u’s, or a set of third-stage constraints φ(3)

α =
{φ(2)

α , H}. We impose the weak equivalence in Equation (5.41) relatively Γ(2) because there may
happen that the third-stage constraints could be redundant with the primary or second-stage
constraints. Putting the latter to zero would then enforce the former to be automatically zero
as well, and we could then avoid any redundancy.

Persistence of the second-stage constraints requires the third-stage constraints to vanish
over any physical path t 7! (q(t), p(t)). We then define Γ(3) to be the surface defined by
all the constraints found up to this point: primary (first-stage), second-stage, and third-stage
constraints:

Γ(3) = Γ(2) ∩
⋂
α

(
φ(3)
α

)−1(0)

Any physical path satisfying Hamilton equations (5.33) should then belong to this third-stage
constraint surface. As for the second step, until the next step of the algorithm, the weak
equivalence sign is now interpreted to be defined relatively to the submanifold Γ(2) defined by
all the constraints generated up to this point: all the primary, second-stage and third-stage
constraints. And then, the algorithm goes on with φ

(3)
α whose time derivative should vanish on

Γ(3) as a necessary condition for φ(2)
α and thus φα to stay invariant through time. The vanishing

of φ(3)
α translates as:

{φ(3)
α , H}+ uβ{φ(3)

α , φβ} ≈ 0

where the weak equivalence sign is now understood to be computed with respect to Γ(3). If these
equations are not trivial, we may find four-stage constraints, and then fifth-stage constraints
and so on, but the algorithm terminates because the dimension of the phase space T ∗Q is finite.
We end up, for each α = RL + 1, . . . , n, with a sequences of k-th stage constraints φ(k)

α (the
φ

(k)
α are considered to be smooth functions, at least on some local neighborhood W of a fixed

point (q̃, p̃) on Γ), and the sequence terminates, for each α, at some integer kα ≥ 1. In other
words, φ(kα)

α 6= 0 while φ(kα)
α = 0 (as smooth functions defined over W or T ∗Q). Then, for every

1 ≤ k ≤ kα − 1, one has:
φ(k+1)
α = {φ(k)

α , H}

See section 3.4 in [Rothe and Rothe, 2010] for more details on this iterative algorithm.
Example 5.21. We have seen in Example 5.14 that the HamiltonianH0 could be straightforwardly
extended to the whole phase space as a function H. Since there is only one primary constraint
φ = py, the second term in Equation (5.39) vanishes and persistence of the primary constraint
then reads:

{py, H} ≈ 0 (5.42)

The parameter u is thus left undetermined, and using Equation (5.23) one obtains that Equation
(5.42) is equivalent to:

x− px ≈ 0

This is a necessary condition so that φ̇ ≈ 0 for all times. Then it is promoted to a second-stage
constraint φ(2) = x− px. Persistence of this constraint does not give rise to any new constraint,
and the algorithm stops there.
Example 5.22. Let us proceed in the same way for Example 5.15. There was only one primary
constraint φ = px. Persistence of this constraint gives the following condition:

{px, H} ≈ 0
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where H is the straightforward extension of the function H0 defined in Equation (5.25). This
gives the following condition:

pye
x ≈ 0

which in turn implies that we have a second-stage constraint φ(2) = py (the dependence on x
does not appear because ex 6= 0). Persistence of this second stage constraint reads:

{py, H} ≈ 0

which in turn implies that pz ≈ 0. This necessary condition for the persistence of φ(2) – and
then of φ altogether – gives rise to the following third-stage constraint φ(3) = pz. Persistence of
this function does not provide any new constraint so the algorithm stops here.

All k-th stage constraints are called secondary constraints, in order to emphasize that they
come after imposing some condition on the primary constraints. The subset of T ∗Q consisting
(at least locally) of the zero level set of the set Ω of all the constraints (primary and secondary)
is called the (secondary) constraint surface and is denoted Σ:

Σ =
⋂
k≥1

Γ(k)

This surface is independent on the choice of primary (and then secondary) constraints that is
originally made (that was already implicit in the discussion following Remark 5.9). As for the
primary constraint surface Γ(1) = Γ, the secondary constraint surface Σ is assumed to satisfy a
regularity condition similar to that of Scholie 5.10.

Scholie 5.23. Regularity condition on secondary constraints. The secondary constraint
surface Σ is an embedded submanifold of T ∗Q.

Definition 5.16 and Lemma 5.19 then become modified so that they are now defined with
respect to the secondary constraint surface Σ, and not Γ anymore. From now on, we will then
use the notation ≈ of Definition 5.16 to indicate equivalence of function on the constraint surface
Σ. Any physical path – i.e. a solution of Hamilton equations (5.33) – should then be sitting
in Σ. This is a consequence of the fact that secondary constraints, which are hidden in the
persistence conditions of the primary constraints, are actually needed to draw an equivalence
with Euler-Lagrange equations:

Proposition 5.24. The Euler-Lagrange equations (5.6) are equivalent to the following set of
Hamilton equations: 

q̇i = {qi, HT }
ṗi = {pi, HT }
φ

(k)
α = 0 for all k ≥ 1 such that φ(k)

α exists

where we choose the notation
{
φα, φ

(2)
α , φ

(3)
α , . . . , φ

(k)
α , . . .

}
α,k

to denote the set of constraints,
both primary and secondary.

Proof. See page 29 of [Rothe and Rothe, 2010] and the subsequent section.

Remark 5.25. In particular it implies that the image through the Legendre transform of a solution
t 7! (q(t), q̇(t)) of the Euler-Lagrange equations sits in the secondary constraint surface Σ.

At this stage the primary and secondary constraints are certainly not all functionally inde-
pendent. Notice moreover that the difference between primary and secondary is not so clear
because the k-th stage secondary constraint φ(k+1)

α = {φ(k)
α , H} (when it exists) often involves
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primary constraints in its expression, which then vanish when evaluated over Γ. Moreover, even
the choice of primary constraint is not unique, since the choice of a minor in the Hessian matrix
of the Lagrangian determines the primary constraints. Another choice of minor would have lead
to another set of primary constraints φ′(1)

α = φ′α, equivalent to the original set of primary con-
straints φ(1)

α = φα through a linear transformation, because they determine the same primary
constraint surface Γ. The secondary constraints associated to the φ′α then would have been
weakly equivalent to the set of secondary constraints associated to the φα:

φ′(k)
α ≈

∑
l≥1

Λβ(l)αφ
(l)
β (5.43)

where summation over repeated indices is implicit and the Λ(l) are a family of matrices. Thus,
secondary constraints are often mixed with primary constraints. However, some author value
primary constraints as carrying noticeable information: see e.g. page 39 and page 72 of [Gitman
and Tyutin, 1990], or subsection 3.3.2 in [Rothe and Rothe, 2010]. In the latter reference, it
is postulated that the parameters uα appearing in the total Hamiltonian may be considered as
the projections of the velocities on the zero eigenspace of the Hessian of the Lagrangian. The
primary constraints in this context simply state that these velocities stay finite.
Example 5.26. Let us modify Example 5.7 so that its Lagrangian is obtained as a limit α −! 0
of the following (non-singular) Lagrangian:

L(q, v) = 1
2v

2
x + vxy + α

2 v
2
y + 1

2(x− y)2

As much as α 6= 0 the Hessian of L is non-singular:

Hij(q, v) =
(

1 0
0 α

)

The Legendre transform is then bijective and given by:

Lx(q, v) = L (q, v)(∂x) = vx + y and Ly(q, v) = L (q, v)(∂y) = αvy

In particular, the relationship between velocities and momenta is given by vx = px − y and
vy = py

α . Thus, evaluating the canonical Hamiltonian Hc on NL as in Example 5.14, gives H0:

H0(q, p;α) = px(px − y) + py
py
α
−
(1

2(px − y)2 + (px − y)y + 1
2αp

2
y + 1

2(x− y)2
)

= 1
2p

2
x + 1

2αp
2
y −

1
2x

2 + xy − ypx (5.44)

Let us rewrite the second term 1
2αp

2
y as 1

2αψ
2 where ψ = αvy, because this is how the

y-velocity and the y-momentum are related to one another via the Legendre transform. This
rewriting emphasizes that, although the denominator makes the fraction 1

2α diverge when α! 0,
at the same time the numerator ψ2 will converge to 0 twice quicker, making the overall term
to vanish. Then, we have H0(q, p;α) −!

α!0
H0(q, p), where H0(q, p) is the Hamiltonian defined in

Equation (5.23). One can recast Equation (5.44) as:

H0(q, p;α) = H0(q, p) + 1
2vypy

Under this form, one is reminded of the general form of the total Hamiltonian of Equation (5.24).
Then one shows that the parameter u is indeed related to the velocities (they may be interpreted
as coordinates on the preimage of px, as is explained on page 10 of [Henneaux and Teitelboim,
1994]) while the primary constraint emerge naturally from the formalism.
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5.4 First-class and second-class constraints, gauge transformations

Thus, the splitting of the set of constraints Ω into primary and secondary constraints is not
really relevant. A better distinction is that of first-class and second-class constraints, originally
proposed by Dirac and which has deep relationship with gauge transformations and the Dirac
conjecture.

Definition 5.27. A smooth function f ∈ C∞(T ∗Q) is said to be first-class if its Poisson bracket
with every constraint vanishes weakly on Σ. It is said second-class otherwise.

Definition 5.27 tells us that second-class functions satisfy the following non-triviality con-
dition: for any second-class function f there is a point x on the constraint surface Σ and a
constraint φα0 such that {f, φα0}(x) 6= 0. This implies that the bracket {f, φα0} is actually non
zero in a small neighborhood U ⊂ T ∗Q of x. A priori this is a local property because there
is no reason preventing the brackets {f, φα} to be weakly equivalent to 0 outside this neigh-
borhood, i.e. they totally could vanish everywhere else on Σ ∩ (T ∗Q\U). However as is usual
in Bergmann-Dirac formalism, physicists often consider that such property is global, i.e. that
second-class functions will satisfy the non-triviality condition at every point of Σ (in fact at
every point of the second-class constraint manifold Σ0, see subsection 5.5). On the other hand,
although first-class functions need not be vanishing on the constraint surface Σ, their Poisson
bracket with any constraint φα is strongly equivalent to a linear combination of the constraints
(see Proposition 5.17): {f, φα} =

∑
β Fαβφβ. This observation straightforwardly implies the

following nice property:

Proposition 5.28. The Poisson bracket of two first-class functions is first class.

Proof. Let f, g ∈ C∞(T ∗Q) be first-class functions, so we have:

{f, φα} =
∑
β

Fαβφβ and {g, φα} =
∑
β

Gαβφβ

To evaluate if the Poisson bracket of f and g is first-class we compute:{
{f, g}, φα

}
=
{
{f, φα}, g

}
+
{
f, {g, φα}

}
= {Fαβφβ, g}+ {f,Gαβφβ}
= Fαβ{φβ, g}+ {Fαβ, g}φβ +Gαβ{f, φβ}+ {f,Gαβ}φβ

which identically vanish on Σ because on the one hand φα ≈ 0 and on the other hand the
functions f and g are first-class.

Example 5.29. If one considers that the weak equivalence is now defined with respect to the
secondary constraint surface – as it should be, the total Hamiltonian HT is a first class function.
Indeed, it satisfies by construction, the persistence equation {φα, HT } ≈ 0 is satisfied for both
primary and secondary constraints.

The characterization made in Definition 5.27 enables us to divide the set of constraints Ω
into first-class and second-class constraints. Usually first-class constraints are denoted ϕj and
second class constraints are denoted χl. The bracket of any first class constraint ϕj with any
other constraint vanishes on Σ, while the remaining constraints are second class. As emphasized
earlier, physicists often consider that second-class constraints are such that the non-triviality
condition is satisfied globally over Σ. In particular, a second-class constraint can have a non-
weakly vanishing bracket only if the other argument is another second class constraint (for it
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the latter was a first class constraint the bracket would vanish on Σ). Notice however that
any there is some latitude in the choice of first-class and second-class constraint, since e.g.
one cannot make the difference between {χl, . } and {χl + ajlϕj , . }, when evaluated on the
constraint surface. Conversely, adding a linear combination of squares of second class constraint
to a first-class constraint defines another first class constraint: ϕj 7! ϕj + bklj χkχl, see section
1.3.1 in [Henneaux and Teitelboim, 1994]. Then, reinterpreting Proposition 5.28 in light of
these ambiguities, saying that the Poisson bracket of two first-class constraints is again a first-
class function – hence a first-class constraint – amounts to saying that it is linear in first class
constraints and square in second class. Moreover, the result of the Poisson brackets between
first class constraints with second class constraints must be linear in first-class constraints and
linear in second-class constraints.

Let D be the matrix made of the Poisson brackets of constraints
(
{φ(k)

α , φ
(l)
β }
)
. We assume

from now on that the rank of this matrix is (at least locally) constant on the constraint surface
Σ, and that is rank is r. The rank is necessary an even integer because D is a skew-symmetric
matrix. Then, at the cost of redefining the constraints via linear combinations, it is possible to
split the set of constraints into a set of r independent second-class constraints, the remaining
constraints being first-class. The way it is often done is to first define an independent set of
constraints generating Ω, and then use linear combinations of constraints as in Equation (5.43)
in order to obtain another set of independent constraints, for which the number of second-class
constraints is minimal. By construction, this set of constraints satisfies the property that no
linear combination of second-class constraints is first class.

Then, reorganize the lines and columns of the matrix D (in the basis defined from the new
set of constraints) to put the first class constraints first. By definition, a bracket involving a
first-class constraint vanishes weakly, so the line and the column associated to this constraint
should vanish on Σ. Then the algorithm results in a matrix of the form, when evaluated on Σ:(

0 0
0 C

)

where C is a square matrix such that Ckl = {χk, χl}, and whose determinant does not vanish.
Indeed, if it vanished, then there would be a linear combination of columns which would vanish,
implying in turn the existence of a linear combination of second-class constraints being a first-
class constraint, which is not possible given the assumptions. Then, we deduce that C is a
r × r matrix of maximal rang and thus, that this number r corresponds to the number of the
independent second-class constraints χk (see also Chapter 2 of [Dirac, 1964] for an explanation
of this process).

The role of first-class and second-class constraints has an important consequence on the
treatment of Hamilton’s equations of motion. The total Hamiltonian (5.22) contains primary
constraints, which are split into first-class and second-class constraints. Depending on this
characteristic, the persistence condition (5.38) then admits two totally different possibilities,
most visible on Equation (5.39):

1. if φα is second-class, then Equation (5.39) leads to a new condition on the parameters uβ;

2. if φα is first-class, then Equation (5.39) leads to a new (second-stage) constraint.

From this observation we conclude that the secondary constraints arise from the first-class pri-
mary constraints. More generally, assume that every secondary constraint has been found and
that the set of constraints has been split into independent first-class and second-class constraints,
where the latter set is the smallest possible. For this specific computation, we will label the
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primary constraint with an upper index (1), as the second-stage, third-stage, and k-stage con-
straints usually carry a (k) index. Then both primary and secondary constraints should satisfy
(by construction) the persistence equation (5.39) (where the ≈ sign is evaluated with respect to
the whole set of constraints). Then, by definition of first-class and second-class constraints, we
have:

{ϕi, H} ≈ 0 (5.45)

{χk, H}+ ul{χk, χ
(1)
l } ≈ 0 (5.46)

Since we assumed that the number of independent second-class constraints is minimal, the
matrix Cmn = {χm, χn} is invertible and one can then compute explicitly the parameters ul as
functions of the canonical variables:

ul = (C−1)kl{χk, H} (5.47)

where the sum is made over all k, and where l is a label associated to a primary second-class
constraint only. Notice that we have defined the parameters ul by a strong equation, rather than
as a weak equality. The classical equations of motion are insensitive to this, but it will turn out
to be relevant for defining the corresponding quantum theory. Moreover, under the assumption
that we have a minimal set of second-class constraints, the solution ul of Equation (5.46) are
unique for the following reason: indeed, the only freedom in the choice of ul would come from the
solutions of the homogeneous equation vl{χk, χ

(1)
l } ≈ 0, but if vl is such an arbitrary solution,

then it would mean that vlχ(1)
l is a first class constraint because it commutes with all second

class constraints, which is impossible given the original assumption. See subsection 3.5 in [Rothe
and Rothe, 2010] for additional informations and subsections 1.1.7 and 1.1.10 of [Henneaux and
Teitelboim, 1994] for a treatment of this problem form the other way around (one first solve
Equations (5.46) and then realize that the free parameters vl can be absorbed into the coefficients
associated with the primary first-class constraints).

Then, we see that the division between first-class and second-class constraints such that the
latter are minimal in number allow us to identify which ‘velocities’ uα can be fully determined.
We see on Equation (5.45) that those parameters associated to the primary first-class constraints
cannot be determined by Hamilton equations. They will remain undetermined so they are then
free functions of time and will play the role of gauge parameters of the system. On the contrary,
as discussed above the ‘velocities’ associated to the primary second-class constraints are fully
determined. This observation leads us to the following conclusion

Definition 5.30. Let H be the smooth function which coincides with H0 on the primary con-
straint surface Γ used into Definition 5.12, and let ul be the uniquely defined parameters as-
sociated to the primary second-class constraints χ(1)

l in Equation (5.47). Then we define the
first-class Hamiltonian as:

H ′ = H + ulχ
(1)
l

Contrary to the original definition of the total Hamiltonian, the first class hamiltonian provides
a splitting of HT into two first-class functions:

HT = H ′ + viϕ
(1)
i (5.48)

Authors often consider that it is permissible to add any linear combination of primary first-class
constraints to H ′ (this would correspond to a rewriting of the free parameters vi), but for clarity
we would not consider this option here. The main characteristic of the first-class Hamiltonian
is that it is first-class:
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Lemma 5.31. The first-class hamiltonian is a first-class function.

Proof. The so-called first-class hamiltonian is indeed first-class: for any constraint φα (be it
primary or secondary), we have:

{H ′, φα} = {HT , φα}+ {vi, φα}ϕ(1)
i − v

i{ϕ(1)
i , φα}

The first term vanishes on-shell – i.e. on the constraint surface Σ – by Example 5.29. The
second term is proportional to a constraint while the third term vanishes on Σ because ϕ(1)

i is
a first-class constraint. We see that the first-class hamiltonian is not uniquely defined because
any other choice of free parameters vi still gives a first-class function.

We will now study the relationship between first-class constraints and gauge transformations,
and what does the latter mean. Ideally, the physical state of a system at any time t should
be determined by a unique point (q(t), p(t)), if the path t 7! (q(t), p(t)) satisfies the Hamilton
equations of motion. However, it may well happen that at each time t, the state of the system can
be specified by various, equivalent points of the phase space. In other words, although the state
of the system at time t is uniquely defined once given a point (q(t), p(t)), the converse is not true,
i.e. there is more than one set of values of the canonical variables representing the same physical
state. Ideally, we would expect the equations of motions to fully determine the time evolution of
physical states. However, we have seen that some parameters in the total Hamiltonian – those
vi associated with the primary first-class constraints ϕ(1)

i – are still unspecified. This implies
that, given a physical state at time t1, determined by a point (q(t1), p(t1)), the solution of the
equations of motion corresponds to a path t 7! (q(t), p(t)) in phase space which depends on the
value of the afore mentioned free parameters vi, until a terminal state at time t2. Although
different such parameters induce different endpoints, we consider that a physical observable
shall not depend on such arbitrary variation – because they are arbitrary. In other words, any
ambiguity in the canonical variables at any time should be a physically irrelevant ambiguity.
We are then led to define the following more general notion:

Definition 5.32. A gauge theory is a physical theory in which the general solution to the equa-
tions of motion contain arbitrary functions of (space)-time. In that case an initial state gives rise
to different time evolutions, and we call gauge transformations the infinitesimal transformations
sending one such time evolution to another.

We will now explore in what sense the primary first-class constraints generate (at least part
of) the gauge transformations. Let f be a smooth function on T ∗Q and let us compute two
different time evolutions of f depending of two different sets of arbitrary parameters attached
to the primary first-class constraints. Let t2 = t1 + δt, then by Lemma 5.19 and Equation (5.48)
we have:

f(t2) = f(t1) + ḟ(t1)δt+O
(
(δt)2)

≈ f(t1) + {f,HT }(t1)δt+O
(
(δt)2)

≈ f(t1) + {f,H ′}(t1)δt+ vi{f, ϕ(1)
i }(t1)δt+O

(
(δt)2) (5.49)

where the vi are a set of unspecified smooth functions associated to the primary first-class
constraints ϕ(1)

i , possibly depending on time t. Now, if one takes up another set of parameters
v′i, the time evolution of f is now:

f(t2) ≈ f(t1) + {f,H ′}(t1)δt+ v′i{f, ϕ(1)
i }(t1)δt+O

(
(δt)2) (5.50)
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Notice that here, although we used the same notation, the value of f(t2) differ in both expressions
(5.49) and (5.50) because the point (q(t2), p(t2)) is not the same in both cases. Notice that by
construction, the first-class Hamiltonian H ′ is however the same in (5.49) and (5.50). Then they
cancel out when we compute the difference between the two expressions of f(t2) and we have:

δf ≈ −δεi{f, ϕ(1)
i }(t1)δt+O

(
(δt)2)

where δεi = (v′i − vi)δt. Thus, the primary first-class constraints ϕ(1)
i are generators of local

transformations with infinitesimal parameters (v′i − vi)δt. More precisely, denoting X
ϕ

(1)
i

the

hamiltonian vector field associated to ϕ(1)
i , one has:

δf ≈ δεiX
ϕ

(1)
i

(f) +O
(
(δt)2) (5.51)

Since the parameters vi and v′i – and hence εi – are arbitrary, these transformations can be con-
sidered as legitimate gauge transformations. In other words, the primary first-class constraints
generate (a subset of) gauge transformations.

We will now show that the primary first-class constraint cannot be the only set of functions
generating gauge transformations. Indeed, starting from the former discussion, assume that
between t2 = t1 + δt and t3 = t2 + δt we decide to apply H ′+ v′iϕ

(1)
i to f(t2) as defined in (5.49)

and H ′+viϕ
(1)
i to f(t2) as defined in (5.50). Then we compare f(t3) obtained via the first path,

and f(t3) obtained via the second path. Since we expect that any ambiguity in the canonical
variables at any time should be a physically irrelevant ambiguity, we deduce that the difference
between the two values of f at time t3 is the result of a gauge transformation.

Theorem 5.33. Beyond the primary first-class constraints, the set of generators of gauge trans-
formations contains the following smooth functions:

1. the Poisson bracket of any two primary first-class constraints;

2. the Poisson bracket of any primary first-class constraint and the first-class Hamiltonian.

Proof. We first apply H ′ + v′iϕ
(1)
i to f(t2) as defined in (5.49) and we obtain:

f(t3) = f(t2) + {f,H ′}(t2)δt+ v′j{f, ϕ(1)
j }(t2)δt+O

(
(δt)2)

≈ f(t1) + {f,H ′}(t1)δt+ vi{f, ϕ(1)
i }(t1)δt

+ {f + {f,H ′}δt+ vi{f, ϕ(1)
i }δt,H

′}(t1)δt

+ v′j{f + {f,H ′}δt+ vi{f, ϕ(1)
i }δt, ϕ

(1)
j }(t1)δt+O

(
(δt)3)

≈ f(t1) + 2{f,H ′}δt+ vi{f, ϕ(1)
i }δt+ v′j{f, ϕ(1)

j }δt+ {{f,H ′}, H ′}(δt)2

+ {f, ϕ(1)
i }{v

i, H ′}(δt)2 + vi{{f, ϕ(1)
i }, H

′}(δt)2 + v′j{{f,H ′}, ϕ(1)
j }(δt)

2

+ v′jvi{{f, ϕ(1)
i }, ϕ

(1)
j }(δt)

2 + v′j{f, ϕ(1)
i }{v

i, ϕ
(1)
j }(δt)

2 +O
(
(δt)3)(5.52)

where the evaluation at time t1 is implicit for each term. Then we apply H ′+ viϕ
(1)
i to f(t2) as

defined in (5.50), and we obtain:

f(t3) ≈ f(t1) + 2{f,H ′}δt+ v′i{f, ϕ(1)
i }δt+ vj{f, ϕ(1)

j }δt+ {{f,H ′}, H ′}(δt)2

+ {f, ϕ(1)
i }{v

′i, H ′}(δt)2 + v′i{{f, ϕ(1)
i }, H

′}(δt)2 + vj{{f,H ′}, ϕ(1)
j }(δt)

2

+ vjv′i{{f, ϕ(1)
i }, ϕ

(1)
j }(δt)

2 + vj{f, ϕ(1)
i }{v

′i, ϕ
(1)
j }(δt)

2 +O
(
(δt)3)(5.53)
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where again the evaluation at time t1 is implicit. Computing the difference between Equations
(5.52) and (5.53) one obtains, after reordering the terms and noticing that their respective first
line cancel each other:

δf ≈
(
{f, ϕ(1)

i }{v
′i, H ′}−{f, ϕ(1)

i }{vi, H ′}
)
(δt)2

+ v′i
(
{{f, ϕ(1)

i }, H
′} − {{f,H ′}, ϕ(1)

i }
)
(δt)2

+ vj
(
{{f,H ′}, ϕ(1)

j } − {{f, ϕ
(1)
j }, H ′}

)
(δt)2

+ vjv′i
(
{{f, ϕ(1)

i }, ϕ
(1)
j } − {{f, ϕ

(1)
j }, ϕ

(1)
i }

)
(δt)2

+ vj{f, ϕ(1)
i }{v

′i, ϕ
(1)
j }(δt)

2 − v′j{f, ϕ(1)
i }{v

i, ϕ
(1)
j }+O

(
(δt)3)

Let us show that the two underlined terms combine to give the term {f, {v′iϕ(1)
i , H ′}} on the

constraint surface. Then it is straightforward to antisymmetrize the computation and deduce
that the two overlined terms give the term −{f, {vjϕ(1)

j , H ′}}, again on Σ. Indeed, since the
constraints vanish on Σ, we can rewrite the first term while the regarding the second we use the
Jacobi identity for the Poisson bracket:

{f, ϕ(1)
i }{v

′i, H ′}+v′i
(
{{f, ϕ(1)

i }, H
′}−{{f,H ′}, ϕ(1)

i }
)
≈ {f, ϕ(1)

i {v
′i, H ′}}+v′i{f, {ϕ(1)

i , H ′}}

The last term is weakly equivalent to the following one: {f, v′i{ϕ(1)
i , H ′}}, because H ′ being

first-class, its bracket with any linear combination of constraints such as {ϕ(1)
i , H ′} vanishes on

Σ. Thus, the sum {f, ϕ(1)
i {v′i, H ′}}+ v′i{f, {ϕ(1)

i , H ′}} is weakly equivalent to {f, {v′iϕ(1)
i , H ′}}

as desired.
Now, let us compute the sum vjv′i{{f, ϕ(1)

i }, ϕ
(1)
j }+vj{f, ϕ

(1)
i }{v′i, ϕ

(1)
j }, when it is restricted

to the constraint surface. Start by factorizing out vj and make v′i enter the bracket so that the
sum is weakly equivalent to:

vjv′i{{f, ϕ(1)
i }, ϕ

(1)
j }+ vj{f, ϕ(1)

i }{v
′i, ϕ

(1)
j } ≈ v

j{{f, ϕ(1)
i }v

′i, ϕ
(1)
j }

Then the bracket {{f, ϕ(1)
i }v′i, ϕ

(1)
j } is weakly equivalent to {{f, ϕ(1)

i v′i}, ϕ(1)
j } because:

{{f, ϕ(1)
i v′i}, ϕ(1)

j } = {{f, ϕ(1)
i }v

′i, ϕ
(1)
j }+ {ϕ(1)

i {f, v
′i}, ϕ(1)

j }

= {{f, ϕ(1)
i }v

′i, ϕ
(1)
j }+ {ϕ(1)

i , ϕ
(1)
j }{f, v

′i}+ ϕ
(1)
i {{f, v

′i}, ϕ(1)
j }

Both last terms vanish on the constraint surface; the middle one because the Poisson bracket
of two first class constraints vanishes on Σ by definition. Then, it turns out that the term
vj{{f, ϕ(1)

i }v′i, ϕ
(1)
j } is weakly equivalent to vj{{f, ϕ(1)

i v′i}, ϕ(1)
j }, which in turn is weakly equiv-

alent to {{f, ϕ(1)
i v′i}, ϕ(1)

j vj}. By antisymmetry, we straightforwardly deduce that the sum
−vjv′i{{f, ϕ(1)

j }, ϕ
(1)
i } − v′i{f, ϕ

(1)
j }{vj , ϕ

(1)
i } is weakly equivalent to −{{f, ϕ(1)

j vj}, ϕ(1)
i v′i}. By

the Jacobi identity, the two terms combine and give:

{{f, ϕ(1)
i v′i}, ϕ(1)

j vj} − {{f, ϕ(1)
j vj}, ϕ(1)

i v′i} = {f, {ϕ(1)
i v′i, ϕ

(1)
j vj}}

Gathering all the simplifications we obtained, we have the following weak equivalence, which
characterize the gauge transformation applied to f :

δf ≈ {f, {v′iϕ(1)
i , H ′}}(δt)2 − {f, {vjϕ(1)

j , H ′}}(δt)2 + {f, {v′iϕ(1)
i , vjϕ

(1)
j }}(δt)

2 +O
(
(δt)3)
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where the evaluation at time t1 is implicit. Then we see that the gauge transformation δf is gen-
erated by the three terms {v′iϕ(1)

i , H ′}, {vjϕ(1)
j , H ′} and {v′iϕ(1)

i , vjϕ
(1)
j }. Since the parameters

v′i and vj are arbitrary, we have the result.

Theorem 5.33 shows us that primary first-class constraints are not the only functions acting
as generators of gauge transformations. The Poisson brackets {v′iϕ(1)

i , H ′}, {vjϕ(1)
j , H ′} and

{v′iϕ(1)
i , vjϕ

(1)
j } should indeed generate gauge transformations as well. Since by definition of the

Bergmann-Dirac algorithm the bracket {ϕ(1)
i , H ′} ≈ {ϕ(1)

i , H} is a second-stage constraint, we
deduce that the two first brackets involve secondary constraints. Moreover, the third bracket
{v′iϕ(1)

i , vjϕ
(1)
j } vanishes on Σ by definition of first-class constraints, hence it is strongly equiv-

alent to a linear combination of primary and secondary constraints. Eventually, by Proposition
5.28 we know that the brackets {v′iϕ(1)

i , H ′}, {vjϕ(1)
j , H ′} and {v′iϕ(1)

i , vjϕ
(1)
j } are first-class func-

tions. Together with the above arguments, it implies that these brackets are not only strongly
equivalent to linear combinations of primary and secondary constraints, but these constraints
are all first-class.

Although it is in general not possible to infer from these observations alone that every
secondary first-class constraint generates a gauge transformation, we will usually assume that it
is the case (this is the Dirac conjecture, Scholie 5.34). Indeed, we have seen that the distinction
between primary and secondary constraint is contingent because it heavily relies on the original
choice of coordinates when we perform the Legendre transform. On the contrary, first-class
and second-class constraints is a fundamental distinction, brought up by the Poisson structure
of T ∗Q. Additionally, first-class constraints form a Lie subalgebra of C∞(T ∗Q) so they form
an ideal candidate for generators of gauge transformations, but one has then to consider all of
them. Moreover, we will see later that quantization methods put the first-class constraints on
the same footings; there is no known quantization scheme if one does only consider part of them
as gauge generators. For more details and further discussion, see the fruitful subsection 1.2.1
of [Henneaux and Teitelboim, 1994]. These observations led Dirac to formulate the following
assumption:

Scholie 5.34. Dirac conjecture. The generators of the gauge transformations are the first-
class constraints, both primary and secondary.

The status of the Dirac conjecture is debated. Its name first – a conjecture – would in general
implicitly say that it has not yet been proven. However, fifty years of discussion have shown
that the well-grounded character of this statement seems to mostly depend on its interpretation.
For example, Henneaux and Teitelboim use the following Lagrangian defined on R2 (subsection
1.2.2 of [Henneaux and Teitelboim, 1994]):

L = 1
2e

yv2
x

The first constraint is a primary first-class constraint ϕ(1) = py, and it induces a unique sec-
ondary first-class constraint ϕ(2) = 1

2e
−yp2

x which turns out to coincide with the Hamiltonian.
There are no other constraints. Then, if one considers that the true secondary first-class con-
straint is ϕ̃(2) = px – as Henneaux and Teitelboim did – one observes that it does not generate
gauge transformations. These authors chose to pass from ϕ(2) to the mathematically equivalent
constraint ϕ̃(2) because they considered as ‘true’ constraints those that can serve as coordinate
transverse to the secondary constraint surface.

However, Rothe and Rothe have shown (subsection 6.4 of [Rothe and Rothe, 2010]) that if one
sticks to the secondary first-class constraint ϕ(2) then it generates a gauge transformation. They
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say that the ambiguity in the Dirac conjecture comes from an ambiguity in the interpretation of
what is a ‘true’ first-class constraint, and that the validity of Dirac conjecture depends crucially
on the chosen form for the constraints. The replacement of constraints by a formally equivalent
set of constraints in fact may obliterate the full symmetry of the total action and will lose some
important physical informations. Hence, this example shows that mathematically equivalent
constraints may not be physically equivalent. Discussions about the Dirac conjecture have been
vivid in the 1980s and the literature on the topic is rich [Gotay, 1983, Stefano, 1983, Cabo,
1986, Gràcia and Pons, 1988, Cabo and Louis-Martinez, 1990]. See also subsection 3.3.2 of
[Henneaux and Teitelboim, 1994] for a proof of Dirac conjecture under mild assumptions. From
now, we will stick to the modern view that the conjecture holds.

Now that we have determined all the generators of gauge transformations, we soon realize
that the total Hamiltonian HT does not contain every first-class constraints, and thus cannot
generate all the gauge transformations. Thus we are led to adding the remaining first-class
constraints to HT to obtain a proper, more general Hamiltonian:

Definition 5.35. Assume that there are p first-class constraints in total and let the vi be arbi-
trary smooth parameters on the canonical coordinates (possibly depending on time also). Then
we define the extended Hamiltonian as the following smooth function:

HE = H ′ + viϕi

where H ′ is the first-class Hamiltonian.

Thus, the extended Hamiltonian contains the primary second-class constraints (hidden into
H ′) and all the first-class constraints. When Hamilton equations involve the extended Hamilto-
nian, all the gauge transformations are allowed to be performed. However, a physical observable
should not be depend on such gauge transformations. Hence the choice of Hamiltonian one
picks up in the equations of motion – be it H ′, HT or HE – will not have any consequence on
the smooth functions that are physically relevant, but will impact any other smooth function.
Notice however that, while the total Hamiltonian was directly obtained from the Lagrangian for-
malism and would give back the Euler-Lagrange equations (see Proposition 5.24), the extended
Hamiltonian is a new feature of the Hamiltonian formalism that does not have a Lagrangian
counterpart (see subsection 1.2.3 in [Henneaux and Teitelboim, 1994]). The extended Hamilto-
nian allows to set all the first-class constraints on the same footing, which is a useful to apply
canonical quantization. The difference between the total and the extended Hamiltonians are
further explored in sections 3.2 and 3.3 of [Henneaux and Teitelboim, 1994], as well as section
5.4 of [Rothe and Rothe, 2010].

5.5 The geometry of the constraint surface

Let us now address the geometrical meaning of first-class and second-class constraints. Fix
once and for all some functionally independent first-class and second-class constraints, and
assume that the latter are minimal in number. Then the zero-level set of the second-class
constraints is called the second-class constraint manifold and forms a cosymplectic submanifold
Σ0 of (M, { . , . }) (see subsection 4.3). It is assumed to be an embedded submanifold, and that
the rank of the matrix D has constant rank over it (and not only on Σ). We then know that
in a tubular neighborhood W of Σ0 (or at least locally) one can define a Poisson bracket –
called the Dirac bracket, see Equation (4.41) – so that Σ0 is a symplectic leaf of (W, { . , . }Dirac).
In particular, we have shown that the Poisson bracket on Σ0 induced by the Poisson-Dirac
reduction coincides with the Dirac bracket (see Equation (4.47)). So the second-class manifold
is a symplectic manifold and can be taken to be a replacement of the original phase space.
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Then the first-class constraint define a submanifold of Σ0, which turns out to be the constraint
surface Σ. For simplicity in the following we will often assume that the constraints are defined
globally over the entire phase space T ∗Q, but remember that in full generality the results are
only defined on a tubular neighborhood W ⊂ T ∗Q of Σ, or at least locally around each point:

Lemma 5.36. The constraint surface Σ is a coisotropic submanifold of the second-class con-
straint manifold (Σ0, { . , . }Dirac). When the Dirac bracket is defined globally over T ∗Q, then the
constraint surface Σ is a coisotropic submanifold of (T ∗Q, { . , . }Dirac).

Proof. Let us show the second point directly. Assuming that the constraints – both first-class
and second-class – are globally defined, we have that the secondary constraint surface Σ is a
closed embedded submanifold of T ∗Q. By Proposition 4.89 it is sufficient to show that the ideal
I = Span(ϕj , χk) of vanishing functions on Σ generated in C∞(T ∗Q) by the first class and the
second class constraints is a Lie subalgebra of (C∞(T ∗Q), { . , . }Dirac). The definition of the
Dirac bracket, Equation (4.41), has the following consequences:

1. the second-class constraints χl are Casimir elements of the Dirac bracket, so the Dirac
bracket with any of them vanish, so in particular on Σ;

2. the first-class constraints ϕi are such that {ϕi, I} vanish on Σ by Definition 5.27, which
implies that on Σ we have:

{ϕi, . }Dirac = {ϕi, . } − {ϕi, χk}︸ ︷︷ ︸
= 0

Ckl{χl, . } = {ϕi, . } (5.54)

This implies in turn that {ϕi, ϕj }Dirac = {ϕi, ϕj } on Σ which, by Definition 5.27, vanish
on Σ.

These observations show that we have that the smooth functions belonging to the set {I, I}Dirac
vanish on the secondary constraint surface Σ, i.e. they belong to I. This proves that I is a
subalgebra of (C∞(T ∗Q), { . , . }Dirac).

Remark 5.37. There exists an alternative way of getting rid of the second class constraints:
instead of using the Poisson-Dirac reduction, one extends the phase space so that the second
class constraints become first class. This is called the Fadeev-Jackiw reduction and is described
in section 1.4.3 of [Henneaux and Teitelboim, 1994], in Section 4.4 of [Rothe and Rothe, 2010],
and in the references there-in. Extending the phase space in such a way seems to correspond to
solving the problem of coisotropic embedding of presymplectic manifolds into a bigger symplectic
manifold [Gotay, 1982].

The proof of Lemma 5.36 has a very interesting consequence: Equation (5.54) shows that
on the (secondary) constraint surface Σ, the hamiltonian vector fields of a first-class constraint
ϕi – either computed with respect to the original Poisson bracket { . , . } or the Dirac bracket
– coincide. Indeed, on Σ, the properties of first class functions imply that we have {ϕi, . } =
{ϕi, . }Dirac (see Equation (5.54)). There is then no ambiguity of talking about hamiltonian
vector fields of first class constraints, when we restrict ourself to the constraint surface Σ.
However for second-class constraints, it is another story because they form Casimir elements of
the Dirac bracket. We then have the following important, geometric observation, with physical
ramifications:

Proposition 5.38. The hamiltonian vector fields Xχl associated to the second class constraints
{χl} – and computed with respect to the original Poisson bracket { . , . } – are nowhere tangent
to the second-class constraint manifold Σ0 (and hence to Σ).
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The hamiltonian vector fields Xϕi associated to the first-class constraints {ϕi} are everywhere
tangent to the secondary constraint surface Σ and moreover induce a regular foliation on Σ.

Proof. For the first point, we will assume, as physicists do, that the non-triviality condition of
second-class constraints is satisfied globally over the second-class constraint manifold Σ0. The
hamiltonian vector fields associated to the second class constraints are nowhere tangent to the
second-class constraint manifold Σ0 because for any second-class constraint χk and any point
of Σ0, there is at least one bracket {χk, χl} = Xχk(χl) with another second-class constraint χl
which does not vanish at this point. So the action of the Hamiltonian vector field Xχk on the
ideal of vanishing functions on Σ0 never lands in this ideal, so Xχk is not tangent to Σ0, and
hence to Σ ⊂ Σ0.

On the contrary, by Definition of first-class functions 5.27, {ϕi, I} ⊂ I, so the hamiltonian
vector fields Xϕi are tangent to Σ. Now let us show the last item: if the set of first class-
constraints is not irreducible, the regularity condition 5.23 implies that there are at least k
independent first-class constraints which generate all the others. This is a local condition because
even if the constraints are defined over the whole of T ∗Q, their generators may change. So,
locally, the set of first-class constraints is generated by k constraints. Let D be the smooth
distribution generated by the hamiltonian vector fields Xϕi . It has constant, finite rank k.

Now let us show that it is involutive. Since, moreover, Σ is a coisotropic submanifold of
(T ∗Q, { . , . }Dirac), the multiplicative ideal I of vanishing functions on Σ is a subalgebra of
(C∞(T ∗Q), { . , . }Dirac), i.e. there exist smooth functions Ckij on T ∗Q such that {ϕi, ϕj}Dirac =
Ckijϕk. Then, by Equation (4.7) and Equation (4.41) we have:

[Xϕi , Xϕj ] = X{ϕi,ϕj} = X{ϕi,ϕj}Dirac +X{ϕi,χk}Ckl{χl,ϕj} (5.55)

The second term on the right-hand side reads:

X{ϕi,χk}Ckl{χl,ϕj} = Ckl{χl, ϕj}X{ϕi,χk} + {ϕi, χk}XCkl{χl,ϕj} ≈ 0

It indeed vanishes on Σ because {ϕi, χk} and {χl, ϕj} vanish on Σ by definition of first-class
functions. The first term on the right-hand side of Equation (5.55) reads:

X{ϕi,ϕj}Dirac = XCkijϕk
= ϕkXCkij

+ CkijXϕk ≈ C
k
ijXϕk

We then conclude that Equation (5.55) can be written on Σ as follows:

[Xϕi , Xϕj ] ≈ CkijXϕk

Then, the regular distribution D is involutive on Σ (and a priori only on Σ). We say that
the algebra of vector fields generated by the Xϕi close on-shell. By Frobenius theorem, it is
integrable and induces a regular foliation (on Σ).

One can then proceed to Poisson reduction, at the condition that the leaf space corresponding
to the foliation of Proposition 5.38 is a smooth manifold. The leaf space is then called the reduced
phase space and is denoted Σph, because it corresponds to the true non-gauge equivalent physical
states of the system. When the leaf space if a smooth manifold, Proposition 4.94 applies and
the Dirac bracket descends from Σ to Σph by Poisson reduction, so that the resulting Poisson
bracket is non-degenerate on Σph. On the reduced phase space the equations of motions are
the usual Hamilton’s ones (see Appendix 2.A in [Henneaux and Teitelboim, 1994] to obtain
more informations on the symplectic structure on Σph). The smooth functions on Σph are
the physical observables, and thus we should characterize the space C∞(Σph) explicitly before
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quantizing the theory. Although it would seem desirable to work on the reduced phase space, it
turns out that one often loses desirable features of the physical model such as Lorentz manifest
invariance or, in the case of field theory, polynomiality of fields and locality in space. Moreover,
it is often impossible to reformulate the theory in terms of gauge invariant quantities only
and then to subsequently quantize it from the reduced phase space picture. It is thus often a
better choice to carry along the dynamical variables and keep track of the first-class constraints,
without using Poisson reduction, and then quantize the theory (see subsection 2.2.3 of [Henneaux
and Teitelboim, 1994]). This is the object of BRST formalism, which provides an algebraic
formulation of gauge invariant functions, i.e. physical observables.

Assume now that the constraints are globally defined, so that Σ is a closed embedded subman-
ifold of T ∗Q. The constraint surface is characterized by the ideal I = Span(ϕj , χk) of vanishing
functions on Σ generated in C∞(T ∗Q) by the first class and the second class constraints. Then,
by Lemma 4.69 we have:

C∞(Σ) ' C∞(T ∗Q)
/
I

By Lemma 5.36, Σ is a coisotropic submanifold of (T ∗Q, { . , . }Dirac) (or possibly only on a
tubular neighborhood W of Σ). Indeed under the Dirac bracket the second class constraints
behave as zero thus I is a Lie subalgebra of C∞(T ∗Q), i.e. {I, I}Dirac ⊂ I. Let us now make
sense of the Poisson reduction to Σph in light of the knowledge we have on gauge transformations.

One may consider the set of gauge transformations as a family of infinitesimal transforma-
tions on C∞(T ∗Q). Each gauge transformation is proportional to a (set of) parameters εi (which
in subsection 5.4 corresponds to the difference v′i−vi for example), where a priori i ranged from
1 to p, the number of first-class constraints, both primary and secondary (see Dirac conjecture,
Scholie 5.34). We can then consider the family of parameters εi as the respective components of
a smooth section ε of the trivial vector bundle E = Rp × T ∗Q. We then denote the correspond-
ing gauge transformation as δε : C∞(T ∗Q) −! C∞(T ∗Q), sending any smooth function f to the
following one:

δε(f) = εiXϕi(f) (5.56)
where the Xϕi are the Hamiltonian vector fields associated to the first-class constraints ϕi
(we know that on Σ they do not depend if we picked up the Poisson bracket or the Dirac
bracket to define them). Consequently, the vector fields are independent if the primary first-
class constraints are irreducible, i.e. if the constraints are themselves independent. Moreover
notice that the dependence in δt – which is explicit in Equation (5.51) – has been suppressed
in Equation (5.56) because its role was only to emphasize the infinitesimal character of the
transformations.

Thus, we have defined a C∞(T ∗Q)-linear map δ : Γ(E) −! X(T ∗Q), sending a section
ε ∈ Γ(E) to the corresponding gauge generator. While the space X(T ∗Q) is a Lie algebra (of
infinite dimension), it is a priori not the case for Γ(E). This property would be nonetheless
very natural, so that in the best case E would be a Lie algebroid over T ∗Q such that δ would
be its anchor map. However this situation often never happen. In order to distinguish which
situations are met in our physical theories, we introduce the following nomenclature:

Definition 5.39. The infinite dimensional space of gauge transformations G = Im(δ) ⊂ X(T ∗Q)
is abusively called the algebra of gauge transformations. We say that the algebra of gauge trans-
formations is closed if G is a Lie subalgebra of the Lie algebra of vector fields

(
X(T ∗Q), [ . , . ]

)
.

It is said open otherwise. We say that the algebra of gauge transformations is closed on-shell if:

[Im(δ), Im(δ)]
∣∣
Σ ⊂ Im(δ)

∣∣
Σ

The last denomination can be equivalently stated as follows: the algebra is closed on-shell
if for every smooth sections ε, η ∈ Γ(E), the Lie bracket of their image via δ – which is a
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genuine vector field on T ∗Q – turns out to be weakly equivalent to a gauge transformation in
the following sense:

[δε, δη](f) ≈ δρ(f)

for any smooth function f ∈ C∞(T ∗Q) and some ρ ∈ Γ(E). In that case, if the map δ is
injective – so that G and Γ(E) are isomorphic – then one may induce a Lie bracket on Γ(E) via
the identification [ε, η] = ρ. The algebra of gauge transformation is rarely closed, but it turns
out that:

Lemma 5.40. The algebra of gauge transformations is closed on-shell.

Proof. Indeed, Proposition 5.38 tells us that the Hamiltonian vector fields associated to the first-
class constraints define an involutive distribution D on Σ. Since by construction (see Equation
(5.56)) δε

∣∣
Σ and δη

∣∣
Σ take values in D, we deduce that the Lie bracket [δε, δη]

∣∣
Σ takes values in

D, i.e. it can be decomposed on the basis of vectors Xϕi , with coordinates ρi. This proves that
[δε, δη]

∣∣
Σ = δρ

∣∣
Σ for ρ = ρiei, where e1, . . . , ep is the canonical (global) frame of E.

Since the tangent spaces to the leaves of the foliation integrating the distribution D on Σ
are generated by the hamiltonian vector fields Xϕj associated to the first-class constraint ϕj , we
deduce that the leaves of the regular foliation characterize gauge equivalent physical states. In
other words, two points on the same leaf – this is a geometric equivalence relation – are ‘gauge
equivalent’ in the sense that any physical observable O ∈ C∞(Σ) should take the same value in
these two points. Physical observables are said to be the gauge invariant functions on Σ and,
in the geometric picture, they correspond to those functions being constant along each leaf of
the foliation. Then they are invariant with respect to the vector fields tangent to the leaves:

Xϕi(O) = 0

for every first-class constraints ϕi, both primary and secondary.
The gauge invariant functions on Σ are then constant along the the leaves of the foliation

induced by the vector fields Xϕi . As we assume that the leaf space Σph is a smooth manifold,
we deduce that the gauge invariant functions on the constraint surface Σ pass to the quotient
Σ � Σph and define smooth functions on Σph. Conversely, any smooth function on Σph – the
putative physical observables – induce a smooth function on Σ which is constant along the
leaves of the foliation, i.e. gauge invariant. Then we conclude that, as expected, there is a
one to one correspondence between physical observables (on Σph) and gauge invariant smooth
functions (on Σ). Moreover, the properties of Poisson reduction, and in particular the fact that
Proposition 4.94 applies to the current situation, shows that taking the Dirac bracket of any
(global) extensions of two gauge invariant functions on Σ is equivalent to taking the reduced
Poisson bracket of the corresponding physical observables on Σph.

Definition 5.41. By abuse of denomination, we will call gauge-invariant function any smooth
function f ∈ C∞(T ∗Q) (or possibly only on a tubular neighborhood W of Σ) such that:

Xϕj (f) ≈ 0 (5.57)

for every first class constraint ϕj.

Any such gauge invariant function, when restricted to the constraint surface Σ, is a proper
gauge invariant function O = f

∣∣
Σ ∈ C

∞(Σ), and any such latter function admits a (possibly
global) extension satisfying the assumption Definition 5.41. We would now characterize the
space of physical observables by using such extended notion of gauge invariant function. It is
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indeed easier to work on T ∗Q as we do not work on a quotient, as would be the case if one
worked with C∞(Σ). However, notice that while there was a one-to-one correspondence between
physical observables – i.e. smooth functions on Σph – and gauge invariant functions on Σ, there
are much more gauge-invariant functions f ∈ C∞(T ∗Q) as characterized in Definition 5.41. The
latter are however quite useful to characterize the space of function C∞(Σph) because they are
defined over the whole phase space T ∗Q, which has a more regular smooth structure than the
constraint surface Σ.

Condition (5.57) equivalently means that Xf (I) ≈ 0, where here the Hamiltonian vector
field is computed with respect to the Dirac bracket. Since these constraints span the ideal I of
functions vanishing on Σ and since Σ is a (closed) embedded submanifold of T ∗Q, it implies that
the hamiltonian vector field of f (with respect to the Dirac bracket) is tangent to Σ (see beginning
of subsection 3.4). Hence, the smooth functions f ∈ C∞(T ∗Q) inducing gauge invariant functions
on Σ or, equivalently, physical observables, are precisely those smooth functions f ∈ C∞(T ∗Q)
such that {f, I}Dirac ≈ 0. The maximal subalgebra of C∞(T ∗Q) generated by such functions
and containing the ideal I is denoted N . Then, physical observables can be identified with the
quotient of the latter by the former:

C∞(Σph) ' N
/
I

The reduced phase space Σph corresponds to the classical unconstrained picture in Hamil-
tonian mechanics; it is then open to quantization. However it is difficult to quantize directly
the theory on the reduced phase space. On the contrary, Dirac tried to quantize the theory
by quantizing the canonical coordinates on the total phase space T ∗Q – which is a well known
procedure – together with the constraints. This is necessary to keep track of which function
of q and p are physical observables or not. We will see that canonical quantization has several
obstructions and no-go theorems. That is why other strategies, such as the BRST quantization
scheme, tried to make sense of the dynamics on the reduced phase space using an algebraic
picture. It avoids the complications due to the quotienting and provides a tractable model of
C∞(Σph).

5.6 More about generating functions and the Legendre transform

In this section we will provide some material non-related to Bergmann-Dirac formalism but
which however is relevant for those interested into the geometrization of classical mechanics.
The tangent bundle of the cotangent bundle T (T ∗Q) is a 4n-dimensional manifold and a rank
2n vector bundle over T ∗Q. Over a local trivializing open set U ⊂M , the cotangent bundle T ∗Q
can be trivialized as the product of U (with coordinate functions qi) with the fiber Rn (with
coordinate functions pi), so that T (T ∗Q) is locally isomorphic to TU×TRn. The same holds for
the cotangent bundle of the cotangent bundle T ∗(T ∗Q). A differential form on T ∗Q is a section
of ∧•T ∗(T ∗Q); since T ∗Q can be locally seen as the product of a trivializing open set U and
the fiber Rn, one understands that a differential form on T ∗Q is locally generated by products
of covector fields dqi on Q with covector fields dpi on the fiber. Here the de Rham differential
is the de Rham differential on T ∗Q, so that dqi should indeed be seen as a constant section of
T ∗(T ∗Q), although its action is trivial on the fiber. With these conventions in hand, we observe
that the cotangent bundle T ∗Q is a symplectic manifold: there exists a closed non-degenerate
2-form ω ∈ Ω2(T ∗Q) called the Poincaré 2-form. This two form is canonical (see below) and
can be written in local coordinates qi, pi as: ω =

∑n
i=1 dpi ∧ dqi. The Poincaré 2-form has the

particularity of being exact and this represents a defining feature: it is the de Rham derivative
ω = dθ of the so-called Liouville-Poincaré – or tautological – one-form. This differential form is
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the unique globally defined one-form whose expression in local coordinates is θ =
∑n
i=1 pidq

i. It
admits a coordinate-free definition that we will now provide.

Definition 5.42. Let πQ : T ∗Q −! M be the projection associated to the bundle structure on
the cotangent bundle of Q. Then, the tautological one form is the unique differential one-form
on T ∗Q defined pointwise as follow:

for every (q, p) ∈ T ∗Q θ(q,p) = p ◦ (πM )∗|(q,p)

where (πQ)∗|(q,p) : T(q,p)(T ∗Q) −! TqQ is the push-forward of πM at the point (q, p).

The tautological one-form is the unique one-form that ‘cancels’ pullback: any differential
one-form σ ∈ Ω1(M) can be seen as a smooth section σ : M −! T ∗Q. Then, the push-forward
of σ is a vector bundle map σ∗ : TQ −! T (T ∗Q), as well as the pull-back σ∗ : T ∗(T ∗Q) −! T ∗Q.
Then, pulling back a differential one form on T ∗Q via σ gives a differential one form on Q. Then,
the tautological one-form is the unique one-form on T ∗Q such that:

σ∗(θ) = σ

Another, alternative perspective is the following: the tautological one-form is the only differential
one-form θ on T ∗Q such that:

θ = π∗Q ◦ πT ∗Q(θ)

where π∗Q : T ∗Q −! T ∗(T ∗Q) is the pull-back of πM while πT ∗Q : T ∗(T ∗Q) −! T ∗Q is the
projection associated to the bundle structure on the cotangent bundle of T ∗Q. The smooth
manifold T ∗(T ∗Q) is called a double vector bundle and the tautological one-form is used to
characterize the Legendre transform between TQ and T ∗Q [Tulczyjew, 1977, Yoshimura and
Marsden, 2007].

θ ∈ T ∗(T ∗Q) θ ∈ T ∗(T ∗Q)

T ∗Q

id

πT ∗Q π∗M
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