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1 Ensembles, réels et suites

1.1 Historique et définitions de base

Les mathématiques arabes et européennes se sont développées sans fondement axiomatique
rigoureux des nombres réels. Ce n’est qu’au XIXème siècle que les évolutions de l’étude des
fonctions réelles – qu’on appelle analyse en mathématiques – a exigé qu’on développe une com-
préhension rigoureuse des nombres réels. Cela s’accompagne de la définition axiomatique de la
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notion d’ensemble et le début de la topologie. Dans l’histoire des mathématiques (même encore
aujourd’hui !), beaucoup de choses se font pragmatiquement, de façon pas très bien définie tant
que ça fonctionne dans le cadre où on travaille, et ce n’est qu’ensuite que l’on formalise (les ré-
sultats précédents restent souvent vrais dans le nouveau formalisme plus rigoureux, à quelques
exceptions près).

Apparté historique : la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une
axiomatisation en logique du premier ordre de la théorie des ensembles telle qu’elle avait été
développée dans le dernier quart du XIXe siècle par Georg Cantor. L’axiomatisation a été
élaborée au début du XXe siècle par plusieurs mathématiciens dont Ernst Zermelo et Abraham
Fraenkel mais aussi Thoralf Skolem. En raison de son statut particulier, on considère en général
que l’axiome du choix ne fait pas partie de la définition de ZF et on note ZFC la théorie
obtenue en ajoutant celui-ci.Les mathématiques usuelles peuvent être théoriquement développées
entièrement dans le cadre de la théorie ZFC, éventuellement en ajoutant des axiomes, comme les
axiomes de grands cardinaux, pour certains développements (ceux de la théorie des catégories par
exemple). En ce sens il s’agit d’une théorie des fondements des mathématiques. Attention si ZFC
est cohérente, on ne peut pas axiomatiser ZFC avec un nombre fini d’axiomes (Montague 1961).

La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des
classes, est une théorie axiomatique essentiellement équivalente à la théorie ZFC de Zermelo-
Fraenkel avec axiome du choix, mais dont le pouvoir expressif est plus riche (c’est à dire que
la théorie NBG décrit des objets plus riches, mais sa restriction aux ensembles coincide avec
ZFC). Elle peut s’énoncer en un nombre fini d’axiomes, au contraire de ZFC. Ceci n’est possible
que grâce à une modification du langage de la théorie, qui permet de parler directement de
classe, une notion par ailleurs utile en théorie des ensembles et qui apparaissait déjà, de façon
assez informelle, dans les écrits de Georg Cantor dès avant 1900. La théorie des classes a été
introduite en 1925 par John von Neumann, mais celui-ci avait pris des fonctions pour objets
primitifs. Elle est reformulée en termes de théorie des ensembles et simplifiée par Paul Bernays
vers 19293. Kurt Gödel en donne une version inspirée de celle de Bernays, pour sa preuve de
cohérence relative de l’axiome du choix et de l’hypothèse du continu par les constructibles, lors
de conférences à Princeton en 1937-1938 (publiées en 1940). Une théorie des classes plus forte,
la théorie de Morse-Kelley, a été proposée plus tard par plusieurs mathématiciens, et apparaît
pour la première fois en 1955 dans le livre de topologie générale de John L. Kelley.

A notre niveau, nous n’avons pas besoin d’étudier les fondements des mathématiques, car
nous devons d’abord étudier les mathématiques dans leur grande régularité, avant de s’intéresser
aux mathématiques plus exceptionnelles. D’autre part, les notions d’ensembles, d’éléments et
d’appartenance à un ensemble sont des notions abstraites en logique mathématiques, qui sont
très difficiles à définir et donc que nous ne définissons pas explicitement. Dans ce cadre, pour
nous, un ensemble est intuitivement une collection ou famille – qui est finie ou infinie – d’objets
mathématiques appelés éléments. Nous ne définirons pas explicitement ces termes et ne don-
nerons pas une liste d’axiomes pour la théorie des ensembles. Cette approche pragmatique est
souvent désignée sous le nom de théorie des ensembles "naïve", et est suffisante pour travailler
avec les ensembles rencontrés en analyse réelle.

Si A dénote un ensemble, et si x est un élément, nous utilisons la notation x ∈ A pour
signifier que l’élément x appartient à l’ensemble A. Si l’élément x n’appartient pas à l’ensemble
A, on note x /∈ A. L’ensemble vide est l’ensemble qui ne contient aucun élément ; il est noté ∅.
Un ensemble B est un sous-ensemble – ou partie – de l’ensemble A si tout élément qui appartient
à B appartient aussi à A et on note B ⊂ A. Bien entendu A est un sous-ensemble de lui-même.
L’ensemble vide ∅ est aussi un sous-ensemble de A. Deux ensembles A et B sont dits égaux
lorsqu’ils ont les mêmes éléments, c’est à dire lorsque B ⊂ A et A ⊂ B. Notons que pour prouver
que A = B il faut en général montrer les deux inclusions A ⊂ B et B ⊂ A. L’ensemble dont les
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éléments sont les sous-ensembles de A est appelé ensemble des parties de A et noté P(A).
Exemple 1.1. L’ensemble des nombres premiers est inclus dans l’ensemble des nombres supérieurs
ou égaux à 2.
Remarque 1.2. Si un ensemble A contient un nombre fini d’élément, on appelle cardinal de A le
nombre d’éléments de A et on le note card(A) ou |A|. On a dans ce cas la relation suivante :

card(P(A)) = 2card(A)

Si l’ensemble A contient un nombre infini d’élément, le cardinal de A est noté avec un "alef"ℵ,
indiquant le type d’infini du cardinal de A (ils ne sont pas tous égaux !). Par exemple card(N) =
ℵ0 ("alef 0") tandis que card(R) = ℵ1 ("alef 1"). L’indice en bas du alpeh nous dit que le cardinal
de R est "infiniment plus grand" que le cardinal de N, dans un sens à préciser (voir grands
cardinaux et hypothèse du continu sur Wikipedia).

Les ensembles sont notés à l’aide d’accolades. On peut avoir des ensembles de n’importe
quoi, mais certains ensembles de nombres sont bien connus :

— l’ensemble des nombres entiers naturels N = {0, 1, 2, 3, . . .} ;
— l’ensemble des nombres entiers relatifs Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} ;
— l’ensemble des nombres rationnels Q = {pq tel que p, q ∈ Z, q ̸= 0} ;
— l’ensemble des nombres réels R = le complété topologique de Q, c’est à dire qu’on a

complété Q en lui ajoutant toutes les limites des suites de nombres rationnels ;
— l’ensemble des nombres complexes C = la clôture algébrique de R, c’est à dire qu’on a ra-

jouté à R toutes les solutions des équations polynômiales à coefficients réels (en particulier
la solution de x2 = −1) ;

— l’ensemble des nombres quaternions H (c’est une généralisation des nombres complexes) ;
— l’ensemble des nombres octonions O (voir Wikipedia pour ces deux derniers ensembles).

Ces ensembles forment une suite de sous-ensembles au sens de l’inclusion :

N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O

Ce sont des inclusions strictes. On rajoute une étoile ∗ aux lettres pour indiquer qu’on considère
l’ensemble, mais sans le nombre 0, ainsi :

N∗ = {1, 2, 3, . . .}, Z∗ = {. . . ,−2,−1, 1, 2, . . .}, Q∗ =
{
p
q tel que p, q ∈ Z∗

}
Souvent on décrit un ensemble à partir d’une propriété ou de plusieurs propriétés que ses

éléments satisfont, par exemple : "être supérieur ou égal à 1" ou "être la solution de l’équation
x2 − 3x+ 2 = 0". Ces deux propriétés définissent les deux ensembles suivants :

A = {n ∈ N tel que n ≥ 1} et B =
{
x ∈ R tel que x2 − 3x+ 2 = 0

}
Autrement dit, A = N∗ et B est le sous-ensemble des nombres réels satisfaisant l’équation
x2 − 3x + 2 = 0. Comme les solutions de cette équation sont x = 1 et x = 2, nous avons que
B = {1, 2} ⊂ N∗. Donc en particulier B est un sous-ensemble de A. Plus généralement, on aura
par exemple :

A = {x tel que x satisfait la propriété P}
B = {x tel que x satisfait les propriétés P et Q}

pour désigner un ensemble A et un sous-ensemble B ⊂ A. En effet, comme tous les éléments de
B satisfont la propriété P , alors ce sont des éléments de A (c’est la définition de sous-ensemble).
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Une propriété mathématique est une proposition – ou phrase – logique. Pour décrire les
ensembles comme ci-dessus à l’aide de propriétés il est donc nécessaire d’étudier les propositions
logiques.

Les propositions logiques et mathématiques s’expriment souvent à l’aide de quantificateurs
logiques :

— ∀x veut dire "pour tout (élément) x" (quantificateur universel)
— ∃x veut dire "il existe (un élément) x" (quantificateur existentiel)

Pour dire qu’il n’existe pas d’élément x on peut écrire ∄x, mais c’est un abus d’écriture, il n’a pas
de valeur logique particulière. Ainsi, si on veut exprimer la phrase française "pour tout élément
x dans l’ensemble A, la propriété P est vérifiée" en termes logiques, on note ∀x ∈ A P . Si on
veut exprimer "il existe un élément x dans l’ensemble A tel que la propriété Q est vérifiée par x"
en termes logiques, on écrit "∃x ∈ A | Q". La barre verticale signifie "tel que". En général, une
expression ∃x est suivie de la barre verticale ou des mots "tel que" et ensuite de la propriété que
x satisfait. Par exemple, on a la propriété "être positif ou nul" est vraie pour tout nombre entier
naturel donc on peut noter ∀n ∈ N , n ≥ 0. Par contre la propriété "être solution de l’équation
x2 = 100" n’est satisfaite que pour x = 10 et x = −10. L’équation a donc au moins une solution
et on peut donc écrire ∃x ∈ R | x2 = 100.

On peut faire se suivre des quantificateurs pour former des propositions logiques plus com-
pliquées. Par exemple la proposition "∀x ∈ R, ∀ ϵ > 0, ∃n ∈ N | nϵ ≥ x" se lit "pour tout
x nombre réel et pour tout ϵ strictement positif, il existe un entier naturel n tel que nϵ est
supérieur ou égal à x". On appelle cette propriété l’Archimédianité de R. Attention l’ordre des
quantificateurs est important ! Si deux quantificateurs se suivent dans l’ordre de lecture de la
phrase logique, on peut les échanger :

∀n ∈ N, ∀ ϵ > 0, blabla ⇐⇒ ∀ ϵ > 0, ∀n ∈ N, blabla
∃x ∈ R, ∃ δ > 0, blabla ⇐⇒ ∃ δ > 0, ∃x ∈ R, blabla

Remarquons qu’en général, c’est très rare de voir deux quantificateurs existentiels ∃ se suivre.
Par contre, si un quantificateur universel ∀ et un quantificateur existentiel ∃ se suivent, on ne
peut PAS intervertir les deux. Par exemple nous avons la proposition suivante :

∀n ∈ N, ∃m ∈ N | n ≤ m

qui est vraie, mais la proposition logique obtenue en intervertissant les deux quantificateurs est
fausse :

∃m ∈ N, ∀n ∈ N | n ≤ m

Le sens de la phrase logique dépend de l’ordre des deux quantificateurs ; il faut donc y faire bien
attention.

En logique, il existe des propositions vraies et des propositions fausses. Ecrire une proposition
logique n’induit en rien sa valeur de vérité.

P1 : ∀ z ∈ N, ∃x, y ∈ N | x2 + y2 = z2

est vraie (premiers exemples : 1800 av. J.-C. dans l’ancien Irak sur une tablette d’argile, la
première preuve vient des grecs anciens (Pythagore-Euclide), c’est le Théorème de Pythagore).
Par contre, la proposition logique suivante est fausse :

P2 : ∀n ≥ 3,∀ z ∈ N, ∃x, y ∈ N | xn + yn = zn

C’est le grand théorème de Fermat (XVIIème siècle), qui n’a été démontré qu’en 1994 par
Andrew Wiles et collaborateurs (Taylor) (Wiles a prouvé un cas particulier de la conjecture
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de Shimura-Taniyama-Weil, dont on savait depuis quelque temps déjà, via les travaux de Yves
Hellegouarch en 1971, puis de Gerhard Frey, Jean-Pierre Serre et Ken Ribet, qu’elle impliquait
le théorème). Il existe aussi des propositions logiques dont on ne sait pas encore si elles sont
vraies ou fausses (et certaines sont indémontrables, d’après Gödel) :

P3 : ∀n ≥ 2, ∃ p, p′ nombres premiers | 2n = p+ p′

Cette proposition peut se lire "Tout nombre entier pair supérieur à 3 peut s’écrire comme une
somme de deux nombres premiers". C’est une conjecture (1742 par Christian Goldbach) vérifiée
jusqu’à 4 × 1018 grâce à l’ordinateur, mais jamais démontrée mathématiquement.

La notion de démonstration en mathématique repose sur des implications, dénotées avec le
symbole =⇒. Ainsi la phrase "si P est vraie alors Q est vraie" s’écrit P =⇒ Q. On voit que la
proposition P est une condition suffisante pour avoir Q : en effet il suffit que P soit vraie pour
que Q soit vraie aussi. Attention, la notion d’implication ne permet de transférer que la vérité,
par la fausseté. Par exemple, si P est vraie alors Q est vraie. Mais si P est fausse, on ne sait rien
de Q, et elle peut être vraie ou fausse. Par contre si Q est fausse, P ne peut certainement pas
être vraie : car autrement Q serait vraie, ce qui est contradictoire avec le fait qu’elle est fausse.
Supposons qu’on ait une autre implication : Q =⇒ R. Alors d’après l’argument précédent, pour
que Q soit vraie, il faut nécessairement que R soit vraie, car si elle était fausse, alors Q serait
fausse. La proposition R est donc une condition nécessaire pour avoir que la proposition Q est
vraie. D’après la chaine d’implications suivantes

P =⇒ Q =⇒ R,

la condition suffisante est plus forte (moins générale) que la condition nécessaire. Cela peut se
vérifier par exemple avec les trois propositions suivantes :

P : "p ∈ N est un nombre premier"
Q : "p ∈ N est impair différent de 1 ou p = 2"
R : "p ∈ N est supérieur ou égal à 2"

Les conditions suffisante P et nécessaire R ont des rôles différents vis-à-vis de la valeur de
vérité de la proposition Q : la condition suffisante P – si elle est vraie/satisfaite – nous permet de
savoir au que Q est vraie ; tandis que la condition nécessaire R – si elle est fausse/non satisfaite
– nous permet de savoir au que Q est fausse. On a donc une connaissance de la condition Q à
partir des conditions suffisantes et nécessaires. On peut le résumer par le tableau suivant :

Valeur de vérité Condition suffisante P Condition nécessaire R

si la proposition est vraie alors Q est vraie On ne sait rien sur Q
si la proposition est fausse On ne sait rien sur Q alors Q est fausse

Maintenant si P = R, c’est à dire si la condition suffisante est aussi une condition nécessaire,
alors on a la chaine d’implications suivante :

P =⇒ Q =⇒ P,

Dans ce cas on dit que P et Q sont des conditions équivalentes, ou encore que "P si et seulement
si Q". Les deux conditions/propositions sont simultanément vraies ou simultanément fausses.

Maintenant intéressons nous à écrire des négations de propositions logiques/mathématiques.
Notons d’abord qu’une proposition logique P contient en général dans notre cours une partie
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avec tous les quantificateurs, qu’on note Pquantif, qui introduit tous les objets mathématiques
qui seront utilisés dans la deuxième partie de la proposition logique. La deuxième partie de la
proposition P consiste en une ou plusieurs formules mathématiques, sans quantificateurs, où les
objets mathématiques introduits Pquantif jouent un rôle. On note cette deuxième partie Pformule.
Par exemple la proposition logique d’Archimédianité de R (qu’on peut prouver intuitivement
avec un dessin, donc qui est vraie) :

∀x ∈ R, ∀ ϵ > 0, ∃n ∈ N | nϵ ≤ x < (n+ 1)ϵ

contient les deux parties suivantes :

Pquantif : ∀x ∈ R, et ∀ ϵ > 0, ∃n ∈ N et Pformule : nϵ ≤ x < (n+ 1)ϵ

Notons que la deuxième partie s’écrit, de façon plus rigoureuse : Pformule : nϵ ≤ x et x < (n+1)ϵ.
La négation de la proposition P revient à écrire une proposition logique notée non− P , formée
de la négation de la partie Pquantif, et de la négation de la partie Pformule, obtenues par les règles
suivantes :

— pour écrire la négation de la partie Pquantif, on change tous les ∀ par des ∃, et les ∃ par
des ∀, tout en conservant l’ordre dans lequel ils apparaissent ;

— pour écrire la négation de la partie Pformule, on change tous les = par des ̸=, les ≥ par des
<, les ≤ par des >, les "ou" par des "et" et les "et" par des "ou"

Dans l’exemple ci dessus, on obtient selon les régles données :

non− Pquantif : ∃x ∈ R et ∃ ϵ > 0 tels que ∀n ∈ N
non− Pformule : nϵ > x ou x ≥ (n+ 1)ϵ

ce qui donne pour la négation de la proposition P :

non− P : ∃x ∈ R et ∃ ϵ > 0 tels que ∀n ∈ N nϵ > x ou x ≥ (n+ 1)ϵ

Cette proposition est évidemment fausse – rappelons que la proposition P est vraie – comme
cela peut se comprendre en lisant la phrase.

Parfois la partie Pformule contient une flèche d’implication =⇒, comme dans l’exemple suivant
(intégrité de R) :

P : ∀ a, b ∈ R, ab = 0 =⇒ ( a = 0 ou b = 0)

Dans ce cas on a les deux parties suivantes :

Pquantif : ∀ a, b ∈ R et Pformule : ab = 0 =⇒ (a = 0 ou b = 0)

Pour écrire la négation de la partie formule, on admet que la négation de l’implication Q =⇒ R
est la proposition "Q et non − R". Ainsi la négation de Pformule ci dessus devient (rappelons
qu’il faut changer le "ou" en "et") : non − Pformule : ab = 0 et (a ̸= 0 et b ̸= 0). La négation de
l’intégrité de R devient donc :

∃ a, b ∈ R | ab = 0 et a ̸= 0 et b ̸= 0

Comme R est intègre, la proposition P est vraie et sa négation est fausse (cela se voit). La
négation d’une implication Q =⇒ R consiste à établir que l’implication ne tient pas. En termes
logiques, cela revient à avoir Q et non−R en même temps. En effet, si jamais ces deux propo-
sitions Q et non − R sont vraies en même temps, alors l’implication originelle Q =⇒ R n’est
pas vraie. On a donc bien sa négation, c’est à dire qu’on a l’équivalence logique suivante :

non− (Q =⇒ R) ⇐⇒ Q et non−R
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La notion de contraposée transforme le rôle des conditions dans une implication pour ob-
tenir une nouvelle implication complètement équivalente à la première (ce n’est donc pas une
négation d’implication comme ci-dessus). Imaginons qu’on ait P =⇒ Q, alors du fait que Q est
une condition nécessaire à P , on sait que si on n’a pas Q (i.e. si Q est fausse) alors nécessai-
rement on n’a pas P (i.e. P est fausse). Autrement dit, et de façon tout à fait équivalente, si
la négation de la condition/proposition Q est vraie – on la note non − Q – alors la négation
de la condition/proposition P est vraie – on la note non − P . On a donc par ce raisonnement
l’implication

non−Q =⇒ non− P

Cette implication est appelée la contraposée de l’implication originale P =⇒ Q. Il est importante
de savoir que démontrer l’une ou l’autre est équivalent logiquement, c’est à dire que :

(P =⇒ Q) ⇐⇒ (non−Q =⇒ non− P )

Par exemple, on a vu ci dessus que si a, b ∈ R, alors on a l’implication ab = 0 =⇒ (a = 0 ou b =
0). La contraposée de cette formule logique est (a ̸= 0 et b ̸= 0) =⇒ ab ̸= 0. Attention nous
rappelons que la contraposée n’est pas la négation de la proposition logique d’origine, il y a donc
stricte équivalence entre les deux propositions suivantes :

P : ∀ a, b ∈ R, ab = 0 =⇒ ( a = 0 ou b = 0) et P ′ : ∀ a, b ∈ R, (a ̸= 0 et b ̸= 0) =⇒ ab ̸= 0

Le raisonnement par l’absurde se base sur l’idée que non − (non − P ) = P . Autrement dit
"si non− P est fausse, alors P est vraie". Pour utiliser la proposition P , on peut donc supposer
que sa négation non−P est vraie, et si après un raisonnement on trouve une contradiction, cela
veut dire que non− P est fausse, donc P est vraie. Cela fonctionne bien pour l’irrationalité de
la racine carrée de 2 par exemple. On pose P : "

√
2 est irrationnelle". Supposons que la racine

carrée de 2 est rationnelle – c’est à dire on suppose que non−P est vraie. Dans ce cas,
√

2 s’écrit
p/q où p ∈ Z et q ∈ Z∗ sont des entiers naturels qui n’ont aucun facteurs en commun (on peut
le supposer). Alors p2 = 2q2 est pair, mais si un carré est pair alors p est pair et s’écrit p = 2n
avec un certain n ∈ Z. Mais alors p2 = 4n2 donc 2q2 = 4n2 donc q2 = 2n2 donc q est un nombre
pair aussi et s’écrit donc q = 2m avec un certain m ∈ Z. Mais dans ce cas p = 2n et q = 2m ont
un facteur commun : c’est 2. C’est une contradiction avec notre hypothèse. Donc non − P est
fausse donc P est vraie. Attention, en général on n’a pas besoin d’utiliser le raisonnement par
l’absurde, mais les élèves le font par défaut. Ce n’est que très rarement qu’on doive démontrer
un résultat par l’absurde, en général pour montrer des résultats très puissants (par exemple
l’argument diagonal de Cantor).

De façon plus abstraite, les démonstrations d’inclusions d’ensembles utilisent beaucoup les
implications. Pour démontrer qu’on a une inclusion B ⊂ A (deux ensembles définis par certaines
conditions), on raisonne comme suit : on prend un élément x ∈ B (quelconque, donc abstrait, qui
satisfait la condition définissant l’ensemble B), on fait un raisonnement logique, et on arrive à
déduire qu’il est dans A aussi (c’est à dire qu’il satisfait la condition définissant A). Par exemple
soit A l’ensemble des nombres entiers supérieurs à 2 et soit B l’ensemble des nombres premiers.
Soit p ∈ B un nombre premier, alors nécessairement p est impair strictement plus grand que 1
ou p = 2. Dans tous les cas p ≥ 2 donc p ∈ A. On a donc montré que B ⊂ A. Pour montrer
l’égalité entre deux ensembles A et B, il faut montrer les deux inclusions B ⊂ A et A ⊂ B. Cela
se traduit logiquement par la proposition suivante :

P : A = B ⇐⇒ B ⊂ A et A ⊂ B

Par contre pour prouver que A ̸= B, il suffit de trouver UN élément de A qui n’est pas dans B
ou inversement, c’est à dire montrer non− P :

non− P : A ̸= B ⇐⇒ ∃x ∈ B tel que x /∈ A ou x ∈ A tel que x /∈ B
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Par exemple, soit A l’ensemble des nombres entiers supérieurs à 2, soit B l’ensemble des nombres
premiers, et soit C l’ensemble des nombres entiers naturels impairs. Alors on a B ⊂ A mais
B ̸= A car 1 ∈ A mais 1 /∈ B. D’autre part on a B ̸= C, et B n’est pas inclus dans C car 2 ∈ B
mais 2 /∈ C.

Maintenant définissons quelques notions ensemblistes assez transparentes :
— La réunion des ensembles A et B est l’ensemble noté A ∪B défini par la condition

x ∈ A ∪B ⇐⇒ x ∈ A ou x ∈ B

— L’intersection des ensembles A et B est l’ensemble noté A ∩B défini par la condition

x ∈ A ∩B ⇐⇒ x ∈ A et x ∈ B

— L’ensemble "A privé de B" est le sous-ensemble de A noté A\B défini par la condition

x ∈ A\B ⇐⇒ x ∈ A et x /∈ B

En particulier, si B ⊂ A, l’ensemble A\B est appelé "sous-ensemble complémentaire de B
(par rapport à l’ensemble A)" et souvent noté Bc

1 . 1  SETS AND FUNCTIONS 3 

1.1 .3 Definition (a) The union of sets A and B is the set 

AU B := {x :  x E A or x E B}. 

(b) The intersection of the sets A and B is the set 

A n B : = { x : x E A and x E B}. 

(c) The complement of B relative to A is the set 

A\B := {x :  x E A and x � B}. 

AUBIII!D AnB!iEiil 
Figure 1 .1 .1 (a) AU B (b) A n  B (c) A\B 

A\B � 

The set that has no elements is called the empty set and is denoted by the symbol 0. 
Two sets A and B are said to be disjoint if they have no elements in common ; this can be 
expressed by writing A n B = 0. 

To illustrate the method of proving set equalities, we will next establish one of the 
De Morgan laws for three sets . The proof of the other one is left as an exercise. 

1 .1 .4 Theorem If A, B, C are sets, then 
(a) A\(BUC)=(A\B)n(A\C) , 

(b) A \(B n C) = (A \B) U (A \C) . 

Proof. To prove (a) ,  we will show that every element in A\ (B U C) is contained in both 
(A \B) and (A\ C), and conversely. 

If x is in A\ (B U C) , then x is in A, but x is not in B U C. Hence x is in A ,  but x is neither 
in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus, x E A \B and 
x E A \C, which shows that x E (A \B) n (A \C) . 

Conversely, if x E (A \B) n (A \C) , then x E (A \B) and x E (A \C) . Hence x E A and 
both x � B and x � C. Therefore, x E A and x � (B U C) , so that x E A \(B U C) . 

Since the sets (A \B) n (A\ C) and A\ (B U C) contain the same elements, they are 
equal by Definition 1 . 1 . 1 .  Q.E.D. 

There are times when it is desirable to form unions and intersections of more than two 
sets . For a finite collection of sets {A 1, A2, . • •  , An}, their union is the set A consisting of 
all elements that belong to at least one of the sets Ak, and their intersection consists of all 
elements that belong to all of the sets Ak. 

This is extended to an infinite collection of sets {A" A2, . . .  , A no . . .  } as follows. 
Their union i s  the set of elements that belong to at least one of the sets An· In this case we 
write ()() U An := {x :  x E An for some n E N} . 

n=l 

Enfin, le produit (cartésien) des ensembles A et B
est un ensemble formé des couples/paires d’éléments
de A et de B. On le dénote A × B et on le définit
comme :

A×B = {(a, b) | a ∈ A et b ∈ B}

4 CHAPTER 1 PRELIMINARIES 

Similarly, their intersection is the set of elements that belong to all of these sets An . In this 
case we write 00 n An := {x :  X E An for all n E N} . n=l 
Functions ---------------------------­
In order to discuss functions, we define the Cartesian product of two sets. 

1 .1 .5 Definition If A and B are nonempty sets, then the Cartesian product A x B of A 
and B is the set of all ordered pairs (a, b) with a E A and b E B. That is, 

Ax B := { (a ,  b) :  a E A , b E  B}. 
Thus if A = { 1 ,  2, 3 }  and B = { 1 , 5 } , then the set A x B is the set whose elements are 

the ordered pairs 

( 1 , 1 ) ,  ( 1 , 5 ) ,  (2, I ), (2, 5 ) ,  (3 ,  1) , ( 3 , 5 ) .  

We may visualize the set A x B as the set of six points i n  the plane with the coordinates that 
we have just listed . 

We often draw a diagram (such as Figure 1 . 1 .2) to indicate the Cartesian product of 
two sets A and B. However, it should be realized that this diagram may be a simplification. 
For example, if A := {x ElR. : 1 $x$2} and B := {y ElR. : O$y$ 1 or 2$y$3 } , 
then instead of a rectangle, we should have a drawing such as Figure 1. 1 .3 . 

B b ------., (a , b) I I I I I a 

AxB 

A 
Figure 1 .1 .2 

AxB 

1 2 
Figure 1 .1 .3 

We will now discuss the fundamental notion of a function or a mapping. 
To the mathematician of the early nineteenth century, the word "function" meant a 

definite formula, such as f (x) :=  x2 + 3x - 5 , which associates to each real number x 
another number f(x) . (Here, f(O) = --5 ,  f(J) = - 1 , f(5) = 35 . )  This understanding 
excluded the case of different formulas on different intervals, so that functions could not be 
defined "in pieces ." 

As mathematics developed, it became clear that a more general definition of 
"function" would be useful. It also became evident that it is important to make a clear 
distinction between the function itself and the values of the function. A revised definition 
might be: 

Une application f : A! B à partir d’un ensemble A vers un ensemble B établit une relation
entre tout ou partie des éléments de A et ceux de B. L’application f associe un sous-ensemble
de A appelé domaine de définition de f à un sous-ensemble de B appelé image de f . Plus
précisément, chaque élément x du domaine de définition de f est associé par l’application f à
un unique élément de B, noté f(x) : f(x) est l’image de x par f . On appelle f(x) l’image de x
par f . Le domaine de définition de f est défini grâce à cette notion :

Df = {x ∈ A | f(x) existe}

tandis que l’image de f est le sous-ensemble de B formé de tous les éléments du type f(x) c’est
à dire :

Im(f) = {f(x) | x ∈ Df} ⊂ B

Maintenant soit y ∈ B, et supposons qu’il existe x ∈ A tel que son image par f est y, c’est à
dire tel que y = f(x). On dit que x est UN antécédent – ou UNE préimage – de y par f (car en
effet l’élément y peut admettre plusieurs antécédents).
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Remarque 1.3. Lorsque A = R ou C (ou tout intervalle de R, domaine de C), et B = R ou C,
on parle de fonction plutôt que d’application.
Exemple 1.4. Prenons par exemple la fonction f : R ! R, x 7! 1

x2 . Le domaine de définition
de f est Df = R∗ car la fonction n’est pas définie en 0. L’image de f est Im(f) = R∗

+ c’est à
dire l’ensemble des nombres réels strictement positifs. Les nombres strictement négatifs et 0 ne
sont pas atteignables : il n’existe aucun réel non-nul x ∈ R tel que 1

x2 ≤ 0. Prenons y > 0, les
antécédents de y sont au nombre de deux : √

y et −√
y.

Si U ⊂ A est un sous-ensemble de A, f(U) est le sous ensemble de Im(f) ⊂ B formé par
toutes les images des points de U ; c’est l’image directe de U :

f(U) = {y ∈ B | ∃x ∈ U tel que y = f(x)} ⊂ Im(f) ⊂ B

Si V ⊂ B est un sous-ensemble de B, alors on définit f−1(V ) comme étant le sous-ensemble de
Df ⊂ A formé de toutes les préimages/antécédents des éléments de V , c’est l’image réciproque
de V :

f−1(V ) = {x ∈ A | f(x) ∈ V } ⊂ Df ⊂ A

Attention, le f−1 dans le membre de gauche ici est une notation, qui n’est pas détachable de V
dans ce cadre précis où on étudie l’image réciproque. Ce n’est que si f : A! B est bijective (voir
ci-dessous), qu’on peut définir une fonction inverse avec une notation indépendante f−1 : B ! A.

1 . 1  SETS AND FUNCTIONS 7 

If H is a subset of B, then the inverse image of H underfis the subsetf- 1 (H) of A given by 

f -I (H) := {x E A : f(x) E H} .  

Remark The notationf- 1 (H) used in this connection has its disadvantages. However, we 
will use it since it is the standard notation. 

Thus, if we are given a set E � A, then a point y 1 E B i s  in the direct image f(E) if and 
only if there exists at least one point x1 E E such that y 1 = f(x1 ) .  Similarly, given a set 
H � B, then a point x2 is in the inverse imagef- 1 (H) if and only ifY2 :=f(x2) belongs to H. 
(See Figure 1 . 1 .7 . )  

E 
f � 

Figure 1 .1 .7 Direct and inverse images 

1 .1 .8 Examples (a) Letf : IR. ---> IR. be defined by f(x) : =  x2. Then the direct image of 
the set E : =  {x : 0::::; x::::; 2 }  is the set f(E) = {y : 0::::; y::::; 4} .  

If  G :=  {y : 0::::; y::::; 4} ,  then the inverse image of G is the setf -I (G) = {x : -2::::; 
x::::; 2 } .  Thus, in this case, we see that f - 1(f(E) ) =f. E. 

On the other hand, we havef(f -I (G)) = G. But if H := {y : - 1  ::::; y ::::; 1 }, then we 
have f (f - 1 (H) ) = {y : 0::::; y ::::; 1 }  =f. H. 

A sketch of the graph off may help to visualize these sets. 
(b) Let f :  A ---> B, and let G, H be subsets of B. We will show that 

/-1 (G n H) � r-'(G) nj - 1 (H) . 

For, if x E j  - I ( G n H) , thenf(x) E G n H, so thatf(x) E G andf(x) E H. But thi s  implies 
that x E j  -I (G) and x E j  - I (H) , whence x E j  -I (G) nj -I (H) . Thus the stated impli­
cation is proved. [The opposite inclusion is also true, so that we actually have set equality 
between these sets; see Exercise 1 5 . ] 0 

Further facts about direct and inverse images are given in the exercises. 

Special Types of Functions --------------------­
The following definitions identify some very important types of functions. 

1 .1 .9 Definition Let f :  A """-+ B be a function from A to B. 

(a) The function f is said to be injective (or to be one-one) if whenever x1 =f. x2, then 
f(x1 ) =f. f(x2 ) .  Ifj is an injective function, we also say that f is an injection. 

(b) The functionfis  said to be surjective (or to map A onto B) if f(A) = B; that is , if the 
range R(f) = B. Iff is a surjective function, we also say that f is a surjection. 

Exemple 1.5. A la suite de l’exemple 1.4, où nous avions A = B = R, et f : x 7! 1
x2 , de façon que

Df = R∗ et Im(f) = ]0,+∞[. Soit U = [−1, 1] ⊂ A et V =]−1, 2[ ⊂ B. L’ensemble f(U) ⊂ Im(f)
est formé de tous les éléments y dont une préimage au moins est dans U ; dans ce cas on a que
f(U) = [−1, 0[ ∪ ]0, 1]. L’ensemble f−1(V ) ⊂ Df est formé de tous les éléments x ∈ Df tels que
f(x) ∈ V . Dans notre cas, comme Im(f) ∩ V = ]0, 2[ donc f−1(V ) = f−1(

]0, 2[
)
, ce qui nous

donne f−1(V ) =] − ∞,
√

2[ ∪ ]
√

2,+∞[.

On note f |U : U ! A la restriction de l’application f au sous-ensemble U . C’est juste la
même application, mais on a arbitrairement restreint son ensemble de départ, donc son image
sera certainement plus petite aussi. En particulier, on a les résultats suivants :

Df |U = U ∩Df et Im (f |U ) = f(U)

L’application obtenue en restreignant la portée de f au seul sous-ensemble V est appelée la
corestriction de f au sous-ensemble V , et est notée f |V : A! V . C’est l’unique fonction induite
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par f dont le domaine de définition ne contient que les éléments de Df ⊂ A qui sont envoyés
dans V . Donc on a en particulier :

Df |V = f−1(V ) ∩Df et Im
(
f |V

)
= Im(f) ∩ V

Pour finir, on note BA l’ensemble des applications de A dans B (quelles qu’elles soient).
Une application f : A! B est surjective si B = f(A), c’est à dire si Im(f) = B, c’est à dire

si tous les points de B sont atteints par l’application. Une application f : A! B est injective si
tout point de l’image de f n’admet qu’au plus un seul antécédent, ce qu’on peut écrire comme
ceci :

∀x, x′ ∈ Df , f(x) = f(x′) =⇒ x = x′

La contraposée de cette implication se lit donc :

∀x, x′ ∈ Df , x ̸= x′ =⇒ f(x) ̸= f(x′)

Autrement dit l’application ne perd aucune information de Df . Une application f : A ! B
est bijective si elle est à la fois injective et surjective. Dans ce cas, tout point de A est envoyé
dans B et tout point de B est l’image par f d’un unique antécédent. On peut alors définir une
application de B vers A, appelée inverse de f , et notée f−1 : B ! A, telle que :

∀x ∈ A, f−1(f(x)) = a et ∀ y ∈ B, f(f−1(y)) = y

Ces deux identités justifient le nom d’inverse. D’autre part on voit que si f : A! B est bijective,
l’application f−1 : B ! A est elle aussi bijective, et

(
f−1)−1 = f .

Exemple 1.6. La fonction f : R ! R, x 7! x3 − x est surjective mais pas injective, car 0 a trois
antécédents. La fonction tangente est une bijection entre

]
−π

2 ,
π
2

[
et R.

Une autre façon de voir l’application f : A ! B est de remarquer que f est la donnée d’un
sous-ensemble Gf ⊂ A×B de l’ensemble produit A×B. On appelle Gf le graphe de f , et il est
défini par :

Gf = {(x, y) ∈ A×B | y = f(x)}

C’est à dire que Gf est l’ensemble de toutes les paires d’éléments (x, y) ∈ A× B tels que x est
un antécédent de y. Maintenant on voit que les sous-ensembles Gf ⊂ A × B du type "graphe
d’une application f" sont d’un type vraiment particulier. Il existe plein de sous-ensemble de
A×B qui ne peuvent pas s’écrire comme le graphe Gf d’une application f donnée. L’exemple le
plus simple est de prendre x ∈ A fixé, alors le sous-ensemble G = {x} ×B est un sous-ensemble
de A × B mais il n’existe pas d’application f : A ! B tel que G = Gf , c’est parce qu’il est
impossible d’atteindre l’ensemble de B à partir du seul élément x ∈ A, quelle que soit la fonction
choisie.
Exemple 1.7. Par exemple, si f : R ! R est une
fonction réelle, alors le graphe de f est la courbe de
R2 = R × R telle que y = f(x) ; c’est donc bien le
graphe de f au sens usuel !
Si φ : N ! N est la fonction qui envoie n sur 2n,
alors le graphe de φ est le sous-ensemble de R2 formé
des points à coordonnées entières positives ou nulles
localisés sur la droite d’équation y = 2x (ce sont les
points rouges sur l’image).

Pour finir ce chapitre, nous nous intéressons à des sous-ensembles particuliers de A × A,
c’est à dire que nous allons nous limiter au cas B = A. Dans ce cas particulier, une application
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naturelle est l’application identité idA : A ! A, x 7! x. Le graphe de cette application est
un sous-ensemble de A × A, qu’on appelle la diagonale de A et qu’on note ∆A, autrement dit
∆A = GidA

. Le nom vient du fait que si A = R, alors le graphe de la fonction identité idR : x 7! x
est le sous-ensemble de R2 formé des points (x, y) tels que y = x. Autrement dit, c’est la droite
d’équation y = x : la diagonale dans R2. Nous avons donc ici une caractérisation géométrique
d’une notion ensembliste (la fonction identité). En voici une autre : commençons par dire qu’un
sous-ensemble G ⊂ A×A est symétrique par rapport à la diagonale ∆A si pour tout x, y ∈ A, on
a (x, y) ∈ G =⇒ (y, x) ∈ G. Lorsque A = R, un sous-ensemble G ⊂ R2 qui est symétrique dans
ce sens, est réellement symétrique par rapport à la droite d’équation y = x. Nous voyons que
nous pouvons donner des interprétations géométriques à des notions analytiques, algébriques ou
ensemblistes, ce qui offre des perspectives différentes, ouvre des portes, etc. C’est une illustration
des liens forts entre différents domaines de mathématiques.

Tournons nous maintenant vers un autre type de sous ensemble spécifique de A × A. On
appelle relation binaire sur A une propriété portant sur les couples d’éléments de A. On note
en général une relation binaire R, et on écrit xR y pour dire que la paire d’éléments (x, y) a
la propriété définie par la relation binaire R. Nous connaissons déjà des relations binaires, par
exemple "être égal à", "être inférieur ou égal à", etc. En effet lorsque A = R : une paire d’éléments
(x, y) satisfait la propriété "être égal à" si l’élément de gauche x est égal à celui de droite y,
et on note x = y. Une paire d’éléments (x, y) satisfait la propriété "être inférieur ou égal à" si
l’élément de gauche x est inférieur ou égal à celui de droite y, et on symbolise cette relation
par x ≤ y. Lorsque A = N∗ la division euclidienne est une relation binaire car la paire d’entiers
naturels (n,m) satisfait la propriété "divise" si l’entier de gauche n divise l’entier de droite m.
On note cette relation n|m (avec une barre verticale).

Vu depuis la perspective des paires d’éléments, nous voyons qu’une relation binaire R sur
A définit un sous-ensemble du produit cartésien A×A, qu’on notera GR. Ce sous-ensemble est
formé de toutes les paires (x, y) ∈ A×A telles que xRy, c’est à dire :

GR = {(x, y) ∈ A×A tel que xRy}

De façon réciproque, tout sous-ensemble G du produit cartésien A × A définit une relation
binaire RG, par la convention qu’une paire (x, y) de G peut aussi s’écrire xRG y, où RG traduit
la notion de "relation" entre x et y, celle que (x, y) ∈ G :

xRGy est définie si et seulement si (x, y) ∈ G

Parler de relation binaire ou de sous-ensemble de A×A est donc équivalente et on peut facilement
voir que :

GRG
= G et RGR = R

Exemple 1.8. Le signe égal sur R est une relation binaire car on écrit x = y si et seulement si x
et y sont identiques. Le sous-ensemble G= ⊂ R × R associé à la relation binaire = (c’est à dire
ici que R est le signe =) est l’ensemble des paires (x, y) ∈ R × R telles que x = y. C’est à dire
c’est la droite d’équation y = x dans R2, c’est la diagonale ∆R ! On observe donc – mais c’est
un cas particulier – que la diagonale de R2 est à la fois : le graphe GidR de la fonction identité,
et l’ensemble G= associé à la relation binaire symbolisant le signe =.
Exemple 1.9. Le sous ensemble G≤ ⊂ R2 associé à la relation binaire ≤ est la partie du plan au
dessus de la diagonale d’équation y = x (incluse). En effet, (x, y) ∈ G≤ si x ≤ y, donc lorsque
l’ordonnée y est plus grande ou égale à l’abscisse x donc on est nécessairement au dessus de la
diagonale ou dessus.
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Exemple 1.10. Soit G ⊂ N∗ ×N∗ le sous-ensemble de
N∗ × N∗ formé des points rouges. Il s’écrit donc :

G =
{
(1, 1), (1, 2), (1, 3), . . . , (2, 2), (2, 4), (2, 6), . . . ,

(3, 3), (3, 6), (3, 9), . . . , (4, 4), (4, 8), . . . ,
(5, 5), (5, 10), . . . , etc.

}
Ce sous-ensemble induit une relation binaire sur N∗ :

mRGn ⇐⇒ (m,n) ∈ G

On voit que RG est la relation binaire "m divise n".
Les relations binaires peut parfois avoir des propriétés intéressantes. Soit R une relation

binaire sur A et soit GR le sous-ensemble de A×A associé à cette relation binaire, c’est à dire
tous les couples (x, y) d’éléments de A tels que xR y. On dit que R est :

— réflexive si ∀x ∈ A, xRx, c’est à dire si ∆A ⊂ GR ;
— symétrique si ∀x, y ∈ A, xR y =⇒ yRx, c’est à dire que GR est symétrique par rapport

à la diagonale ∆A (dans le sens défini plus haut) ;
— antisymétrique si ∀x, y ∈ A, (xR y et yRx) =⇒ x = y, c’est à dire que la seule partie

symétrique de GR est sur la diagonale ∆A ;
— transitive si ∀x, y, z ∈ A, (xR y et yR z) =⇒ xR z.
— totale si ∀x, y ∈ A, xR y ou yRx

Exemple 1.11. La relation binaire = sur R a toutes les propriétés sauf la dernière, en particulier
elle est symétrique et antisymétrique. La relation ≤ sur R est réflexive, antisymétrique, transitive
et totale tandis que la relation < est seulement transitive. La division euclidienne sur N∗ est
réflexive, antisymmétrique et transitive. Remarquons que sur Z, la division enclidienne n’est
plus antisymétrique car 1| − 1 et −1|1 mais 1 ̸= −1.

On vient donc de fournir un dictionnaire entre le domaine de l’algèbre et celui de la géométrie.
Cela nous permet d’éclairer différemment certaines notions et de parfois mieux comprendre ou
faciliter des preuves. Maintenant, dans notre cas, deux types de relations sont d’importance :

Définition 1.12. On appelle relation d’équivalence sur A tout relation binaire réflexive, symé-
trique et transitive. On appelle relation d’ordre sur A toute relation binaire réflexive, antisymé-
trique et transitive. Un ensemble muni d’une relation d’ordre est appelé ensemble ordonné. Si
la relation d’ordre est totale alors l’ensemble est totalement ordonné, sinon il est partiellement
ordonné.

Exemple 1.13. L’égalité = est une relation d’équivalence sur R. La relation binaire "inférieur
ou égal à" ≤ est une relation d’ordre sur R. Soit A un ensemble, l’inclusion ⊂ est une relation
d’ordre sur l’ensemble P(A) des sous-ensembles de A. Sur l’ensemble des nombre entiers naturels,
la division est une relation d’ordre. La relation d’ordre ≤ est totale, et les deux dernières relations
d’ordre sont partielles.

Soit A un ensemble et R une relation d’équivalence sur A. On appelle classe d’équivalence
de l’élément x ∈ A par rapport à la relation d’équivalence R le sous ensemble Cx ⊂ A défini
par :

Cx = {y ∈ A tel que xRy}

Nous prouverons en exercice que les classes d’équivalences de R sur A sont soit disjointes soit
confondues, c’est à dire :

1. si x et y ne sont pas reliés par la relation d’équivalence R, alors Cx ∩ Cy = ∅
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2. si xRy, alors Cx = Cy
Si d’autre part la relation d’équivalence est totale alors les classes d’équivalence (Cx)x∈A forment
une partition de A, c’est à dire une famille de sous ensemble qui sont deux à deux disjoints mais
tels que tout point de A appartient à au moins un de ces sous-ensembles.
Exemple 1.14. Sur la Terre, on peut définir la re-
lation d’équivalence suivante entre deux points
de la Terre : un point A et un point B de la Terre
sont équivalents si et seulement si ils possèdent
la même latitude. Les classes d’équivalence de
cette relation d’équivalence sont l’ensemble des
points de même latitude, c’est à dire les lignes
parallèles sur la Terre. A la latitude de ±π

2 , les
classes d’équivalence sont des points – les pôles
Nord et Sud – car il sont seuls dans leur classe
d’équivalence : il n’y a aucun autre point équi-
valent à chacun d’entre eux.
Exemple 1.15. Soit a ∈ R et soit ∼ la relation d’équivalence définie sur R2 par la relation
suivante :

(u, v) ∼ (x, y) si et seulement si y − v = a(x− u)

Prenons le point (0, 0) de R2 et décrivons sa classe d’équivalence. C’est l’ensemble des points
(x, y) tels que y−0 = a(x−0), c’est à dire la droite y = ax, de coefficient directeur a et passant par
l’origine (0, 0), comme on pouvait s’y attendre. Maintenant, pour un point général (u, v) ∈ R2,
décrivons sa classe d’équivalence. C’est l’ensemble des points (x, y) tels que y−v = a(x−u), c’est
à dire la droite y = ax+ (v− au), de coefficient directeur a et d’ordonnée à l’origine b = v− au.
Cette droite est parallèle à la première, et passe par le point (u, v). Elle est donc confondue avec
la première si (u, v) ∼ (0, 0), ou bien elle est disjointe avec la première si (u, v) ≁ (0, 0). Les
classes d’équivalence de la relation d’équivalence ∼ sont dont les droites parallèles de coefficient
directeur a.

Soit A un ensemble ordonné, c’est à dire muni d’une relation d’ordre (notée R), et soit B ⊂ A
un sous-ensemble. Un majorant de B (par rapport à la relation d’ordre R) est un élément M de
A tel que tout x ∈ B satisfait xRM . Un minorant de B (par rapport à la relation d’ordre R) est
un élément m de A tel que tout x ∈ B satisfait mRx. Un sous-ensemble majoré et minoré est
dit borné. Supposons que B contient un de ses majorants – disons M – c’est à dire que M ∈ B
et que tout x ∈ B, on a xRM . On appelle M le plus grand élément de B. Il est unique en effet
car si jamais il existe M ′ ∈ B, lui aussi majorant de B, alors nous avons MRM ′ par définition
car M ′ est un majorant de B, mais aussi M ′RM car M est un majorant de B. Par antisymétrie
de la relation d’ordre, nous avons alors M = M ′. De façon similaire, on dit qu’un élément de B
est le plus petit élément de B si c’est un minorant de B ; il est lui aussi unique. Le plus grand
et le plus petit élément n’existent pas forcément !
Exemple 1.16. Prenons A = N∗ muni de la relation d’ordre partiel | (la division euclidienne).
Prenons B = {1, 2, 3}. Un minorant m ∈ N∗ de B (par rapport à la relation d’ordre "division
euclidienne") est caractérisé par le fait que m divise tous les éléments de B, c’est à dire m|1,
m|2 et m|3. Seulement m = 1 satisfait la condition m|1 (et automatiquement les autres), donc
m = 1 est l’unique minorant de B. Comme c’est un élément de B, c’est le plus petit élément
de B. Un majorant M ∈ N∗ de B (par rapport à la relation d’ordre "division euclidienne") est
caractérisé par la propriété suivante : ∀n ∈ B, n|M . Autrement dit, M est divisible par 1 (c’est
toujours le cas), 2 et 3, c’est donc un multiple de 6. Les majorants de B sont donc 6, 12, 18, 24,
etc. Aucun de ces multiples de 6 n’appartient à B donc B n’a pas de plus grand élément. Si on
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prend C = B ∪ {6} le sous-ensemble C a les mêmes majorants et minorants que B, mais comme
6 ∈ C, alors C possède un plus grand élément.
Exemple 1.17. Prenons A = R muni de la relation d’ordre total ≤. Prenons B = [0, 1[. Un
minorant de l’ensemble [0, 1[ est un nombre réel m inférieur ou égal à tout élément de [0, 1[,
donc nécessairement m ≤ 0. L’ensemble des minorants de [0, 1[ est donc ] − ∞, 0]. Comme 0 est
dans [0, 1[, on déduit que 0 est le plus petit élément de [0, 1[. Un majorant de l’ensemble [0, 1[
est un nombre réel M supérieur ou égal à tout élément de [0, 1[, donc nécessairement 1 ≤ M .
L’ensemble des majorants de [0, 1[ est donc [1,+∞[. Aucun de ces majorants n’appartient à [0, 1[
donc [0, 1[ n’a pas de plus grand élément.

Bien entendu, tout élément de A qui est plus grand – par rapport à la relation d’ordre R
– qu’un majorant de B est lui aussi un majorant de B (par transitivité de la relation binaire).
L’ensemble des majorants de B forme donc un sous-ensemble de A. Si l’ensemble des majorants
de B admet un plus petit élément, il est appelé borne supérieure de B et noté sup(B). Similaire-
ment, tout élément plus petit qu’un minorant de B est lui aussi un minorant de B. L’ensemble
des minorants de B forme donc un sous-ensemble de A. Si l’ensemble des minorants de B admet
un plus grand élément, il est appelé borne inférieure de B et noté inf(B). Si A est totalement
ordonné, on dit que A "a la propriété de la borne supérieure" si tout sous-ensemble non vide
majoré de A a une borne supérieure.

Exemple 1.18. Reprenons le contexte de l’exemple 1.16. L’ensemble des minorants de B =
{1, 2, 3} est réduit à un élément {1}. Un majorant de 1 est un nombre entier naturel M tel que
1|M . C’est à dire n’importe quel entier naturel, 1 compris. L’ensemble des majorants de {1} est
donc N∗, qui contient 1. 1 est donc le plus grand élément de {1} par rapport à la relation d’ordre
partiel "division euclidienne" donc la borne inférieure de B = {1, 2, 3}. L’ensemble des majorants
de B = {1, 2, 3} est l’ensemble E = {6, 12, 18, 24, . . .} des multiples de 6. Les minorants de E
(par rapport à la division euclidienne) sont les entiers naturels qui divisent tous les éléments de
E, c’est à dire les nombres qui divisent 6 car tous les éléments de E sont des multiples de 6. Les
diviseurs de 6 sont 1,2,3 et 6. Le nombre 6 – minorant de E – appartient à E donc c’est le plus
petit élément de E. On en déduit que la borne supérieure de B est 6. On a donc inf(B) = 1 ∈ B
et sup(B) = 6 /∈ B.
Exemple 1.19. Reprenons l’exemple 1.17. L’ensemble des minorants de B = [0, 1[ est ] − ∞, 0].
Le plus grand élément de cet ensemble est 0, donc la borne inférieure de [0, 1[ est 0, et on note
inf

(
[0, 1[

)
= 0. Ce nombre appartient à [0, 1[. L’ensemble des majorants de [0, 1[ est [1,+∞[. Le

plus petit élément de cet ensemble est 1, donc la borne supérieure de [0, 1[ est donc 1, et on note
sup

(
[0, 1[

)
= 1. Ce nombre n’appartient pas à [0, 1[. On remarque que la borne inférieure et la

borne supérieure sont à la frontière de l’intervalle [0, 1[.
Exemple 1.20. Prenons comme exemple les ensembles A = R avec la relation d’ordre usuelle
≤. Posons B =

{
1
n , pour n ∈ N∗

}
=

{
1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .

}
. Un majorant de B est n’importe quel

nombre réel supérieur ou égal à 1. L’ensemble des majorants de B est donc [1,+∞[. Cette
ensemble des majorants a un plus petit élément – c’est 1 – qui est donc la borne supérieure de
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B, et on la note sup(B) = 1. Nous voyons en outre qu’elle est un élément de B, c’est donc le
plus grand élément de B. Un minorant de B est inférieur ou égal à 0. L’ensemble des minorants
de B est donc ] − ∞, 0]. Cet ensemble des minorants a un plus grand élément – c’est 0 – qui est
donc la borne inférieure de B, et on écrit inf(B) = 0. Par contre on voit que la borne inférieure
n’est pas un élément de B ! L’ensemble B n’a pas de plus petit élément (ça se voit).

1.2 Nombres réels

Les nombres réels ne sont pas bien définis avant le XIXème siècle. En 1820 dans son cours
pour l’Ecole Polytechnique, Cauchy se base sur "l’évidence géométrique" : l’ensemble des nombres
réels consiste à une droite infinie d’un point de vue topologique, et quand on zoome dessus on
ne voit jamais de trou. Ceci permet de faire de l’analyse de manière intuitive mais ce n’est pas
rigoureux mathématiquement. Ce n’est qu’autour des années 1860 avec les travaux de Dedekind
et Cantor que la définition topologique des nombres réels se fait rigoureusement. Dedekind
construit R comme l’ensemble des coupures de Q (voir plus bas).

L’ensemble des nombre réels possède en outre des propriétés algébriques : c’est un corps tota-
lement ordonné (et donc implicitement compatible avec les deux opérations). Pour comprendre
algébriquement le crops des nombres réels on peut commencer par les entiers N qu’on muni
de l’addition +. Si on admet les inverse par rapport à l’addition on obtient les entiers relatifs
Z (c’est un groupe abélien/commutatif), avec 0 comme élément neutre de l’addition. On peut
ajouter la multiplication × – avec 1 comme élément neutre de la multiplication – et Z devient
alors un anneau. Si on ajoute ensuite tous les inverses q −! 1/q et leurs multiples, on obtient
le corps des fractions – ou nombres rationnels, noté Q). Un corps est un anneau c’est à dire un
ensemble muni d’une opération + et d’une opération × (les deux sont commutatives) dont tous
les éléments sauf 0 sont inversibles par rapport à la multiplication. Il existe un corps de nombres
– appelé nombre réels et noté R – qui est la plus petite extension topologique de Q dans le sens
où R n’a pas de "trous". Les nombres de R\Q sont appelés nombres irrationnels La construction
de R est difficile à axiomatiser donc on ne la donne pas.

Pour énoncer les propriétés du corps des réels, nous devons affiner ce que nous savons sur les
relations d’ordre. La relation d’ordre "être inférieure ou égale à" sur dénotée ≤ est une relation
d’ordre total car deux éléments x, y ∈ R sont toujours ordonnés : soit x ≤ y ou bien y ≤ x.
D’autre part, cette relation ensembliste a d’autre part les propriétés suivantes de compatibilité
avec les opérations algébriques addition et multiplication :

— pour tout x ≤ y et w ≤ z, on a x+ w ≤ y + z, et
— pour tout x ≤ y et c > 0, on a cx ≤ cy.

Le corps R est totalement ordonné, et de même que le corps des nombres rationnels Q. Les corps
des nombres rationnels et des nombres réels sont aussi Archimédiens :

Lemme 1.21. Propriété d’Archimède : pour tous, 0 < x < y, il existe n ∈ N tel que y < nx.

Cela a comme conséquence d’une part que le corps des réels (et celui des rationnels) possède
la division euclidienne avec quotient entier. Soit x, y ∈ R avec y > 0, il existe q ∈ Z unique tel
que qy ≤ x < (q + 1)y. L’autre conséquence est que la fonction partie entière d’un nombre réel
est bien définie.

Définition 1.22. Soit x ∈ R, on appelle partie entière de x et on dénote E(x) le plus grand
entier relatif inférieur ou égal à x :

E(x) ≤ x < E(x) + 1

La partie entière définie une fonction par escalier E : R ! N, x 7! E(x), qu’on appelle fonction
partie entière.
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La valeur absolue d’un réel x est notée |x|, si x est positif, |x| = x et si x est négatif,
|x| = −x ≥ 0. On appelle la distance entre x et y quelconques, la valeur absolue |y − x|. Pour
tout réel strictement positif r on a :

|x| ≤ r ⇐⇒ −r ≤ x ≤ r

Voici deux propriétés fondamentales de la valeur absolue, pour tout x, y ∈ R :

|xy| = |x||y|
|x+ y| ≤ |x| + |y| inégalité triangulaire

Le module des nombres complexes a les mêmes propriétés. L’inégalité triangulaire prend sens
dans C (dessiner ce que cela veut dire). On a d’autre part l’inégalité suivante, parfois utile :

∀x, y ∈ R
∣∣|x| − |y|

∣∣ ≤ |x− y|

Soit a < b ∈ R, le segment – ou intervalle fermé – [a, b] est l’ensemble des réels x tels que
a ≤ x ≤ b :

[a, b] = {x ∈ R tel que a ≤ x ≤ b}

L’intervalle ouvert ]a, b[ est l’ensemble des réels x tels que a < x < b

[a, b] = {x ∈ R tel que a < x < b}

Si c’est fermé à l’une des extremités on parle d’intervalle semi-ouvert (ou semi-fermé). Soit a ∈ R,
on peut aussi définir les deux demi-droites ouvertes suivantes :

] − ∞, a[ = {x ∈ R tel que x < a} et ]a,+∞[ = {x ∈ R tel que x > a}

Les demi-droites fermées sont similairement données par :

] − ∞, a] = {x ∈ R tel que x ≤ a} et [a,+∞[ = {x ∈ R tel que x ≥ a}

Attention les symboles +∞ et −∞ ne sont pas des éléments de R. On considère que les demi-
droites ouvertes sont des intervalles ouverts, et les demi-droites fermées sont des intervalles
semi)ouverts. Dans la suite un intervalle I pourra désigner un segment, un intervalle ouvert ou
un intervalle semi-ouvert. Nous allons maintenant donner une caractérisation topologique des
intervalles de R, qui veut dire qu’ils ne sont pas discontinus.

Définition 1.23. Soit A ⊂ R un sous-ensemble de R. On dit que A est convexe si, pour tout
x < y deux éléments de A le segment [x, y] est inclus dans A, i.e. si ∀x < y ∈ A, [x, y] ⊂ A.

Exemple 1.24. Le sous-ensemble A = [0, 1[∪{2} n’est pas convexe car si on prend x = 0 et y = 2,
deux points de A tels que x < y, on observe que le segment [x, y] n’est pas inclus dans A. On
voit que le problème vient de la discontinuité de A. De même Q n’est pas convexe.

Proposition 1.25. Les intervalles sont les convexes de R, c’est à dire que tout intervalle est
convexe, et que si un sous-ensemble de R est convexe alors c’est un intervalle.

Nous avons besoin des notions topologiques suivantes, qui seront très utiles par la suite. On
appelle voisinage du point x ∈ R tout sous-ensemble V de R qui contient un intervalle ouvert
contenant x, autrement dit :

V est un voisinage de x ⇐⇒ ∃ δ > 0 tel que ]x− δ, x+ δ[ ⊂ V
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On appelle voisinage de +∞ (resp −∞) tout sous-ensemble V de R qui contient un intervalle
ouvert avec borne supérieure +∞ (resp. −∞), autrement dit :

V est un voisinage de +∞ ⇐⇒ ∃M ∈ R tel que ]M,+∞[ ⊂ V

V est un voisinage de −∞ ⇐⇒ ∃m ∈ R tel que ] − ∞,m[ ⊂ V

Notons que la notion de voisinage de +∞ est valide aussi sur N si on considère les ensembles du
type N∩ ]E(M),+∞[= {E(M) + 1, E(M) + 2, E(M) + 3, . . .}.
Exemple 1.26. Par exemple, A = [0, 1[∪{2} n’est pas un voisinage de 0, de 1, ni de 2, mais c’st
un voisinage de tous les points du segment ouvert ]0, 1[. Tout d’abord 1 /∈ A donc d’après la
définition, A ne peut pas être un voisinage de 1. Pour 0 et 2, quelque soit ϵ > 0, les intervalles
] − ϵ,+ϵ[ et ]2 − ϵ, 2 + ϵ[ ne sont pas inclus dans A donc d’après la définition A n’est pas un
voisinage de 0 et 2. Maintenant soit x ∈ ]0, 1[⊂ A, alors posons ϵ = min

(
x
2 ,

1−x
2

)
. Dans ce cas,

l’intervalle ]x− ϵ, x+ ϵ[ est strictement inclus dans ]0, 1[ donc dans A, donc A est un voisinage
de x. L’ensemble A est donc un voisinage de chacun des points de ]0, 1[, mais pas de chacun de
ses points car n’est pas un voisinage de 0 et 2.

Définition 1.27. Un sous-ensemble A de R est dit ouvert si il est le voisinage de chacun de
ses points, i.e. si pour tout x ∈ A, il existe ϵ > 0 tel que ]x− ϵ, x+ ϵ[ ⊂ A. Un sous-ensemble B
de R est dit fermé si son complémentaire Bc est ouvert.

Exemple 1.28. L’ensemble A = [0, 1[∪{2} n’est pas ouvert car A n’est pas un voisinage de 0 et 2,
par contre nous avons démontré que ]0, 1[ est un voisinage de chacun de ses points dans l’exemple
1.26. L’intervalle ouvert ]0, 1[ est donc un ouvert. Plus généralement, un intervalle ouvert est
ouvert au sens topologique (ci dessus), un segment est fermé au sens topologique (ci-dessus).
Remarque 1.29. L’ensemble des sous-ensembles ouverts de R est appelé la topologie de R et est
notée T (R). Par convention on pose que l’ensemble vide ∅ est ouvert. En particulier, nous avons
que :

T (R) ⊂ P(R)
C’est à dire que la topologie est un sous-ensemble de l’ensemble des parties de R.

Le corps des nombres réels R possède la propriété suivante, que le corps des rationnels Q ne
possède pas (on ne la prouvera pas) :

Propriété des segments emboîtés. S’il existe une suite de segments I1, I2, I3, . . . , In, . . . de
R telle que pour tout n ∈ N, on a In+1 ⊂ In, c’est à dire telle que :

. . . ⊂ In+1 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I2 ⊂ I1 ⊂ I0,

alors il existe x ∈ R tel que x ∈ In, pour tout n ∈ N (tous les segments In ont au moins un
points en commun).48 CHAPTER 2 THE REAL NUMBERS 

[ [ [ [ [ Is 

/2 
Figure 2.5.1 Nested intervals 

nested, but there is no common point, since for every given x > 0, there exists (why?) 
m E N  such that 1 /m < x so that x tf_ lm . Similarly, the sequence of intervals 
K n : = ( n, oo) ,  n E N, is nested but has no common point. (Why?) 

However, it is an important property of lR that every nested sequence of closed, 
bounded intervals does have a common point, as we will now prove. Notice that the 
completeness of lR plays an essential role in establishing this property. 

2.5.2 Nested Intervals Property If In = [an , bn] ,  n E N, is a nested sequence of closed 
bounded intervals, then there exists a number � E lR such that � E In for all n E N. 

Proof Since the intervals are nested, we have In <;;; I 1 for all n E N, so that an :::; b 1 for all 
n E N. Hence, the nonempty set {an : n E N} is bounded above, and we let � be its 
supremum. Clearly an :::; � for all n E N. 

We claim also that � :::; bn for all n .  This is established by showing that for any 
particular n, the number bn is an upper bound for the set { ak : k E N} . We consider two 
cases. (i) If n :::; k, then since In � h. we have ak :::; bk :::; bn . (ii) If k < n, then since h � In , we have ak :::; an :::; bn . (See Figure 2.5 .2 . ) Thus, we conclude that ak :::; bn for all 
k, so that bn is an upper bound of the set { ak : k E N} . Hence, � :::; bn for each n E N. Since 
an :::; � :::; bn for all n, we have � E In for all n E N. Q.E.D. 

1---- Ik ----------� 

Figure 2.5.2 If k < n, then In C::: h 

2.5.3 Theorem !fin := [an , bn J , n E N, is a nested sequence ofclosed, bounded intervals 
such that the lengths bn - an of In satisfy 

inf{bn - an : n E N} =  0, 
then the number � contained in In for all n E N is unique. 

Proof If 1J : =  inf { bn : n E N}, then an argument similar to the proof of 2.5 .2 can be used 
to show that an :::; 1J for all n, and hence that � :::; 1J. In fact, it is an exercise (see Exercise 1 0) to 
show that x E In for all n E N if and only if � :::; x :::; 1]. If we have inf{ bn - an : n E N} = 0, 
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Attention la propriété ne compte pas si les intervalles In sont semi-ouverts. Par exemple si
on prend In =]0, 1

n ] pour tout n ≥ 1, alors ces intervalles semi-ouverts sont emboîtés, c’est à
dire que In+1 ⊂ In. Cependant leur intersection est l’ensemble vide, et on note :

+∞⋂
n=0

In = ∅

En effet, pour tout x ∈ ]0, 1], il existe N ∈ N tel que 1
N < x. Dans ce cas, pour tout n ≥ N ,

l’intervalle In ne contient pas x. La propriété des segments emboités nous permet de montrer le
résultat important suivant :

Théorème 1.30. Les nombres réels sont indénombrables.

Démonstration. Les personnes intéressées peuvent aller voir la preuve (très belle) page 49 du
livre de Bartle et Sherbert, Introduction to Real Analysis (4th Edition).

De cela nous déduisons que les nombres irrationnels R\Q sont indénombrables, car s’ils
étaient dénombrables, alors Q∪R\Q = R le serait aussi comme union d’ensembles dénombrables,
ce qu’il n’est pas. Nous avons en outre le joli résultat suivant :

Proposition 1.31. — Q est dense dans R : dans tout intervalle ouvert non vide de R, il y
a une infinité (dénombrable) de nombres rationnels.

— R\Q est dense dans R : dans tout intervalle ouvert non vide de R, il y a une infinité
(indénombrable) de nombres irrationnels.

Démonstration. Il suffit de faire la preuve sur un intervalle ouvert ]a, b[, où a < b. Par la
propriété d’Archimède, il existe q ∈ N tel que 0 < 1 < q(b − a). Notons p = E(qa) + 1. On a
donc qa < p ≤ qa + 1 < qa + q(b − a) = qb donc il vient que qa < p < qb donc a < p/q < b. Il
existe un rationnel dans ]a, b[.

Du fait que tout intervalle ouvert non vide contient un rationnel, appliquons ce résultat sur
l’intervalle ouvert ]a−

√
2, b−

√
2[. Il existe un rationnel r ∈ Q tel que r ∈]a−

√
2, b−

√
2[. On a

donc a < r+
√

2 < b, mais comme le nombre
√

2 est irrationnel, et que la somme d’un rationnel
et d’un irrationnel est irrationnel, on déduit qu’un irrationnel est dans l’intervalle ouvert ]a, b[.

Maintenant montrons qu’il y en a une infinité de chaque dans l’intervalle. Soit N ∈ N. Posons
l = b− a > 0 et partageons l’intervalle ]a, b[ en N intervalles de longueur l/N (avec coupures) :]

a, a+ l

N

[
,

]
a+ l

N
, a+ 2l

N

[
,

]
a+ 2l

N
, a+ 3l

N

[
, . . . ,

]
a+ (N − 1)l

N
, b

[
Dans chacun de ces intervalles, il y a au moins un rationnel et un irrationnel. et ces intervalles
sont disjoints deux à deux. Il y a donc au moins N rationnels et N irrationnels dans l’intervalle
]a, b[. Ceci étant vrai quel que soit l’entier N , on en déduit qu’il y a une infinité (dénombrable)
de nombre rationnels et de nombre irrationnels dans l’intervalle.

D’autre part, la propriété des segments emboités est équivalente à la propriété très importante
suivante (que nous ne démontrerons pas), possédée par R et pas par Q :

Propriété de la borne supérieure (ou inférieure). Toute partie non vide majorée admet
une borne supérieure. De façon équivalente, toute partie non vide minorée admet une borne
inférieure.
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Soit A un sous ensemble non-vide de R. Un majorant (resp. minorant) de A est un réel M
(resp. m) tel que ∀ a ∈ A, a ≤ M (resp. m ≤ a). Le plus petit (resp. grand) des majorants
(resp. minorants) de A – s’il existe – est appelé la borne supérieure (resp. inférieure) de A
et noté sup(A) (resp. inf(A)). Si A est majoré, l’ensemble des majorants de A forme la demi-
droite fermée à gauche [sup(A),+∞[. Si A est minoré, l’ensemble des minorants de A forme la
demi-droite fermée à droite ] − ∞, inf(A)].

Suprema and Infima 

2.3 THE COMPLETENESS PROPERTY OF JR. 37 

We now introduce the notions of upper bound and lower bound for a set of real numbers . 
These ideas will be of utmost importance in later sections. 

2.3.1 Definition Let S be a nonempty subset of R 
(a) The set S is said to be bounded above if there exists a number u E IR such that s :::; u 

for all s E S. Each such number u is called an upper bound of S. 
(b) The set S is said to be bounded below if there exists a number w E IR such that w :::; s 

for all s E S. Each such number w is called a lower bound of S. 
(c) A set is said to be bounded if it is both bounded above and bounded below. A set is 

said to be unbounded if it is not bounded. 

For example, the set S :=  { x E IR : x < 2} is bounded above; the number 2 and any 
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set is 
not bounded below. Thus it is unbounded (even though it is bounded above). 

If a set has one upper bound, then it has infinitely many upper bounds, because if u is an 
upper bound of S, then the numbers u + 1 ,  u + 2 ,  . . . are also upper bounds of S. (A similar 
observation is valid for lower bounds . )  

In  the set of  upper bounds of  S and the set of  lower bounds of  S ,  we single out their least 
and greatest elements, respectively, for special attention in the fol lowing definition. (See 
Figure 2 .3 . 1 . ) 

s 
inf S � sup S 

/777757>75?755>5f177>>�t'*� 'k�'!4����������� � l ower bounds of S upper bounds of S 
Figure 2.3.1 inf S and sup S 

2.3.2 Definition Let S be a nonempty subset of R 
(a) If S is bounded above, then a number u is said to be a supremum (or a least upper 

bound) of s if it satisfies the conditions : 

( 1 )  u is an upper bound of S, and 
(2 ) if v is any upper bound of S, then u :::; v. 

(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower 
bound) of S if it satisfies the conditions :  

(1 ' )  w is a lower bound of S, and 
(2' ) if t is any lower bound of S, then t :::; w. 
It is not difficult to see that there can he only one supremum of a given subset S ofR 

(Then we can refer to the supremum of a set instead of a supremum.) For, suppose that u 1 
and u2 are both suprema of S. If u 1 < u2 , then the hypothesis that u2 is a supremum implies 
that u 1 cannot be an upper bound of S. Similarly, we see that u2 < u 1 is not possible. 
Therefore, we must have u 1 = u2 . A similar argument can be given to show that the 
infimum of a set is uniquely determined. 

If the supremum or the infimum of a set S exists, we will denote them by 

sup S and inf S. 

Proposition 1.32. Soit A un sous-ensemble non-vide majoré de R. La borne supérieure sup(A)
est l’unique nombre réel caractérisé par les deux propriétés suivantes :

— ∀x ∈ A, x ≤ sup(A) (la borne supérieure est un majorant de A),
— ∀ ϵ > 0, ∃x ∈ A, sup(A) − ϵ ≤ x (c’est le plus petit majorant de A)

Exemple 1.33. La partie A =
{

1 − 1
n , n ∈ N∗

}
de borne supérieure sup(A) = 1.

La propriété de la borne supérieure, et de façon équivalente celle des segments emboîtés, est
aussi équivalente au deux propriété suivantes, qui illustrent la complétude topologique de R :
c’est une droite qui n’a pas de trous, contrairement à Q qui est lacunaire/discret.

— Propriété des coupures de Dedekind Si (A,B) forme une partition de R, de façon
que ∀ a ∈ A et ∀ b ∈ B, on a a < b alors il existe un élément x0 ∈ R tel que :
- ou bien A = {a ∈ R | a ≤ x0} et B = {b ∈ R | x0 < b}
- ou bien A = {a ∈ R | a < x0} et B = {b ∈ R | x0 ≤ b}

— Propriété de convergence des suites de Cauchy Les suites de Cauchy convergent,
i.e. admettent une limite dans R.

Nous n’utiliserons pas les coupures de Dedekind, mais nous expliquerons plus tard ce que sont
les suites de Cauchy et leur lien à la convergence.

1.3 Suites, limites et comparaisons

Dans la suite, si on note K c’est pour signifier R ou C. L’étude rigoureuse des suites date
du début XIXème siècle avec le cours de Cauchy à l’Ecole Polytechnique. La définition de la
convergence à l’aide de ϵ date des années 1860 avec les travaux de Weierstrass.

Définition 1.34. Une suite est une application u : N ! K, n 7! un qui à chaque entier associe
un nombre réel ou un nombre complexe. On la note habituellement (un)n∈N ou juste (un)n, et
on appelle un le terme général.

Remarque 1.35. Attention, ne confondez pas (un)n la suite et un le terme général de rang n. La
suite est une application de N dans K, tandis que le terme général est un nombre de K.

On dit qu’une suite réelle (ou complexe) converge vers un nombre ℓ réel (ou complexe) si,
intuititvement, la suite se rapproche de ce nombre en terme de distance lorsque n devient de
plus en plus grand (tend vers l’infini).
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Figure 1 – A partir d’un rang N tous les termes de la suite sont dans l’intervalle ]ℓ− ϵ, ℓ+ ϵ[.

Définition 1.36. Soit u : N ! K une suite réelle ou complexe et soit ℓ ∈ K. On dit que
u = (un)n converge vers ℓ ou tend vers ℓ (quand n tend vers l’infini) si :

∀ ϵ > 0, ∃N ∈ N tel que ∀n ≥ N, |un − ℓ| < ϵ

Dans ce cas on appelle ℓ la limite de la suite (un)n et on note :

un −−−−!
n!+∞

ℓ ou encore lim
n!+∞

un = ℓ

On dit qu’une suite (un)n est convergente si elle converge vers une limite ℓ ∈ K ; on dit qu’elle
est divergente sinon.

Exemple 1.37. Prenons la suite u : N ! R, n 7! 1
n . Montrons qu’elle converge vers 0 avec la

définition. Soit ϵ > 0, posons N = E
(

1
ϵ

)
+ 1. Alors les propriétés de la fonction partie entière

sont telles que :
1
ϵ
< E

(1
ϵ

)
+ 1 c’est à dire 1

ϵ
< N

Ce qui donne donc, pour tout n ≥ N :

−ϵ < 0 < 1
n
<

1
N
< ϵ

On a donc, pour tout n ≥ N , |un| < ϵ, ce qui montre que la suite (un)n converge vers 0.
Remarque 1.38. Pour une suite complexe (un)n convergente vers une limite ℓ ∈ C, la partie réelle
(resp. complexe) de un tend vers la partie réelle (resp. complexe) de ℓ, c’est à dire :

un −−−−!
n!+∞

ℓ ⇐⇒

Re(un) −−−!
n!+∞

Re(ℓ)

Im(un) −−−!
n!+∞

Im(ℓ)

La convergence d’une suite complexe se ramène donc à l’étude de la convergence des suites
réelles (Re(un))n et (Im(un))n. Lorsqu’il est question de convergence, nous pouvons donc nous
concentrer sur l’étude des suites réelles, c’est à dire K = R sauf exception.
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Remarque 1.39. Pour les suites réelles, la phrase mathématique dans la définition de la conver-
gence peut se lire comme suit : la suite réelle (un)n converge vers ℓ ∈ R si u : N ! R envoie
tout voisinage de +∞ (dans N) dans un voisinage de ℓ (dans R). La notion de convergence est
une notion asymptotique, cela veut dire qu’on ne peut pas savoir si une suite converge en ne
regardant qu’un nombre fini de termes. C’est en regardant la partie de la suite dont le rang est
proche de l’infini qu’on peut seulement savoir si la suite converge. Couper les N premiers termes
d’une suite ne change ainsi pas son caractère convergent ou divergent.

Proposition 1.40. La limite d’une suite convergente est unique.

Démonstration. Comme dit plus haut, on peut se ramener au cas des suites réelles. Soit u : N !
R une suite et soit ℓ, ℓ′ ∈ K. On veut montrer que si j’amais un −!

n!+∞
ℓ et un −!

n!+∞
ℓ′, alors

ℓ = ℓ′. Par l’absurde : on suppose que (un)n converge vers les deux limites, mais que ℓ ̸= ℓ′, de
façon à ce que |ℓ− ℓ′| > 0. Soit ϵ = |ℓ−ℓ′|

2 . Il suffit ensuite d’écrire la définition de la convergence.
Comme un tend vers ℓ, il existe N tel que |un − ℓ| < ϵ pour tout n ≥ N et comme un tend vers
ℓ′, il existe N ′ tel que |un − ℓ′| < ϵ pour tout n ≥ N ′. Notons N = max(N,N ′). Alors, pour
tout n ≥ N , on a les deux inégalités : |un − ℓ| < ϵ et |un − ℓ′| < ϵ. On a alors, par l’inégalité
triangulaire :

|ℓ− ℓ′| ≤ |un − ℓ| + |un − ℓ′| < ϵ+ ϵ = 2ϵ = |ℓ− ℓ′|

donc |ℓ− ℓ′| < |ℓ− ℓ′|, ce qui est absurde.

Exemple 1.41. Voici les termes généraux de plusieurs exemple de suites convergentes et diver-
gentes :

un = cos(n) un = 1
n

un = sin
( 1
n

)
un = ei

n2π
3 un =

(
1 + 1

n

)n
un =

n∑
k=1

1
k

La première est divergente (pas de limite) car cosinus est périodique et cos(n) se comporte
comme cos(x). La deuxième et la troisième convergent vers 0 car sin est continue. La quatrième
est périodique donc divergente (dessiner). La cinquième tend vers le nombre d’Euler (constante
de Napier) e et la cinquième diverge vers +∞. Notons que la suite de terme général vn =∑n
k=1

1
k − ln(n) converge vers un nombre réel, noté γ et appelé constante d’Euler-Mascheroni.

Elle vaut environ 0, 5772156649 et on ne sait toujours pas si elle est rationnelle ou irrationnelle ! !

Nous avons les résultats (évidents ?) sur les suites convergentes et leurs limites : si (un)n
converge vers ℓ ∈ K et (vn)n converge vers ℓ′ ∈ K alors :

— la suite de terme général an = un + vn converge vers ℓ + ℓ′ et celle de terme général
bn = unvn converge vers ℓℓ′ ;

— la suite (|un|)n converge vers |ℓ| et la suite (un)n (complexe conjugué dans C) converge
vers ℓ ;

Exemple 1.42. Soit (un)n la suite de terme général un = 2n+1
3n+5 . Ceci s’écrit aussi un = 2+ 1

n

3+ 5
n

, et si
on écrit vn = 2 + 1

n et wn = 1
3+ 5

n

, alors la suite (vn)n converge vers 2 et la suite (wn)n converge
vers 1

3 . Dans ce cas la suite (un)n converge vers 2
3 .

Maintenant étudions le cas où la limite est en l’infini (réel ou complexe).

Définition 1.43. Dans K = R, on dit que la suite réelle (un)n tend vers +∞ si on a :

∀M ∈ R, ∃N ∈ N tel que ∀n ≥ N, M ≤ un
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Dans K = R, on dit que la suite (un)n tend vers −∞ si on a :

∀m ∈ R, ∃N ∈ N tel que ∀n ≥ N, un ≤ m

Dans K = C, on dit que la suite complexe (un)n tend vers l’infini lorsqu’on est arbitrairement
grand en module :

∀M > 0, ∃N ∈ N tel que ∀n ≥ N, |un| > M

Remarque 1.44. Dans C il n’y a pas de relation d’ordre donc cela n’a pas de sens d’écrire +∞
et −∞, car on peut tendre vers l’infini dans toutes les directions, voire même en spirale, par
exemple prendre la suite complexe de terme général un = nein.
Remarque 1.45. Autrement dit, la suite réelle (un)n tend vers +∞ (resp. −∞) si u : N ! R
envoie tout voisinage de +∞ (dans N) dans un voisinage de +∞ (resp. −∞).

On a donc les propriétés suivantes vis à vis de la convergence en zéro et la divergence en
l’infini : Soit (un)n une suite à valeurs dans K = R ou C, dont on suppose qu’elle ne s’annule
jamais, c’est à dire que un ̸= 0 pour tout n ∈ N, ou du moins qu’elle ne s’annule jamais à partir
d’un certain rang. Nous avons les trois observations suivantes :

— Si la suite (un)n converge vers ℓ ̸= 0, la suite
(

1
un

)
n

converge vers 1/ℓ ;

— Si la suite (un)n converge vers 0 ∈ K, alors on a que la suite
(

1
un

)
n

diverge, et plus

précisément la suite
(

1
|un|

)
n

tend vers +∞ ;
— Inversement, si la suite (un)n tend vers l’infini quand n tend vers l’infini, on a que la suite(

1
un

)
n

converge vers 0 ∈ K.
On a aussi les résultats suivants, à connaitre par coeur :
Proposition 1.46. Soit q ∈ R, alors :

si |q| > 1, (qn)n diverge, si q = 1, (qn)n est constante = 1, et si q < 1, (qn)n converge vers 0.

Soit α ∈ R, alors :

si α > 0, nα −−−!
n!+∞

+∞, si α = 0, (nα)n est constante = 1, et si α < 0, (nα)n converge vers 0.

Dans R comme il y a une relation d’ordre, nous avons les notions suivantes (noter bien la
différence des phrases mathématiques avec la notion de tendre vers ±∞ de la définition 1.43) :

— la suite (un)n est majorée si ∃M ∈ R tel que ∀n ∈ N, un ≤ M ;
— la suite (un)n est minorée si ∃m ∈ R tel que ∀n ∈ N, m ≤ un ;
— la suite (un)n est bornée si elle est majorée et minorée. Alternativement on peut écrire

de façon équivalente que (un)n est bornée si ∃M ∈ R tel que ∀n ∈ N, |un| ≤ M (cette
définition est aussi valide pour les suites complexes).

Nous avons alors le résultat suivant qui caractérise les suites convergentes :
Proposition 1.47. Toute suite convergente est bornée.

Démonstration. On comence pour une suite (un)n qui tend vers 0. Soit ϵ = 1, alors il existe N tel
que pour tout n ≥ N , on a |un−0| < ϵ c’est à dire |un| < 1. PosonsM = max (|u0|, |u1|, . . . , |uN−1|, 1).
Alors, pour tout 0 ≤ k ≤ N − 1 nous avons que |uk| ≤ M . D’autre part, pour tout n ≥ N ,
|un| ≤ M d’après notre choix de ϵ et de N . Ceci prouve la proposition pour ℓ = 0.

Pour une limite finie ℓ ∈ K quelconque, on pose vn = un − ℓ pour tout n ∈ N. Dans ce cas,
comme (un)n tend vers ℓ, la limite de vn est zéro. Donc d’après notre premier point, la suite
(vn)n est bornée, par un certain M > 0 disons. C’est à dire : pour tout n ∈ N on a |vn| ≤ M , et
donc |un − ℓ| ≤ M . Cela veut dire que −M + ℓ ≤ un ≤ M + ℓ pour tout n ∈ N. La suite (un)n
étant majorée et minorée, elle est bornée. Ceci conclut la preuve.
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Remarque 1.48. Ceci est une condition nécessaire, elle n’est absolument pas suffisante puisqu’on
a des contres-exemples faciles : par exemple la suite de terme général un = (−1)n est bornée
mais n’est pas convergente. D’autre part, avoir une inégalité stricte |un| < M n’implique PAS
qu’en passant à la limite on ait |ℓ| < M , mais plutôt |ℓ| ≤ M . Par exemple, cela se voit avec la
suite de terme général un = 1 − 1

n qui tend vers 1 donc |un| < 1 mais |ℓ| = 1 ≤ 1.

On a donc que l’ensemble des suites convergentes est strictement inclus dans l’ensemble des
suites bornées :

{u : N ! K convergente} ⊂ {u : N ! K bornée}

Maintenant on aimerait voir comment avoir l’inclusion inverse, et savoir quelle hypothèse ajouter
pour déduire qu’une suite bornée est convergente. Nous avons une telle réciproque sur K = R,
comme il y a une relation d’ordre, si on rajoute une hypothèse de monotonie. Définissons les
notions suivantes :

— la suite (un)n est croissante si ∀n ∈ N, un ≤ un+1, et strictement croissante si l’inégalité
est stricte ;

— la suite (un)n est décroissante si pour tout ∀n ∈ N, un+1 ≤ un, et strictement décroissante
si l’inégalité est stricte ;

— la suite (un)n est monotone si elle est croissante ou décroissante ; strictement monotone si
elle est strictement croissante ou décroissante ;

— la suite (un)n est périodique s’il existe p ∈ N (la période) tel que pour tout n ∈ N,
un+p = un (cette définition est aussi valide pour les suites complexes) ;

— la suite (un)n est stationnaire si elle est 1-périodique, c’est à dire si elle est constante :
un+1 = un pour n ∈ N.

Exemple 1.49. Soit q ∈ R, on pose un = qn, pour tout n ∈ N ; c’est la suite géométrique de
paramètre q. Soit a, b ∈ R on pose un = a + n × b, c’est la suite arithmétique de raison b. On
a aussi par exemple v : N∗ ! R, n 7! 1

n . Les deux premières sont croissantes ou décroissantes,
selon les valeurs de q, a, b. La dernière est décroissante.

Une suite qui tend vers +∞ n’est pas forcément croissante comme le montre par exemple la
suite suivante :

u : N −−−−−−! R

n 7−−−−−−! un =
{
n si n est pair
n− 2n si n est impair

Et d’autre part, une suite croissante ne tend pas forcément vers l’infini, comme le montre la
proposition suivante, qui répond à la Proposition 1.47 :

Proposition 1.50. Toute suite monotone et bornée est convergente. Plus précisément :
— Soit (un)n une suite réelle croissante : si elle est majorée, elle converge ; si elle n’est pas

majorée, elle diverge vers +∞.
— Soit (vn)n une suite réelle décroissante : si elle est minorée, elle converge ; si elle n’est pas

minorée, elle diverge vers −∞.

Démonstration. On commence par écrire ce qu’on a si la suite (un)n est majorée. L’ensemble

U =
{
un, n ∈ N

}
est l’ensemble des valeurs de la suite (un)n. Dire que la suite est majorée revient à dire que
l’ensemble U est majoré. Par la propriété de la borne supérieure sur R, il existe une borne
supérieure à l’ensemble U , qu’on note ℓ.
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Montrons que (un)n converge vers ℓ. On a trois faits (croissance de la suite (un)n et ℓ borne
supérieure) :

— ∀n ∈ N, un ≤ un+1
— ∀n ∈ N, un ≤ ℓ

— ∀ ϵ > 0, ∃N ∈ N tel que ℓ− ϵ < uN

On a que uN ≤ un pour tout n ≥ N , et donc on a :

ℓ− ϵ < uN ≤ un ≤ ℓ < ℓ+ ϵ

that is to say :
−ϵ < un − ℓ < ϵ

donc ∀n ≥ N, |un − ℓ| < ϵ. Cela veut dire que la suite (un)n converge vers ℓ.
Deuxième cas, quand un n’est pas majorée, écrivons ce que cela veut dire :

— ∀n ∈ N, un ≤ un+1
— ∀M ∈ R, ∃N ∈ N tel que M ≤ uN

Fixons M ∈ R. On a que uN ≤ un pour tout n ≥ N . Mais alors pour tout n ≥ N , on a
M ≤ un. C’est la définition de tendre vers +∞. Pour les suites décroissantes, les preuves sont
similaires.

Remarque 1.51. On voit que si la suite (un)n est croissante et majorée, alors sa limite est
sup{un, n ∈ N}. Si la suite est décroissante minorée, alors sa limite est inf{un, n ∈ N}.

Pour les suites réelles non-monotones, on peut se débrouiller pour montrer la divergence
d’une suite à partir de la connaissance d’une autre suite :

Proposition 1.52. Soit deux suites réelles (un)n et (vn)n telles que un ≤ vn pour tout n assez
grand. Si (un)n tend vers +∞ alors (vn)n tend vers +∞. Si (vn)n tend vers −∞ alors (un)n
tend vers −∞.

Démonstration. Il suffit d’appliquer la définition de limite infinie, de la Définition 1.43.

Pour des limites finies, il faut un encadrement plus fin (à connaitre par coeur) :

Théorème des gendarmes (ou des encadrements). Soit (un)n, (vn)n, (wn)n trois suites
telles que pour tout n assez grand on a l’encadrement suivant :

un ≤ vn ≤ wn

Si (un)n et (wn)n convergent toutes deux vers une limite ℓ ∈ R, alors (vn)n converge vers ℓ.

Démonstration. Soit ϵ > 0, comme (un)n (resp. (wn)n) converge vers ℓ ∈ R, il existe N ∈ N
(resp. N ′ ∈ N) tel que pour tout n ≥ N (resp. n ≥ N ′), on a |un − ℓ| < ϵ (resp. |wn − ℓ| < ϵ).
Posons N = max(N,N ′), alors pour tout n ≥ N on a les deux inégalités à la fois. Donc pour
tout n ≥ N on a :

ℓ− ϵ < un ≤ vn ≤ wn < ℓ+ ϵ

Cela veut dire que pour tout n ≥ N on a |vn − ℓ| < ϵ. Donc la suite (vn)n converge vers ℓ.

Exemple 1.53. Soit a > 0 un nombre réel et (un)n la suite de terme général un = 1
1+na . Alors

on a l’encadrement suivant pour tout n ≥ 1 :

0 ≤ 1
1 + na

≤ 1
na

Le terme de droite tend vers 0 quand n tend vers l’infini donc la suite (un)n converge vers 0.
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Exemple 1.54. On définit la suite (vn)n de terme général suivant :

vn = 1
n

+ 1
n+

√
1

+ 1
n+

√
2

+ . . .+ 1
n+

√
n

Pour tout 0 ≤ k ≤ n, on a :
1

n+
√
n

≤ 1
n+

√
k

≤ 1
n

Sommons sur tous les k entre 0 et n, et on obtient :
n∑
k=0

1
n+

√
n

≤
n∑
k=0

1
n+

√
k

≤
n∑
k=0

1
n

En notant que
∑n
k=0 λ = λ

∑n
k=0 1 = λ(n+ 1), on obtient :

n+ 1
n+

√
n

≤
n∑
k=0

1
n+

√
k

≤ n+ 1
n

On note que le terme du milieu est vn. On pose un = n+1
n+

√
n

et wn = n+1
n . Alors on a un ≤ vn ≤

wn. Comme lim
n!+∞

un = lim
n!+∞

wn = 1, on en déduit que lim
n!+∞

vn = 1.

Exemple 1.55. Soit un une suite telle que
∣∣∣un+1
un

∣∣∣ ≤ L < 1 pour tout n ∈ N, alors 0 ≤ |un| ≤ Ln

(on peut le montrer par récurrence). Comme 0 < L < 1, la suite (Ln)n tend vers 0, donc par
encadrement la suite (un)n aussi.

1.4 Suites adjacentes et conséquences

Proposition 1.56. Passage à la limite. Soit
(an)n et (bn)n deux suites réelles. On suppose
qu’elles sont convergentes vers ℓ et ℓ′ respective-
ment. Si à partir d’un certain rang N ∈ N, on
a an ≤ bn pour tout n ≥ N , alors ℓ ≤ ℓ′.

Démonstration. Par l’absurde. On suppose que ℓ > ℓ′. Prenons ϵ = ℓ−ℓ′
2 . Il existe N tel que

|an − ℓ| < ϵ et il existe N ′ tel que |bn − ℓ′| < ϵ. Il existe un entier N ′′ tel que ∀n ≥ N ′′, an ≤ bn.
Posons N = max(N,N,N ′′) de façon à ce qu’on a les trois inégalités valides en même temps :

∀n ≥ N |an − ℓ| < ϵ, |bn − ℓ′| < ϵ et an ≤ bn

D’après les deux premières inégalités, nous avons ℓ − ϵ < an et bn < ℓ′ + ϵ comme application
de la valeur absolue, et donc on a par choix de ϵ :

bn < ℓ′ + ϵ = ℓ− ϵ < an

c’est à dire bn < an, pour tout n ≥ N , ce qui est en contradiction avec l’inégalité an ≤ bn.

Remarque 1.57. Attention, si an < bn (inférieur stricte) pour tout n assez grand, on ne peut PAS
déduire que ℓ < ℓ′ et on a même des contre-exemples, comme par exemple si on pose an = − 1

n
et bn = 1

n .
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Cette proposition permet de déduire une caractéristique de R, la Propriété des segments
emboités. Soit (an)n une suite croissante et (bn)n une suite décroissante, telles que an ≤ bn
pour tout n ∈ N. Dans ce cas le segment In+1 = [an+1, bn+1] est inclus dans In = [an, bn], et
nous avons donc une suite d’inclusions :

. . . ⊂ In+1 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I2 ⊂ I1 ⊂ I0,

Alors, la propriété des segments emboîtés nous dit qu’il existe au moins un élément x ∈ R tel
que an ≤ x ≤ bn pour tout n ∈ N, c’est à dire que x appartient donc à tous les segments In.
Nous ne démontrons pas cette propriété des segments emboités. Nous dirons juste que pour la
démontrer, nous utilisons le fait qu’une suite croissante majorée (resp. décroissante minorée) est
convergente. Or dans la preuve de la proposition 1.50 nous avons utilisée la Propriété de la
borne supérieure, caractéristique de R. Il est donc équivalent de demander comme axiome
de R l’une ou l’autre des deux propriétés, l’autre s’en déduit.

Théorème 1.58. Soit (an)n et (bn)n deux suites telles que
— (an)n une suite croissante,
— (bn)n une suite décroissante, et
— lim

n!+∞
bn − an = 0.

Alors les suites (an)n et (bn)n sont convergentes et tendent vers la même limite finie ℓ. De plus,
pour tout n ∈ N, an ≤ ℓ ≤ bn.

Démonstration. On va montrer que la suite (an)n est majorée, et la suite (bn)n est minorée,
puis utiliser la propriété 1.50 pour déduire qu’elles convergent. La troisième hypothèse nous
dira que leur limite respective coincide. Montrons d’abord que la suite (bn − an)n est une suite
décroissante. Soit n ∈ N, comme (bn)n est décroissante, on a bn+1 ≤ bn, et comme (an)n est
croissante, on a −an+1 ≤ −an. On a donc bn+1−an+1 ≤ bn−an. La suite (bn−an)n est donc bien
décroissante. Comme elle tend vers 0 (troisième hypothèse), elle est nécessairement positive, et
donc on conclut que an ≤ bn pour tout n ∈ N.

Par décroissance de la suite (bn)n, on a que an ≤ bn ≤ bn−1 ≤ . . . ≤ b1 ≤ b0, c’est à dire
que an ≤ b0 pour tout n ∈ N. De façon identique, par croissance de la suite (an)n, on a que
a0 ≤ a1 ≤ . . . ≤ an−1 ≤ an ≤ bn, c’est à dire que a0 ≤ bn pour tout n ∈ N. Ainsi, la suite
décroissante (bn)n est minorée et la suite croissante (an)n est majorée. La Proposition 1.50 nous
dit que la suite (an)n converge vers une limite ℓa et la suite (bn)n converge vers une limite ℓb.
Avec la troisième hypothèse, comme bn − an −!

n!+∞
0, on en déduit en passant à la limite que

ℓa − ℓb = 0, c’est à dire ℓa = ℓb. Les deux suite convergent vers une limite commune, qu’on
note ℓ. Par construction on a que an ≤ ℓ ≤ bn pour tout n ∈ N.

Le théorème 1.58 ci dessus est tellement important est utile qu’on donne un nom aux suites
ayant cette propriété :

Définition 1.59. Deux suites (an)n et (bn)n satisfaisant les hypothèses du théorème 1.58 sont
dites adjacentes.

Exemple 1.60. Pour tout n ∈ N∗, posons :

un =
n∑
k=0

1
k! et vn = un + 1

n · n!

Alors les suites (un)n et (vn)n sont adjacentes et convergent vers le nombre transcendant e.
Le nombre d’Euler est irrationnel, car si jamais il était rationnel et s’écrivait e = p

q alors en
choisissant n = q, on a que n · n!e est un nombre entier, or c’est absurde car on a n · n!un <
n · n!e < n · n!un + 1, qui vient de l’encadrement un < e < vn.

26



Exemple 1.61. Approximation décimale d’un réel : soit x ∈ R et les deux suites suivantes :

an = E(10nx)
10n et bn = E(10nx) + 1

10n

Alors on a les inégalités suivantes (en utilisant les propriétés de la partie entière) :

0 ≤ an+1 − an <
1

10n , 0 ≤ bn − bn+1 <
1

10n , bn − an = 1
10n

La suite (an)n est croissante, la suite (bn)n est décroissante, et lim
n!+∞

bn − an = 0, ce sont donc
des suites adjacentes. La limite des deux suites adjacentes est le nombre réel x. Par exemple,
pour x = π = 3, 14159 . . ., on a :

a0 = 3, a1 = 3, 1, a2 = 3, 14, a3 = 3, 141, etc. et b0 = 4, b1 = 3, 2, b2 = 3, 15, b3 = 3, 142, etc.

Exemple 1.62. Soit les deux suites (an)n et (bn)n définies par a0 = 1, b0 = 2, et les relations de
récurrence suivantes :

an+1 = 4
an + bn

= 2
bn+1

et bn+1 = an + bn
2

Montrer qu’elles forment des suites adjacentes, c’est à dire que an est croissante et bn et dé-
croissante, et que lim

n!+∞
(bn − an) = 0. Tout d’abord rang 1 on a a1 = 4/3 et b1 = 3/2 donc

on a bien 0 < a0 < a1 < b1 < b0. Supposons qu’au rang n on a 0 < an−1 < an < bn < bn−1.
On a d’abord que an + bn < 2bn donc bn+1 < bn, mais donc aussi (comme tout le monde est
positif) 2

bn
< 2

bn+1
c’est à dire an < an+1. Donc au rang n+ 1 on a bien que (an)n est croissante

et (bn)n est décroissante. Mais d’autre part, on note que pour tout n, on a anbn = 2, donc
bn+1 − an+1 = an+bn

2 − 4
an+bn

= (an−bn)2

2(an+bn) > 0 donc on a 0 < an < an+1 < bn+1 < bn.
De cette formule, comme a0 = 1 et que tout le monde est plus grand, on a que an + bn > 2

donc que

bn+1−an+1 = (an − bn)2

2(an + bn) <
(an − bn)2

4 <
(an−1 − bn−1)4

4 × 42 < . . . <
(a0 − b0)2(n+1)

4 × 42 × . . .× 42n = 1
4
∑n

k=0 2k

ce qui tend vers zéro donc on a bien la limite lim
n!+∞

(bn − an) = 0. Les suites sont adjacentes.
Comme elles tendent vers la même limite ℓ, et que pour tout n on a anbn = 2, on en déduit que
ℓ2 = 2 donc ℓ =

√
2.

On va maintenant s’intéresser à une propriété importante des suites réelles (et complexes).

Définition 1.63. Soit φ : N ! N une application strictement croissante, c’est à dire que
φ(n) < φ(n + 1). On appelle sous-suite ou suite extraite de la suite réelle (ou complexe)
(un)n par rapport à φ, la suite (vn)n définie par vn = uφ(n). On note habituellement cette suite
(uφ(n))n.

Exemple 1.64. Définissons deux fonctions extractrices strictement croissantes :

φ : N −−−−−−! N ψ : N −−−−−−! N
n 7−−−−−−! 2n n 7−−−−−−! 2n+ 1

La suite de terme général un = (−1)n admet deux suites extraites particulières par rapport à
φ and ψ. Pour tout n ∈ N, nous avons uφ(n) = (−1)φ(n) = (−1)2n = 1 et uψ(n) = (−1)ψ(n) =
(−1)2n+1 = −1. Ces deux suites extraites (uφ(n))n et (uψ(n))n sont stationnaires/constantes (et
donc convergent) mais la suite originale (un)n ne converge pas.
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Exemple 1.65. Prenons la suite périodique de terme général un = sin
(

2πn
17

)
, de période 17,

c’est à dire que un+17 = un. Posons φ : N ! N, n 7! 17n. Alors pour tout n ∈ N nous avons
uφ(n) = sin

(
2π17n

17

)
= sin(2π) = 0. La sous-suite extraite (uφ(n))n est une suite stationnaire

(constante) nulle. Par contre, si on prend ψ : N ! N, n 7! 17n+1, on a uψ(n) = sin
(

2π(17n+1)
17

)
=

sin
(

2π
17

)
̸= 0. La sous-suite extraite (uψ(n))n est aussi une suite stationnaire (constante), mais

non nulle.

Proposition 1.66. Soit (un)n une suite qui tend vers une limite L, soit finie soit infinie. Alors
toute suite extraite de (un)n tend vers L.

Démonstration. Prenons une application strictement croissante φ : N ! N et on notera vn =
uφ(n) ce qui définit une nouvelle notation plus simple pour suite extraite : (vn)n = (uφ(n))n.
Montrons maitenant par récurrence que la stricte croissance de φ implique que φ(n) ≥ n. Pour
n = 0 on a φ(0) ≥ 0 car φ(0) ∈ N. Ensuite, supposons que φ(n) ≥ n. Comme φ(n+ 1) > φ(n),
alors φ(n + 1) > n, mais donc φ(n + 1) ≥ n + 1 car φ(n + 1) est un entier. Ceci prouve la
propriété pour tout n ∈ N.

On écrit ce que veut dire tendre vers une limite finie ℓ pour la suite (un)n :

∀ ϵ > 0, ∃N ∈ N tel que ∀n ≥ N, |un − ℓ| < ϵ

Finalement, si pour tout n ≥ N on a |un − ℓ| < ϵ, alors nécessairement on a aussi |uφ(n) − ℓ| < ϵ
comme on a φ(n) ≥ n ≥ N . Ce qui veut dire |vn − ℓ| < ϵ ce qui est la convergence de la suite
(vn)n de terme général vn = uφ(n).

Si maintenant, la suite (un)n tend vers +∞, on écrit :

∀M ∈ R, ∃N ∈ N tel que ∀n ≥ N, un > M

Pour la même raison que précédemment, pour tout n ≥ N , on a aussi uφ(n) > M soit vn > M
donc on a bien que la suite (vn)n tend vers +∞. Même argument si (un)n tend vers −∞.

Remarque 1.67. Cette proposition permet de savoir si (un)n n’a pas de limite. Si on peut extraire
de (un)n deux sous-suites qui ont deux limites différentes, on sait que la suite (un)n ne tend ni
vers une limite finie, ni vers une limite infinie. Par exemple, la suite de terme général un = (−1)n
n’admet pas de limites car on peut définir au moins deux sous-suites extraites convergentes vers
deux limites différentes. Un autre exemple moins facile est la suite de terme général un =
(−1)nn2sin

(
1
n

)
.

Une autre propriété des suites extraites est la suivante qui est surprenante mais profonde :

Proposition 1.68. De toute suite réelle on peut extraire une sous-suite monotone.

Démonstration. Voir la preuve du Théorème 3.4.7 dans la quatrième édition du livre de Bartle
et Sherbert (3.4.6 dans d’autres éditions).

Théorème de Bolzano-Weierstrass. De toute suite réelle (ou complexe) bornée, on peut
extraire une sous-suite convergente.

Démonstration. On donne la démonstration dans le cas des suites réelles. Pour le cas des
suites complexes, il suffira ensuite d’extraire une première sous-suite telle que les parties réelles
convergent, puis de cette première sous-suite, on extrait une deuxième sous-suite telle que les
parties imaginaires convergent également.
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Preuve comme corollaire de la Proposition 1.68. Toute suite réelle possède une sous-suite
extraite monotone. Si la suite d’origine est bornée alors la sous-suite extraite est bornée. Etant
monotone et bornée, elle est convergente (c’est la Proposition 1.50).

Preuve avec les segments emboités. Supposons d’abord que la suite (un)n n’est pas station-
naire car dans ce cas il n’y a rien à prouver (la suite est convergente vers la valeur de la suite donc
toute suite extraite converge vers cette valeur). Comme la suite (un)n est bornée, l’ensemble

U =
{
un, n ∈ N

}
est un sous-ensemble borné de R. Comme la suite (un)n prends donc au moins deux valeurs
différentes, il existe a < b ∈ R tel que U ⊂ [a, b]. On procède par dichotomie, c’est-à-dire que
l’on va couper l’intervalle [a, b] en deux en gardant une moitié qui contient une infinité de valeurs
de (un)n. Puis on va recouper ce nouvel intervalle en deux en gardant une moitié qui contient
une infinité de termes et ainsi de suite, pour construire une suite de segments emboités dont
la longueur tend vers 0. La propriété des segments emboités de R permettra de conclure. La
preuve se fait par récurrence.

On pose I0 = [a, b]. On divise le segment en deux moitiés égales :
[
a, a+b

2

]
et

[
a+b

2 , b
]
. La

suite (un)n contient une infinité de termes, et comme U ⊂ I0, nous comprenons que I0 contient
tous les termes de la suite (un)n, c’est à dire une infinité. Les deux moitiés gauche et droite
ne peuvent pas contenir un nombre fini de termes de la suite. Au moins une des deux moitiés
contient un nombre infini de termes. Nous procédons alors de façon algorithmique :

— si la moitié de gauche possède un nombre infini de termes de la suite (un)n, alors on pose
I1 =

[
a, a+b

2

]
, a1 = a et b1 = a+b

2 ;
— sinon, la moitié de droite contient un nombre infini de termes de la suite (un)n, alors on

pose I1 =
[
a+b

2 , b
]
, a1 = a+b

2 et b1 = b.

Soit m ∈ N. On suppose tous les intervalles Ik = [ak, bk] construits jusqu’au rang m ≥ 1,
avec les propriétés suivantes, pour tout 1 ≤ k ≤ m :

— Ik ⊂ Ik−1, c’est à dire ak−1 ≤ ak et bk ≤ bk−1 ;
— l’intervalle Ik possède une infinité de termes de la suite (un)n ;
— la longueur de Ik est bk − ak = b−a

2k .
Donc en particulier Im = [am, bm] possède une infinité de termes de la suite (un)n. Donc il existe
nécessairement une infinité de termes dans au moins l’un des deux intervalles

[
am,

am+bm
2

]
ou[

am+bm
2 , bm

]
. On procède ainsi :

— si la moitié de gauche possède un nombre infini de termes de la suite (un)n, alors on pose
Im+1 =

[
am,

am+bm
2

]
, am+1 = am et bm+1 = am+bm

2 ;
— sinon, la moitié de droite contient un nombre infini de termes de la suite (un)n, alors on

pose Im+1 =
[
am+bm

2 , bm
]
, am+1 = am+bm

2 et bm+1 = bm.
Quel que soit le cas, nous avons par construction :

— Im+1 ⊂ Im, c’est à dire am ≤ am+1 et bm+1 ≤ bm ;
— l’intervalle Im+1 possède une infinité de termes de la suite (un)n ;
— la longueur de Im+1 est bm+1 −am+1 = b−a

2m+1 (car nous avons divisé le segment Im en deux
moitiés égales).

La propriété est donc vraie au rang m + 1. Par récurrence, on obtient une suite d’intervalles
(Im)m qui possèdent toutes les bonnes propriétés énoncées ci dessus. Il résulte de ces propriétés
que la suite (am)m est croissante, (bm)m est décroissante, et que la suite (bm − am)m converge
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vers 0. Ce sont donc deux suites adjacentes, qui convergent nécessairement vers une même limite,
notée ℓ, telle que ℓ ∈ Im pour tout m ∈ N.

Définissons maintenant la sous suite extraite de (un)n qui va tendre vers ℓ. On choisit φ(0) =
0, puis chaque φ(n) est choisi tel que

1. φ(n+ 1) > φ(n)
2. uφ(n) ∈ In

Notons que le deuxième item est toujours possible car l’intervalle In = [an, bn] contient une
infinité de termes de la suite. Il existe donc toujours au moins un élément de la suite dont
l’indice est plus grand que n. On en conclut que pour tout n ∈ N, on a an ≤ uφ(n) ≤ bn. Par le
théorème des gendarmes, on en déduit que (uφ(n))n converge vers ℓ.

Corollaire 1.69. Réciproquement, de toute suite non-bornée on peut extraire une sous-suite qui
tend vers l’infini.

Démonstration. D’après la Proposition 1.68, tout suite réelle possède une sous-suite monotone.
Si la suite d’origine n’est pas bornée alors la sous-suite monotone n’est pas bornée. Elle tend
vers +∞ si elle est croissante, et vers −∞ si elle est décroissante.

Définition 1.70. On dit que ℓ ∈ K est une valeur d’adhérence de la suite (un)n s’il existe une
sous-suite extraite convergeant vers ℓ.

Exemple 1.71. On a déjà vu des sous-suite convergentes dans le cas un = (−1)n et un =
sin

(
2πn
17

)
.

Exemple 1.72. Si on prend la suite (un)n de terme général un = sin(n), il y a beaucoup de
sous-suites convergentes : on peut montrer que pour tout ℓ ∈ [−1, 1] il existe une fonctions
extractrice φ : N ! N telle que la sous-suite extraite (uφ(n))n converge vers ℓ. Cela veut dire
que l’ensemble des valeurs de la suite – dénoté U = {sin(n) | n ∈ N} – est dense dans [−1, 1].

Cette définition nous permet de reformuler le théorème de Bolzano-Weierstrass de manière
plus courte :

Théorème de Bolzano-Weierstrass. Toute suite réelle (ou complexe) bornée admet une va-
leur d’adhérence.

C’est un phénomène courant en mathématiques : on donne un nom aux notions qui sont im-
portantes, à l’aide des définitions. Cela permet ensuite d’écrire les théorèmes et les propositions
de manière plus courte et plus précise. Il existe une version encore plus courte du théorème de
Bolzano-Weierstrass, c’est sa version topologique :

Théorème de Bolzano-Weierstrass topologique. Une boule fermée est séquentiellement
compacte.

Dans R une boule fermée est un segment [a, b] et dans C une boule fermée est un disque (frontière
incluse). La notion de compacité est une notion de topologie que nous verrons plus tard, et qui
correspond au fait que toute suite d’élément de la boule fermée admette une sous-suite extraite
convergente (dans la boule fermée).

Comme vu dans l’exemple 1.72, une suite peut avoir plusieurs valeurs d’adhérence. D’autre
part, on déduit de la définition de la valeur d’adhérence que si une suite est convergente, il ne
peut y avoir qu’une valeur d’adhérence : sa limite. C’est une reformulation de la Proposition
1.66. Par contre, si une suite (un)n possède une unique valeur d’adhérence, ça n’implique pas
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que la suite est convergente. En effet, si on prend comme suite celle définie par le terme général
suivant :

un =
{

0 si n pair
n si n impair

On a que la suite est non bornée donc diverge (ne converge pas), et que d’autre part si on définit
l’application extractrice φ : N ! N, n 7! 2n, on a que uφ(n) = u2n = 0 pour tout n ∈ N. Et donc
0 est une valeur d’adhérence de la suite, et il n’en existe pas d’autre (cela se voit). Par contre la
réciproque correcte est la suivante :

Corollaire 1.73. Toute suite bornée admettant une unique valeur d’adhérence est convergente.

Démonstration. Soit ℓ la valeur d’adhérence de u : N ! K. Montrons que u est convergente. On
raisonne par l’absurde et on suppose que u n’est pas convergente. On peut alors fixer ϵ > 0 tel
que pour tout N ∈ N, il existe n ≥ N tel que |un − ℓ| > ϵ. On construit alors, par récurrence
une extractrice φ : N ! N telle que |uφ(n) − ℓ| > ϵ, et on pose vn = uφ(n) pour tout n ∈ N.

D’après Bolzano-Weierstrass, il existe ℓ′ ∈ K et ψ : N ! N extractrice telle que la suite
(vψ(n))n converge vers ℓ′. Pour tout n ∈ N, on a∣∣∣vψ(n) − ℓ

∣∣∣ =
∣∣∣uφ(ψ(n)) − ℓ

∣∣∣ > ϵ

En faisant tendre dans le membre de gauche n vers l’infini, on obtient |ℓ′ − ℓ| ≥ ϵ, donc ℓ ̸= ℓ′,
ce qui est absurde.

Remarque 1.74. Ce résultat est à mettre en parallèle avec la Proposition 1.50, réciproque de la
Proposition 1.47. Nous voyons que la Proposition 1.73 est une autre réciproque de la Proposition
1.47, mais qui cette fois s’applique aussi aux suites complexes !

Une caractérisation de la notion de valeur d’adhérence à l’aide des quantificateurs universels
et existentiels se fait ainsi :

Proposition 1.75. Soit (un)n une suite de K (R ou C) et soit ℓ ∈ K. ℓ est une valeur d’adhé-
rence de u si et seulement si :

∀ ϵ > 0, ∀N ∈ N, ∃n ≥ N tel que |un − ℓ| < ϵ

Remarque 1.76. Cela s’interprète topologiquement par le slogan suivant : "Pour tout voisinage
V de ℓ dans K, il existe une infinité d’indices n tels que un ∈ V ". Comparer avec la phrase
définissant la convergence d’une suite.

Définition 1.77. Soit A une partie de K. On appelle adhérence de A et on note A toutes les
valeurs d’adhérence des suites d’éléments de A :

A =
{
ℓ ∈ R tel que il existe une suite (un)n d’éléments de A convergeant vers ℓ

}
Remarque 1.78. Le slogan de cette définition c’est que l’adhérence d’une partie A de K est
l’ensemble de tous les points de K qu’on peut atteindre comme limite d’une suite de points de
A.

Dans R, pour tout intervalle I (ouvert, semi-ouvert ou fermé), l’adhérence de I est l’intervalle
fermé formé de l’union de I avec ses points frontières. Par exemple, si a < b ∈ R alors voici une
liste des adhérences de différents intervalles :

]a, b[ = [a, b[ = ]a, b] = [a, b] = [a, b],
]a,+∞[ = [a,+∞[ = [a,+∞[,

] − ∞, b[ = ] − ∞, b] = ] − ∞, b]

31



Exemple 1.79. L’adhérence de l’ensemble A =
{

1
n

∣∣ n ∈ N∗
}

est A = A ∪ {0}. On a ajouté à A
l’origine, car c’est la limite (donc une valeur d’adhérence) de la suite de terme général 1

n .
Exemple 1.80. Pour un domaine D ⊂ R formé d’une union d’intervalle D =

⋃
i∈N Ii, l’adhérence

de D n’est pas l’union de toutes les adhérences de ses parties :
⋃
i∈N Ii. En effet prenons par

exemple Ii =
]

1
i+1 ,

1
i

[
pour tout i ≥ 1. Alors Ii =

[
1
i+1 ,

1
i

]
et l’union de tous ces intervalles

est
⋃
i∈N Ii =]0, 1]. Ceci n’est pas l’adhérence de D =

⋃
i∈N Ii, qui vaut D = [0, 1], car on peut

trouver une suite d’éléments de D qui converge vers 0.

L’ensemble des termes d’une suite définit un sous-sensemble de R ou C :

U = {un | n ∈ N}

C’est un ensemble de points, de cardinal (nombre d’éléments) fini ou dénombrable (autant
que dans N). Par exemple : un = (−1)n donne U = {−1, 1} (cardinal fini) et un = 1

n donne
U =

{
1, 1

2 ,
1
3 ,

1
4 , . . .

}
(cardinal dénombrable). Etudier les suites c’est étudier les ensembles fini

ou dénombrables de R (ou C). Etudier les sous-suites extraites convergentes, c’est étudier les
valeurs d’adhérence de ces ensembles, c’est à dire leur adhérence dans le sens donné ci-dessus. Les
valeurs d’adhérences nous donnent donc une caractérisation séquentielle de la topologie de K.

Proposition 1.81. Caractérisation séquentielle des fermés. Soit A un sous-ensemble
de K, alors les conditions suivantes sont équivalentes :

— A est fermé ;
— A = A ;
— si une suite d’éléments de A converge, alors sa limite est dans A.

Définition 1.82. Soit A et B deux parties de K. On dit que A est dense dans B si A = B.

Exemple 1.83. Dans la Proposition 1.31, nous avons vu que les nombres rationnels Q sont denses
dans R. Cela correspond exactement à la nouvelle Définition 1.82.
Exemple 1.84. L’ensemble U = {sin(n) | n ∈ N} est dense dans [−1, 1] : tout point de [−1, 1]
peut être atteint comme la limite d’une suite d’éléments de U , c’est à dire comme la limite d’une
sous-suite extraite de la suite (un)n de terme général un = sin(n).

Nous allons désormais nous tourner vers une notion importante cette année comme l’année
prochaine, qui s’appuie sur la notion de suite extraite :

Définition 1.85. On dit qu’une suite réelle ou complexe (un)n est une suite de Cauchy si
elle possède la propriété suivante :

∀ ϵ > 0, ∃N ∈ N tel que ∀ p, q ≥ N, |up − uq| < ϵ

Exemple 1.86. Tout simplement la suite de terme général un = 1
n .
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Remarque 1.87. Attention, avoir la propriété :

∀ ϵ > 0, ∃N ∈ N tel que ∀n ≥ N, |un+1 − un| < ϵ

n’est pas équivalente à la propriété satisfaite par les suites de Cauchy. En effet la propriété
ci-dessus est beaucoup plus faible. Par exemple prenons la suite de terme général un = ln(n),
alors

un+1 − un = ln(n+ 1) − ln(n) = ln
(
n+ 1
n

)
= ln

(
1 + 1

n

)
qui tend vers ln(1) = 0 lorsque n vers l’infini. Donc elle satisfait la condition 1.87, mais elle
n’est pas une suite de Cauchy car (un)n tend vers +∞, donc pour tout N ∈ N on peut toujours
trouver p, q ≥ N tels que |up − uq| > 1.

Lemme 1.88. Toute suite de Cauchy est bornée.

Démonstration. Etudions le cas des suites réelles, car pour les suites complexes, il suffit d’appli-
quer la preuve aux suites des parties réelles et imaginaires. Soit (un)n une suite de Cauchy réelle.
Montrons que la suite est bornée. Soit ϵ = 1, alors le critère de Cauchy nous dit qu’il existe
N ∈ N tel que ∀ p, q ≥ N tels que |up − uq| < 1. En particulier, pour q = N on a |up − uN | < 1
pour tout p ≥ N . On a donc, pour tout p ≥ N , −1 < up−uN < 1, donc −1+uN < up < 1+uN .
Et comme −|uN | ≤ uN ≤ |uN |, on a par la suite :

−1 − |uN | ≤ −1 + uN < up < 1 + uN ≤ 1 + |uN |

et donc pour tout p ≥ N , on a |up| < 1+ |uN |. On note M = max
(
|u0|, |u1|, . . . , |uN−1|, 1+ |uN |

)
,

et donc on obtient : {
|up| ≤ M si 0 ≤ p ≤ N − 1
|up| ≤ 1 + |uN | ≤ M si p ≥ N

Ce qui montre que ∀ p ∈ N, |up| ≤ M , c’est à dire que la suite est bornée.

Théorème 1.89. Dans R et C, une suite est convergente si et seulement si elle est de Cauchy.

Démonstration. La preuve que toute suite convergente est une suite de Cauchy sera faite en
exercice. Inversement, montrons que toute suite réelle de Cauchy est convergente, car pour les
suites complexes, il suffit d’appliquer la preuve aux suites des parties réelles et imaginaires.
Comme la suite (un)n est de Cauchy, si on fixe ϵ > 0, alors il existe N ∈ N tel que pour tous
p, q ≥ N , on a |up−uq| < ϵ

2 . Nous savons que toute suite de Cauchy est bornée. Par le théorème
de Bolzano-Weierstrass, la suite (un)n admet donc une valeur d’adhérence, qu’on note ℓ. En
appliquant la Proposition 1.75, on voit qu’il existe n0 ≥ N tel que |un0 − ℓ| < ϵ

2 . Soit n ≥ N ,
alors on a que |un − un0 | < ϵ

2 car n, n0 ≥ N . Alors on a, par l’inégalité triangulaire :

|un − ℓ| = |un − un0 + un0 − ℓ| ≤ |un − un0 |︸ ︷︷ ︸
< ϵ

2 par suite de Cauchy

+ |un0 − ℓ|︸ ︷︷ ︸
< ϵ

2 par valeur d’adhérence

< ϵ

C’est la définition que la suite (un)n converge vers ℓ.

Exemple 1.90. Comme application très importante de ce résultat, nous avons la notion de conver-
gence absolue des séries numériques. Soit u : N ! K une série complexe ou réelle, et posons,
pour tout n ∈ N :

Sn =
n∑
k=0

uk et Tn =
n∑
k=0

|uk|
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Montrons que si la suite réelle positive (Tn)n converge, alors la suite (Sn)n converge. Soit donc
0 ≤ q < p ∈ N, nous avons que :

|Sp − Sq| =
∣∣∣∣∣
p∑

k=0
uk −

q∑
k=0

uk

∣∣∣∣∣ =

∣∣∣∣∣∣
p∑

k=q+1
uk

∣∣∣∣∣∣ ≤
p∑

k=q+1
|uk| =

p∑
k=0

|uk| −
q∑

k=0
|uk| = Tp − Tq

Autrement dit, pour tout p ̸= q ∈ N, on a que :

|Sp − Sq| ≤ |Tp − Tq| (1.1)

Si la suite (Tn)n converge, alors elle est de Cauchy donc on a la propriété de Cauchy suivante :

∀ ϵ > 0, ∃N ∈ N tel que ∀ p, q ≥ N, |Tp − Tq| < ϵ

Mais dans ce cas, on a que la suite (Sn)n est aussi une suite de Cauchy du fait de la majora-
tion (1.1). Donc la suite (Sn)n converge.

Définition 1.91. Une partie A de K (R ou C) est dite complète si, pour toute suite de Cauchy
d’éléments de A (qui converge nécessairement donc), la limite est dans A.

Exemple 1.92. L’ensemble Q des nombres rationnels n’est pas complet, car une suite de nombres
rationnels qui tend vers

√
2 est de Cauchy, mais la limite est un irrationnel (donc pas dans Q).

Le corps des réels R est complet par le Théorème 1.89. C’est d’ailleurs le complété de Q : c’est
le plus petit ensemble complet contenant Q. Autrement dit pour obtenir R, on a ajouté à Q
toutes les limites des suites de Cauchy rationnelles.
Exemple 1.93. Un exemple de suite de Cauchy rationnelle qui converge en dehors de Q est la
suite de terme général suivant :

un =
n∑
k=0

1
k!

Alors on peut montrer que pour tout p > q ≥ 2, on a :

0 ≤ up − uq ≤ 1
(q + 1)!

(
1 + 1

q + 2 + . . .+ 1
(q + 2)p−q−1

)
De cela, en notant que la parenthèse de droite est la somme partielle de rang p − q − 1 de la
suite géométrique de raison 1

q+2 , et que q+2
(q+1)2 ≤ 1

2 (car q ≥ 2), nous avons que :

0 ≤ up − uq ≤ 1
(q + 1)!

1 −
(

1
q+2

)p−q

q + 1

 (q + 2) ≤ 1
(q + 1)! × q + 2

q + 1 ≤ 1
2 × (q!) ≤ 1

q

Maintenant, pour tout 1 ≤ ϵ > 0, si on prend N = E
(

1
ϵ

)
+ 1 ≥ 2 alors 1

ϵ < N , et pour tout
p, q ≥ N , on a |up − uq| ≤ 1

N < ϵ. Ainsi, la suite (un)n est une suite de Cauchy (rationnelle).
Elle converge dans R, vers le nombre irrationnel transcendant e. La suite ne converge donc pas
dans Q.
Exemple 1.94. Dans R, l’intervalle semi-ouvert ]0, 1] n’est pas complet car la suite de terme
général un = 1/n est de Cauchy, mais elle converge vers 0 qui n’est pas dans l’intervalle. Par
contre le segment [0, 1] est complet. On voit que le fait d’être fermé et le fait d’être complet est
relié. Nous donnons la caractérisation suivante que nous ne démontrerons pas :

Proposition 1.95. Dans R ou C, un sous-ensemble est complet si et seulement si il est fermé.
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Intuitivement, un espace est complet s’il n’a pas de trou ou s’il n’a pas de point manquant. On
peut "compléter" un espace métrique en remplissant les trous, en rajoutant toutes les limites des
suites de Cauchy. Ainsi on obtient R en "complétant" Q en rajoutant toutes ces limites : c’est le
plus petit espace métrique complet dans lequel Q est dense. C’est une construction alternative
des réels. Pour passer de Q à R on requiert donc des propriétés ensemblistes (coupures de
Dedekind) ou topologiques (convergence de Cauchy), mais pour passer de R à C on requiert une
propriété algébrique : R est le complété topologique de Q, et C est la clôture algébrique de R.

2 Fonctions réelles

Rappel : soit E et F deux ensembles. On appelle "application de E dans F " et on note
f : E ! F lorsqu’on assigne à certains points de E un point de F . Lorsque E = R et F = R,
ou tout sous-ensemble de R, on parle de fonction. Ce chapitre va être dédié à étudier la notion
de continuitié, de dérivabilité, de convexité et les propriétés des fonctions sur R.

2.1 Limites et continuité

Dans ce chapitre, notons D une partie de R, et soit f : D ! R une fonction. La notation de
la définition d’une fonction se fait comme suit :

f : D −−−−−−! R
x 7−−−−−−! expression de f(x)

Bien noter la différence des flèches (avec et sans pied). On appelle domaine de définition de la
fonction f le sous-ensemble D de R sur lequel f est définie. Par exemple, si D = N alors une
fonction f : N ! R est une suite. Mais en général D est un intervalle ou une union disjointe
d’intervalles. On dit que f est définie en x ∈ R si x ∈ D, c’est à dire si f(x) existe. La notion de
limite s’applique à tout point de l’adhérence de D – notée D – dont on rappelle la Définition 1.77.

Définition 2.1. Soit f : D ! R une fonction. Soit a ∈ D et soit ℓ ∈ R. On dit que f a pour
limite ℓ en a – ou que f tend vers ℓ quand x tend vers a – et on note lim

x!a
x ̸=a

f(x) = ℓ si :

∀ ϵ > 0, ∃ δ > 0 tel que ∀x ∈ D, si
{

|x− a| < δ

x ̸= a
alors |f(x) − ℓ| < ϵ

La définition signifie que "f(x) est aussi près que l’on veut de ℓ à condition de choisir
x suffisamment près de a, mais différent de a". Cette notion, malgré l’intuition qu’on peut en
avoir, a été extrêmement longue à être clarifiée par les mathématiciens et n’a reçu ses fondements
définitifs que vers 1850. On peut réécrire la condition comme suit :

∀ ϵ > 0, ∃ δ > 0 tel que ∀x ∈
(
D\{a} ∩ ]a− δ, a+ δ[

)
, on a f(x) ∈ ]ℓ− ϵ, ℓ+ ϵ[

On peut récrire la définition de limite de f au point a à l’aide des voisinages :

∀Vℓ voisinage de ℓ, ∃Va voisinage de a tel que, si x ∈ D\{a} ∩ Va alors f(x) ∈ Vℓ
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4. 1 LIMITS OF FUNCTIONS 105 

If the limit off at c does not exist, we say that f diverges at c. 
Our first result is that the value L of the limit i s  uniquely determined. This uniqueness 

is not part of the definition of limit, but must be deduced. 

4.1.5 Theorem If f : A ----> lR and if c is a cluster point of A, then f can have only one 
limit at c. 

Proof. Suppose that numbers L and L' satisfy Definition 4. 1 .4. For any c > 0, there exists 
a (c/2) > 0 such that if x E A and 0 < lx - c l < a(c/2) , then l f(x) - Ll < c/2. Also there 
exists a' (c/2) such that if x E A and 0 < lx - cl < a' (c/2) , then lf(x) - L' l < c/2. Now 
let a := inf{a(c/2) , a' (c/2) } .  Then if x E A and 0 < lx - cl < a, the Triangle Inequality 
implies that 

IL - L' l ::; IL - f(x) l + lf(x) - L' l < c/2 + c/2 = c . 

Since f; > 0 is arbitrary, we conclude that L - I! =  0, so that L = L' . Q.E.D. 

The definition of limit can be very nicely described in terms of neighborhoods. (See 
Figure 4 . 1 . 1 . ) We observe that because 

V8 (c) = (c - a, c + a) = {x :  lx - cl < a } ,  

the inequality 0 < lx - c l  < a i s  equivalent to saying that x -1- c and x belongs to the 
a-neighborhood V8 (c) of c. Similarly, the inequality lf(x) - Ll < B is equivalent to saying 
that f(x) belongs to the £-neighborhood V, (L) of L. In this way, we obtain the following 
result. The reader should write out a detailed argument to establish the theorem. 

y 

L Given l'e(L) _...;.rc-to----� 

-----+--------����----------� x  c � There exists Y,s(c) 

Figure 4.1 .1 The limit off at c is L 

4.1.6 Theorem Let f : A ----> lR and let c be a cluster point of A. Then the following 
statements are equivalen{ 
(i) limf(x) = L. 

x�c 
(ii) Given any c-neighborhood V, (L) of L, there exists a a-neighborhood V8 ( c) of c such 
that if x  -1- c is any point in V8 (c) n A, then f(x) belongs to V, (L) . 

We now give some examples that illustrate how the definition of limit is applied. 

4.1.7 Examples (a) lim b = b. 
x�c 

To be more explicit, let.f(x) := b for all x E R We want to show that lim.f(x) = b. If 
c > 0 is given, we let a := 1 .  (In fact, any strictly positive a will serve the purpose.) Then if 

Figure 2 – Dans cette image tiré du livre de Bartle et Sherbert, le voisinage Vϵ est le segment
ouvert ]L− ϵ, L+ ϵ[ et Vδ = ]c− δ, c+ δ[. C’est une interprétation géométrique de la définition
d’une limite (où f est définie en c).

Exemple 2.2. Soit I = [0,+∞[, et soit a = 0, f(x) =
√

(x). On sait que la fonction est continue
(la définition rigoureuse viendra plus tard). Mais montrons que la fonction tend vers 0 en 0 avec
la définition ci dessus. Soit ϵ > 0. On pose δ = ϵ2 > 0. Soit 0 < x < δ alors comme la fonction
x 7!

√
x est croissante, on a 0 ≤

√
x <

√
δ = ϵ. On a donc bien que |f(x) − 0| < ϵ pour tout x

tel que |x− 0| < δ.
Montrons maintenant que pour tout a > 0, la fonction f tend vers

√
a quand x tend vers a

(c’est la continuité de la racine carrée). Soit a > 0. Comme u2 −v2 = (u−v)(u+v) on l’applique
à u =

√
x et v = √

y, de sorte qu’on a
√
x − √

y = x−y√
x+√

y
pour tout x, y > 0. On a donc, en

appliquant la valeur absolue :

|
√
x− √

y| = |x− y|√
x+ √

y
≤ |x− y|

√
y

Soit donc maintenant ϵ > 0. On pose δ = ϵ
√
a. Prenons x ∈ I tel que x ̸= a et |x−a| ≤ δ = ϵ

√
a

cela veut dire que |x−a|√
a

≤ ϵ. D’après l’équation du dessus, on en déduit que |
√
x −

√
a| ≤ ϵ, ce

qui correspond bien à la définition.

Proposition 2.3. La limite d’une fonction en un point donné est unique.

Démonstration. C’est le même type de preuve que pour la Proposition 1.40, où on remplace
∃N ∈ N tq ∀n ≥ N par ∃ δ > 0 tel que ∀x ∈

(
D\{a} ∩ ]a− δ, a+ δ[

)
.

Définition 2.4. Soit f : D ! R une fonction et a ∈ D (c’est à dire que f est définie en a).
Supposons que f admette une limite ℓ en a. Si la limite ℓ de f en a coincide avec la valeur de
f en a, c’est à dire si ℓ = f(a), ce qui s’écrit mathématiquement :

∀ ϵ > 0, ∃ δ > 0 tel que ∀x ∈ D∩ ]a− δ, a+ δ[ , on a |f(x) − f(a)| < ϵ
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alors on dit que f est continue au point a, et on peut écrire lim
x!a

f(x) = f(a). On dit que f est
continue sur D si f est continue en tout point de D. Par contre, si ℓ ̸= f(a) on dit que f est
discontinue en a.

Chapitre 6. Continuité

I. Continuité en un point. Continuité sur un intervalle
1) Définition

Définition 1. Soit f une fonction définie sur un intervalle I.
1) Soit a un réel élément de I. f est continue en a si et seulement si lim

x→a
f(x) = f(a).

2) f est continue sur I si et seulement si f est continue en tout réel a élément de I.

Les fonctions continues sont les fonctions dont le graphe se trace « sans lever le crayon ».

a

f(a)

x

f(x)

a

()
f(a)

x

f(x)

Quand x tend vers a, f(x) tend vers f(a).
f est continue en a.

Quand x tend vers a, f(x) ne tend pas vers f(a).
f n’est pas continue en a.

2) Continuité des fonctions de référence
Les fonctions de référence connues à ce jour sont toutes continues sur leur domaine de définition. Plus précisément

Théorème 1. Les fonctions constantes sont continues sur R.
Les fonctions x↦ xn, n entier naturel non nul, sont continues sur R.

Les fonctions x↦ 1

xn
, n entier naturel non nul, sont continues sur ] −∞,0[ et sur ]0,+∞[.

La fonction x↦√x est continue sur [0,+∞[.
3) Un exemple de fonction discontinue : la fonction « partie entière »
Soit x un réel. La partie entière du réel x est le plus grand entier relatif inférieur ou égal à x. La partie entière du
réel x est notée E(x).
Par exemple, le plus grand entier relatif inférieur ou égal à 3,7 est 3 et donc E(3,7) = 3, le plus grand entier relatif
inférieur ou égal à −2,6 est −3 et donc E(−2,6) = −3 et le plus grand entier relatif inférieur ou égal à 4 est le
nombre 4 lui-même et donc E(4) = 4.

On va maintenant construire le graphe de la fonction E.
• Pour tout réel x de [0,1[, le plus grand entier relatif inférieur ou égal à x est 0 et donc E(x) = 0.
• Pour tout réel x de [1,2[, le plus grand entier relatif inférieur ou égal à x est 1 et donc E(x) = 1.
• Pour tout réel x de [2,3[, le plus grand entier relatif inférieur ou égal à x est 2 et donc E(x) = 2 ...
• Pour tout réel x de [−1,0[, le plus grand entier relatif inférieur ou égal à x est −1 et donc E(x) = −1 ...

Le graphe de la fonction partie entière est donc

© Jean-Louis Rouget, 2015. Tous droits réservés. 1 http ://www.maths-france.fr

Exemple 2.5. Toutes les fonctions dont on peut dessiner le graphe au tableau sans lever la main
sont continues. Attention il existe plein de fonctions continues qu’on ne peut pas dessiner au
tableau. Il en existe d’ailleurs infiniment plus que celles qu’on peut dessiner.
Remarque 2.6. On peut récrire la définition de continuité de f au point a à l’aide des voisinages :

∀Vf(a) voisinage de f(a), ∃Va voisinage de a tel que, si x ∈ D ∩ Va alors f(x) ∈ Vf(a)

Il existe même une formulation encore plus abstraite (topologique) que nous donnons sans prou-
ver : f : D ! R est continue au point a ∈ D si et seulement si, pour tout voisinage Vf(a) de
f(a), l’ensemble f−1(

Vf(a)
)

est un voisinage de a.

5 . 1  CONTINUOUS FUNCTIONS 125 

The notion of a "gauge" is introduced in Section 5 .5 and is used to provide an alternative 
method of proving the fundamental properties of continuous functions. The main signifi­
cance of this concept, however, is in the area of integration theory where gauges are essential 
in defining the generalized Riemann integral . This will be discussed in Chapter 1 0. 

Monotone functions are an important class of functions with strong continuity 
properties and they are discussed in Section 5 .6. 

Section 5.1 Continuous Functions 

In this section, which is very similar to Section 4. 1 ,  we will define what it means to say that 
a function is continuous at a point, or on a set. This notion of continuity is one of the central 
concepts of mathematical analysis, and it will be used in almost all of the following 
material in this book. Consequently, it is essential that the reader master it. 

5.1.1 Definition Let A t;::; R letf : A -> R and let c E A . We say thatfis continuous at 
c if, given any number 8 > 0, there exists 8 > 0 such that if x is any point of A satisfying 
l x � c l < 8, then lf (x) � f(c) l < 8. 

Iff fails to be continuous at c, then we say that f is discontinuous at c. 

As with the definition of limit, the definition of continuity at a point can be formulated 
very nicely in terms of neighborhoods. This is done in the next result. We leave the 
verification as an important exercise for the reader. See Figure 5 . 1 . 1 .  

c 
VB(c) 

Figure 5.1.1 Given Vr. (f(c) ) ,  a neighborhood V8 (c) is to be determined 

5.1.2 Theorem A function f : A -> IR is continuous at a point c E A if and only if given 
any �::-neighborhood V" (!(c) ) of f(c) there exists a a-neighborhood V8 ( c) of c such that if 
x is any point of A n  V8 (c) , then f(x) belongs to V, (f(c) ) , that is, 

f(A n Va (c) ) t;::; V, (f(c) ) . 

Remarks (1) If c E A is a cluster point of A, then a comparison of Definitions 4. 1 .4 
and 5 . 1 . 1  show that f is continuous at c if and only if 

( 1 ) f(c) = limf(x) . 
x � c  

Proposition 2.7. Caractérisation séquentielle de la limite. Soit f : D ! R une fonction,
ℓ ∈ R et a ∈ D. Les propriétés suivantes sont équivalentes :

1. f tend vers ℓ quand x tend vers a ;
2. pour toute suite (xn)n à valeurs dans D\{a} convergeant vers a, la suite (f(xn))n converge

vers ℓ.

Démonstration. Montrons 1. =⇒ 2. et supposons f admet pour limite ℓ en a. Cela veut dire
que la condition de la Définition 2.1 est satisfaite. Fixons ϵ > 0, alors il existe δ > 0 satisfaisant
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les conditions de la définition. Soit (xn)n une suite d’éléments de D convergeant vers a tout en
étant différents de a. Cela veut dire qu’à partir d’un certain N assez grand, on a |xn − a| < δ
pour tout n ≥ N . Dans ce cas, comme la condition de la Définition 2.1 est satisfaite pour tous
ces xn, on a |f(xn) − ℓ| < ϵ pour tout n ≥ N . Cela veut dire que la suite (f(xn))n converge donc
vers ℓ.

Montrons 2. =⇒ 1. en montrant la contraposée, c’est à dire que la négation de 1. implique
la négation de 2. Supposons que f n’admet pas de limite en a. Cela veut dire qu’il existe ϵ > 0
tel que pour tout δ > 0, il existe x ∈

(
D\{a} ∩ ]a− δ, a+ δ[

)
tel que |f(x) − ℓ| ≥ ϵ. Construisons

une suite (xn)n convergeant vers a mais telle que la suite (f(xn))n ne converge pas vers ℓ (c’est
la négation de 2.). Soit un ϵ satisfaisant la condition écrite ci dessus. Alors, pour tout n ∈ N,
il existe xn ∈

(
D\{a} ∩ ]a − 1

n , a + 1
n [

)
tel que |f(xn) − ℓ| ≥ ϵ. La suite (xn)n ainsi construite

converge vers a mais la suite (f(xn))n reste à une distance au moins ϵ de ℓ, elle ne converge
donc pas vers ℓ. On a montré la négation de 2.

Remarque 2.8. Le mot important de la Proposition 2.7 est pour toute suite. Car en particulier,
si on trouve deux suites (xn)n et (yn)n d’éléments de D\{a} qui tendent vers a et telles que

lim
n!+∞

f(xn) ̸= lim
n!+∞

f(yn) alors la fonction f n’admet pas de limite en a. En particulier, f ne
peut pas être continue en a.

Proposition 2.9. Critère de discontinuité. Soit f : D ! R une fonction et a ∈ D. f est
discontinue au point a si et seulement si il existe une suite (xn)n de point de D qui converge
vers a, mais telle que la suite (f(x)n)n ne converge pas vers f(a).

Exemple 2.10. La fonction de Dirichlet (1829) est une fonction f : R ! R définie comme suit :

f(x) =
{

0 si x ∈ Q
1 si ∈ R\Q

La fonction n’est pas dessinable et n’admet de limites en aucun point. En effet, Q et R\Q
sont denses dans R. Donc, pour tout x ∈ R il existe une suite de rationnels (an)n et une suite
d’irrationnels (bn)n qui convergent vers x, mais pour tout n f(an) = 0 et f(bn) = 1. Donc f ne
peut admettre de limite en x. Par exemple pour x = 0 on peut prendre an = 1

n et bn = π
n .

Remarque 2.11. D’autre part, on peut préciser si on tend vers ℓ par la gauche ou par la droite
en écrivant x < a ou x > a plutôt que x ̸= a sous le symbole de la limite, et on parle alors de
limite à gauche ou limite à droite, et on note :

lim
x!a
x<a

f(x) = ℓ et lim
x!a
x>a

f(x) = ℓ

Nous verrons plus loin qu’une fonction est continue en a si les limites à gauche, à droite, et la
valeur de f en a coincident toutes. Dans la suite si on parle de limite de f en a sans préciser
laquelle, on suppose implicitement que la limite à gauche de f en a et celle à droite coincident.
Tous les résultats sur les limites se généralisent aux limites à gauche et aux limites à droite.
Exemple 2.12. Soit E la fonction partie entière. Soit a = 1. Calculons la limite à gauche de E
en 1 et sa limite à droite. Soit ϵ > 0. Prenons δ = 1/2. Alors pour tout 1/2 < x < 1, E(x) = 0
donc |E(x) − 0| = 0 < ϵ. Cela étant vrai pour tout ϵ > 0, la fonction partie entière tend vers
0 quand x tend vers 1 par la gauche. Maintenant prenons l’autre côté : pour tout 1 < x < 3/2
on a E(x) = 1 et |E(x) − 1| = 0 < ϵ. Cela étant vrai pour tout ϵ > 0, la fonction partie entière
tend vers 1 quand x tend vers 1 par la droite. La fonction partie entière a donc deux limites
différentes en 1 ! ! En particulier elle n’est pas continue en 1.

Définition 2.13. Soit f : D ! R une fonction et soit a ∈ D.
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— On dit que f est continue à gauche au point a si lim
x!a
x<a

f(x) = f(a).

— On dit que f est continue à droite au point a si lim
x!a
x>a

f(x) = f(a).

Exemple 2.14. La fonction partie entière n’est continue à gauche en aucun entier. Par contre,
elle est continue à droite en tous les entiers.
Exemple 2.15. La fonction signe n’est pas continue en 0, ni à gauche ni à droite :

sgn : R −−−−−−! R

x 7−−−−−−!

0 si x = 0
x

|x| si x ̸= 0

4. 1 LIMITS OF FUNCTIONS 109 

Let the signum function sgn be defined by { +1 sgn(x) := 0 - I 

for x > 0, for x = 0, for x < 0. 
Note that sgn(x) = x/ lx l for x i=  0. (See Figure 4. 1 .2 .) We shall show that sgn does not have a limit at x = 0. We shall do this by showing that there is a sequence (x11) such that Iim(x, ) = 0, but such that (sgn (x, ) ) does not converge. 

----------1- 1 
Figure 4.1.2 The signum function 

Indeed, let Xn := ( - 1  )" /n for n E N so that Iim(xn ) = 0. However, since 
sgn (xn ) = ( - 1  ) " for n E N ,  

it follows from Example 3 .4.6(a) that (sgn(xn ) )  does not converge. Therefore lim sgn (x) does not exist. x-->O 

(c)t lim sin ( l /x) does not exist in R 
X-->0 Let g ( x) : = sin ( 1 / x) for x i= 0. (See Figure 4. 1 .3 . ) We shall show that g does not have a limit at c = 0, by exhibiting two sequences (x,) and (y11) with Xn "!= 0 and Yn "!= 0 for all 

n E N  and such that lim(xn ) = 0 and lim(y11 ) = 0, but such that lim(g (xn ) ) "!= lim(g (y11 ) ) .  I n view of Theorem 4. 1 .9 this implies that lim g cannot exist. (Explain why.) 
x-->0 

Figure 4.1.3 The function g (x) = sin ( l /x) (x # 0) 

Indeed, we recall from calculus that sin t = 0 if t = mr for n E Z, and that sin t = + 1 if t = ! n  + 2;r n for n E Z. Now let Xn := 1 /mr for n E N; then lim(xn ) = 0 and g(xn ) = sin nn = 0 for all n E N, so that lim(g (xn ) ) = 0. On the other hand, let Yn := 
(! n + 2nnr 1 for n E N; then lim (y11 ) = 0  and g(y11 ) = sin (! n + 2n n) = l  for all 
n E N, so that Iim(g (y11 ) )  = 1 .  We conclude that Iim sin ( l /x) does not exist. D 

X-->0 

t In order to have some interesting applications in this and later examples, we shall make use of well-known 

properties of trigonometric and exponential functions that will be established in Chapter 8. 

Comme la convergence d’une fonction en un point a se ramène à l’étude de convergences de
suites, toutes les opérations sur des limites (produits, sommes, inverses, comparaisons, théorème
des gendarmes) sont transposables directement du monde des suites au monde des fonctions
sur R. En particulier pour les théorèmes de comparaisons nous définissons les notion suivantes
qui sont très naturelles :

Définition 2.16. Soit f : D ! R et g : D ! R deux fonctions, a ∈ D et b ∈ D. On dit que :
— f est inférieure à g et on note f ≤ g dans un voisinage Va de a (resp. D) si f(x) ≤ g(x)

pour tout x ∈ D ∩ Va (resp. D) ;
— f est bornée dans un voisinage Va de a (resp. D) si il existe M > 0 tel que |f(x)| ≤ M

pour tout x ∈ D ∩ Va (resp. D) ;
— admet un maximum (resp. minimum) global en b ∈ D si f(x) ≤ f(b) (resp. f(b) ≤ f(x))

pour tout x ∈ D.

Remarque 2.17. Une fonction peut ne pas avoir de maximum ou de minimum global, par exemple
la fonction f : R∗ ! R, x 7! 1

x . D’autre part, il peut y avoir des cas où le maximum (resp.
minimum) global peut être atteint en plusieurs point de D, par exemple la fonction f : [−1, 1] !
R, x 7! x2, admet un maximum global en x = −1 et x = 1.
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136 CHAPTER 5 CONTINUOUS FUNCTIONS 

1 2 
Figure 5.3.1 The function 

f(x) = l jx (x > 0) 

- 1 
Figure 5.3.2 The function 

g(x) = x2 ( lx l ::;  1 )  

1 

neither an absolute maximum nor an absolute minimum when it is restricted to the set 
(0, I ) , while it has both an absolute maximum and an absolute minimum when it is 
restricted to the set [ 1 ,  2] . In addition, f(x) = 1 /x has an absolute maximum but no 
absolute minimum when restricted to the set [ 1 ,  oo) , but no absolute maximum and no 
absolute minimum when restricted to the set ( 1 ,  oo). 

It is readily seen that if a function has an absolute maximum point, then this point is 
not necessarily uniquely determined. For example, the function g(x) :=  x2 defined for 
x E A : =  [ - 1 ,  + 1 ]  has the two points x = ± 1 giving the absolute maximum on A,  and the 
single point x = 0 yielding its absolute minimum on A .  (See Figure 5 .3 .2 .) To pick an 
extreme example, the constant function h (x) := 1 for x E JR. is such that every point of JR. is 
both an absolute maximum and an absolute minimum point for h. 

5.3.4 Maximum-Minimum Theorem Let I :=  [a , b] be a closed bounded interval and 
let f :  I --+ JR. be continuous on I. Then f has an absolute maximum and an absolute 
minimum on I. 

Proof. Consider the nonempty setf(I) :=  {f(x) : x E l} ofvalues offon i. In Theorem 5.3 .2 
it was established thatf(l) is a bounded subset of R Let s* := sup f(I) and s. :=  inf f(l ) .  
We claim that there exist points x* and x. in I such that s* = f(x* ) and s. = f(x. ) . We will 
establish the existence of the point x*, leaving the proof of the existence of x. to the reader. 

Since s* = sup f(I) , if n E N, then the number s* - I /n is not an upper bound of the 
set f(l) .  Consequently there exists a number Xn E I such that 

( 1 )  1 s* - - < f(xn ) :s; s* for all n E N. n 
Since I is bounded, the sequence X :=  (xn ) is bounded. Therefore, by the Bolzano­
Weierstrass Theorem 3 .4.8 ,  there is a subsequence X' = (xn, ) of X that converges to some 
number x*. Since the elements of X' belong to I =  [a , b] , it follows from Theorem 3 .2.6 that 
x* E I. Therefore f is continuous at x* so that lim(f(xn, ) )  = f(x* ) .  Since it follows from 
( 1 )  that 

1 s* - - < f(xn , ) :s; s* for all r E N, n,. 
we conclude from the Squeeze Theorem 3 .2.7 that lim(f(xn, ) )  = s* . Therefore we have 

f(x* ) = lim(f(xn, ) ) = s* = sup f(I) . 

We conclude that x* is an absolute maximum point off on I. Q.E.D. 

En particulier nous avons le résultat suivant qui est l’analogue de la Proposition 1.56 :

Proposition 2.18. Passage à la limite. Soit f : D ! R et g : D ! R deux fonctions telles
que f ≤ g dans un voisinage d’un point a ∈ D. Si lim

x!a
x ̸=a

f(x) = ℓ et lim
x!a
x ̸=a

g(x) = ℓ′, alors ℓ ≤ ℓ′.

Remarque 2.19. Ce résultat est aussi valide pour f < g MAIS on a tjrs ℓ ≤ ℓ′. Lorsqu’on passe
à la limite, toutes les inégalités strictes deviennent des inégalités non-strictes. Du point de vue
topologique : toutes les conditions ouvertes deviennent des conditions fermées. Le slogan c’est
qu’"on peut fermer une ouverture, mais pas ouvrir une fermeture" .

La deuxième proposition qu’il faut noter est la version analogue de la Proposition 1.47 :

Proposition 2.20. Soit f : D ! R et soit a ∈ D tel que f admet une limite en a. Alors f est
bornée dans un certain voisinage de a.

Démonstration. Si f admet une limite finie ℓ au point a ∈ D, alors pour tout ϵ > 0 il existe
δ > 0 tel que pour tout x ∈

(
D\{a}∩ ]a− δ, a+ δ[

)
, on a |f(x) − ℓ| < ϵ. Posons I = ]a− δ, a+ δ[,

alors la condition de continuité en a se récrit :

∀x ∈ D ∩ I =⇒ |f(x) − f(a)| < ϵ

So we have that :
∀x ∈ D ∩ I =⇒ |f(x)| < ϵ+ |f(a)|

C’est la condition de majoration dans un voisinage de a.

Définition 2.21. Soit f : D ! R et g : D′ ! R deux fonctions, telles que f(D) ⊂ D′. On
définit alors une troisième fonction de D dans R, appelée la composée de f et g et notée g ◦ f
("g rond f"), par :

∀x ∈ D g ◦ f(x) = g(f(x)).

Proposition 2.22. Supposons que lim
x!a
x̸=a

f(x) = ℓ et que lim
y!ℓ
y ̸=ℓ

g(y) = λ, alors lim
x!a
x ̸=a

g ◦ f(x) = λ.

Démonstration. Se fait avec les suites.

Proposition 2.23. Soit f : D ! R et h : D ! R deux fonctions continues. Alors f+h, fh sont
continues, et si jamais h ne s’annule pas, alors f

h est continue. Soit D′ ⊂ R un sous-ensemble
tel que f(D) ⊂ D′. Si g : D′ ! R est continue alors la composition g ◦ f : D ! R est continue.
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5 .2 COMBINATIONS OF CONTINUOUS FUNCTIONS 133 

u 

f g 
A B c 

Figure 5.2.1 The composition off and g 

Theorems 5 .2.6 and 5 .2.7 are very useful in establ ishing that certain functions are 
continuous. They can be used in many situations where it would be difficult to apply the 
definition of continuity directly. 

5.2.8 Examples (a) Let g 1. (x) := l x l for x E JR.. It follows from the Triangle Inequality 
that 

l g 1 (x) - g 1 (c) l � l x - c l 
for all x, c E JR.. Hence g 1 is continuous at c E R If f : A -+ lR is any function that is 
continuous on A,  then Theorem 5 .2.7 implies that g 1 of = lf l  is continuous on A .  This 
gives another proof of Theorem 5 .2.4. 
(b) Let g2 (x) : = /X for x � 0. It follows from Theorems 3 .2. 1 0  and 5 . 1 .3 that g2 is 
continuous at any number c � 0. Iff : A  -+ lR is continuous on A and iff(x) � 0 for all 
x E A, then it follows from Theorem 5 .2.7 that g2 of = VJ is continuous on A. This gives 
another proof of Theorem 5 .2 .5 .  
(c) Let g3 (x)  : =  s in x for x E JR.. We have seen in Example 5 .2 .3(c) that g3 is continuous 
on R Iff : A -+ lR is continuous on A, then it follows from Theorem 5 .2.7 that g3 of is 
continuous on A .  

In particular, iff ( x) : = I I x for x "I- 0, then the function g ( x) : =  sin ( I  I x )  i s  continu­
ous at every point c -j. 0. [We have seen, in Example 5 . 1 .8 (a), that g cannot be defined at 
0 in order to become continuous at that point.] 0 

Exercises for Section 5.2 

1 .  Determine the points of continuity of the following functions and state which theorems are used 
in each case. 

(a) f(x) := 
x2 + 2x + I (x E JR) , x2 + I  

(c) h (x) := / I + I sin x l  (x # O) , X 
(b) g (x) := jx + JX (x � 0) , 

(d) k (x) := cosv'f+X2 (x E JR) . 

2. Show that iff : A ---> lR is continuous on A � lR and if n E N, then the function F defined by 
f" (x) = (f(x) )" , for x E A, is continuous on A .  

3 .  Give an  example of functionsfand g that are both discontinuous a t  a point c in lR such that (a) the 
sum f + g is continuous at c, (b) the product .fg is continuous at c. 

Définition 2.24. Soient f : D ! R une fonction continue et g : D′ ! R, avec D ⊂ D′. On dit
que g est un prolongement par continuité de f si

1. g est prolongement de f , i.e. g(x) = f(x) pour tout x ∈ D ;
2. g est continue en tout point de D′.

Exemple 2.25. Prenons la fonction :

f : R∗ −−−−−−! R

x 7−−−−−−! x sin
( 1
x

)

tend vers une limite commune nulle en 0. En effet, pour tout x ∈ R∗,
∣∣∣x sin

(
1
x

)∣∣∣ ≤ |x| donc
quand x tend vers zero, f(x) tend vers 0 (à gauche comme à droite). On peut donc définir une
fonction g : R ! R telle que :

g : R −−−−−−! R

x 7−−−−−−!

x sin
(

1
x

)
si x ̸= 0

0 si x = 0

C’est un prolongement par continuité de f en 0.
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Figure 5.1.3 Graph of f(x) = x sin ( l /x) (x f' 0) 

Exercises for Section 5.1 

1 .  Prove the Sequential Criterion 5 . 1 .3 .  
2 .  Establish the Discontinuity Criterion 5 . 1 .4. 
3 .  Let a <  h < c. Suppose that f is continuous on [a , h i ,  that g is continuous on [b, c] , and that 

f(b) = g(b ) . Define h on [a, c] by h (x) := f(x) for x E [a, b] and h (x) := g(x) for x E [b, c] . 
Prove that h is continuous on [a, c] . 

4. If x E R, we define [x] to be the greatest integer n E Z such that n ::; x. (Thus, for example, 
[8 .3] = 8 ,  [n] = 3, [ - n] = -4.) The function x >--? [x] is called the greatest integer function. 
Determine the points of continuity of the following functions: 
(a) f(x) := [x] , (b) g(x) := x [x], 
(c) h (x) := [sin x] , (d) k (x) := [ 1 /x] (x f' 0) . 

5 . Let f be defined for all x E R, x i  2, by f(x) = (x2 + x - 6) / (x - 2). Can f be defined at 
x = 2 in such a way that f is continuous at this point? 

6. Let A C::: R and letf : A ---. R be continuous at a point c E A. Show that for any D > 0, there exists 
a neighborhood V8 (c) of c such that if x, y E A n V0 (c) ,  then lf(x) -f(y) l < D. 

7. Letf : R ---. R be continuous at c and letf(c) > 0. Show that there exists a neighborhood V8 (c) 
of c such that if x E V8 (c) ,  then f(x) > 0. 

8 .  Let f : R .:...., R be continuous on R and let S := {x E R : f(x) = 0} be the "zero set" off If 
(xn ) is in S and x = lim(x11 ) ,  show that x E S. 

9. Let A C::: B C::: R, let { :  B ---. R and let g be the restriction off to A (that is, g (x) = f(x) for X E A). 
(a) Iff is continuous at c E A, show that g is continuous at c. 
(b) Show by example that if g i s  continuous at c, it need not follow that f is continuous 

at c .  

1 0. Show that the absolute value function f(x) :=  lx l  is continuous at every point c E R. 
I I .  Let K > 0 and let f : R ---. R satisfy the condition lf(x) - f(y) l ::; K lx - Y l for all x, y E R. 

Show that f is continuous at every point c E R. 
1 2 . Suppose thatf : R ---. R is continuous on R and thatf(r) = 0 for every rational number r .  Prove 

that f(x) = 0 for all x E R. 
1 3 . Define g :  R ---. R by g(x) := 2x for x rational, and g(x) := x + 3 for x irrational . Find all 

points at which g is continuous. 

Exemple 2.26. Prenons comme fonction :

f : R∗ −−−−−−! R

x 7−−−−−−! sin
( 1
x

)
Comme la fonction x 7! 1/x est continue sur ]0,+∞[ et sur ]−∞, 0[, et que le sinus l’est partout,
la composée est continue sur R∗ : c’est bien la fonction f . On se demande si f admet une limite
à gauche en zéro qui soit égale à la limite à droite, auquel cas on peut définir un prolongement
par continuité de f en 0.

4. 1 LIMITS OF FUNCTIONS 109 

Let the signum function sgn be defined by { +1 sgn(x) := 0 - I 

for x > 0, for x = 0, for x < 0. 
Note that sgn(x) = x/ lx l for x i=  0. (See Figure 4. 1 .2 .) We shall show that sgn does not have a limit at x = 0. We shall do this by showing that there is a sequence (x11) such that Iim(x, ) = 0, but such that (sgn (x, ) ) does not converge. 

----------1- 1 
Figure 4.1.2 The signum function 

Indeed, let Xn := ( - 1  )" /n for n E N so that Iim(xn ) = 0. However, since 
sgn (xn ) = ( - 1  ) " for n E N ,  

it follows from Example 3 .4.6(a) that (sgn(xn ) )  does not converge. Therefore lim sgn (x) does not exist. x-->O 

(c)t lim sin ( l /x) does not exist in R 
X-->0 Let g ( x) : = sin ( 1 / x) for x i= 0. (See Figure 4. 1 .3 . ) We shall show that g does not have a limit at c = 0, by exhibiting two sequences (x,) and (y11) with Xn "!= 0 and Yn "!= 0 for all 

n E N  and such that lim(xn ) = 0 and lim(y11 ) = 0, but such that lim(g (xn ) ) "!= lim(g (y11 ) ) .  I n view of Theorem 4. 1 .9 this implies that lim g cannot exist. (Explain why.) 
x-->0 

Figure 4.1.3 The function g (x) = sin ( l /x) (x # 0) 

Indeed, we recall from calculus that sin t = 0 if t = mr for n E Z, and that sin t = + 1 if t = ! n  + 2;r n for n E Z. Now let Xn := 1 /mr for n E N; then lim(xn ) = 0 and g(xn ) = sin nn = 0 for all n E N, so that lim(g (xn ) ) = 0. On the other hand, let Yn := 
(! n + 2nnr 1 for n E N; then lim (y11 ) = 0  and g(y11 ) = sin (! n + 2n n) = l  for all 
n E N, so that Iim(g (y11 ) )  = 1 .  We conclude that Iim sin ( l /x) does not exist. D 

X-->0 

t In order to have some interesting applications in this and later examples, we shall make use of well-known 

properties of trigonometric and exponential functions that will be established in Chapter 8. 
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Malheureusement, pour tout n ∈ N∗, posons xn = 2
πn . Alors, f(xn) = sin

(
πn
2

)
= (−1)n.

Mais alors, la suite (xn)n converge vers 0, mais la suite (f(xn))n ne converge pas (alterne), donc
f ne tend vers aucune limite en 0 (par la droite, mais idem par la gauche). Donc la fonction
n’est certainement pas prolongeable à une fonction continue sur R.
Exemple 2.27. La fonction ζ de Riemann peut se prolonger sur le plan complexe.

Quelque chose de particulier pour les fonctions, c’est qu’on peut aussi tendre vers ±∞ au
point a ∈ D, et on peut tendre vers une limite finie ou infinie en ±∞. Commençons par le
premier cas :

Définition 2.28. Soit f : D ! R une fonction telle que D et soit a ∈ D. On dit que f tend
vers +∞ en a si :

∀M ∈ R, ∃ δ > 0 tel que ∀x ∈ D satisfaisant
{

|x− a| < δ

x ̸= a
on a f(x) > M

et on écrit lim
x!a
x ̸=a

f(x) = +∞. Pour −∞, c’est la même condition mais avec f(x) < M .

Remarque 2.29. Comme dans le cas d’une limite finie, on peut définir la divergence vers ±∞ à
gauche ou à droite en a. Cela est par exemple le cas pour la fonction f : x 7! 1

x définie sur R∗

et qui tend vers +∞ par la droite en 0, et vers −∞ par la gauche en 0.

Définition 2.30. Soit f : D ! R une fonction telle que D n’est pas majoré, et soit ℓ ∈ R.
On dit que f a pour limite ℓ en +∞ ou que f tend vers ℓ quand x tend vers +∞ et on note

lim
x!+∞

f(x) = ℓ si :

∀ ϵ > 0, ∃M > 0 tel que ∀x ∈ D∩ ]M,+∞[, |f(x) − ℓ| < ϵ

On dit que f tend vers +∞ en +∞ si :

∀M ∈ R, ∃M ′ > 0 tel que ∀x ∈ D∩ ]M ′,+∞[, f(x) > M

et on écrit lim
x ̸=+∞

f(x) = +∞. Pour −∞, c’est la même condition mais avec f(x) < M .

]A

x

f(x)

Pour tout réel A,
f(x) > A dés que x est
suffisamment grand

lim
x→+∞f(x) = +∞

A

]

x

f(x)

Pour tout réel A,
f(x) < A dés que x est
suffisamment grand

lim
x→+∞f(x) = −∞

Définition 2. Soit f une fonction définie sur un intervalle de la forme ] −∞, α[ ou ] −∞, α].
1) On dit que f tend vers +∞ quand x tend vers −∞ si et seulement si tout intervalle de la forme ]A,+∞[
contient f(x) pour x négatif assez grand en valeur absolue. On écrit alors lim

x→−∞f(x) = +∞.
2) On dit que f tend vers −∞ quand x tend vers −∞ si et seulement si tout intervalle de la forme ] −∞,A[
contient f(x) pour x négatif assez grand en valeur absolue.
On écrit alors lim

x→−∞f(x) = −∞.

] A

x

f(x)

Pour tout réel A,
f(x) > A dés que x est
négatif et suffisamment
grand en valeur absolue

lim
x→−∞f(x) = +∞

A

]

x

f(x)

Pour tout réel A,
f(x) < A dés que x est
négatif et suffisamment
grand en valeur absolue

lim
x→−∞f(x) = −∞

c) Limites de référence infinies en l’infini

Théorème 1. 1) a) Pour tout entier naturel non nul n, lim
x→+∞xn = +∞.

b) Pour tout entier naturel non nul p, lim
x→−∞x2p = +∞ et pour tout entier naturel p, lim

x→−∞x2p+1 = −∞ ou

encore, pour tout entier naturel non nul n, lim
x→−∞xn = { +∞ si n est pair−∞ si n est impair .

2) lim
x→+∞

√
x = +∞.

Voici les graphes des fonctions x↦ x2, x↦ x3 et x↦√x.
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]A

x

f(x)

Pour tout réel A,
f(x) > A dés que x est
suffisamment grand

lim
x→+∞f(x) = +∞

A

]

x

f(x)

Pour tout réel A,
f(x) < A dés que x est
suffisamment grand

lim
x→+∞f(x) = −∞

Définition 2. Soit f une fonction définie sur un intervalle de la forme ] −∞, α[ ou ] −∞, α].
1) On dit que f tend vers +∞ quand x tend vers −∞ si et seulement si tout intervalle de la forme ]A,+∞[
contient f(x) pour x négatif assez grand en valeur absolue. On écrit alors lim

x→−∞f(x) = +∞.
2) On dit que f tend vers −∞ quand x tend vers −∞ si et seulement si tout intervalle de la forme ] −∞,A[
contient f(x) pour x négatif assez grand en valeur absolue.
On écrit alors lim

x→−∞f(x) = −∞.

] A

x

f(x)

Pour tout réel A,
f(x) > A dés que x est
négatif et suffisamment
grand en valeur absolue

lim
x→−∞f(x) = +∞

A
]

x

f(x)

Pour tout réel A,
f(x) < A dés que x est
négatif et suffisamment
grand en valeur absolue

lim
x→−∞f(x) = −∞

c) Limites de référence infinies en l’infini

Théorème 1. 1) a) Pour tout entier naturel non nul n, lim
x→+∞xn = +∞.

b) Pour tout entier naturel non nul p, lim
x→−∞x2p = +∞ et pour tout entier naturel p, lim

x→−∞x2p+1 = −∞ ou

encore, pour tout entier naturel non nul n, lim
x→−∞xn = { +∞ si n est pair−∞ si n est impair .

2) lim
x→+∞

√
x = +∞.

Voici les graphes des fonctions x↦ x2, x↦ x3 et x↦√x.
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Remarque 2.31. On peut récrire la même définition avec D non minoré, et on définit le fait que
f tend vers ℓ (resp. ±∞) quand x tend vers −∞ en écrivant les deux phrases mathématiques
suivantes :

∀ ϵ > 0, ∃M > 0 tel que ∀x ∈ D∩ ]M,+∞[, |f(x) − ℓ| < ϵ

∀M ∈ R, ∃M ′ > 0 tel que ∀x ∈ D∩ ]M ′,+∞[, f(x) > M

4.3 SOME EXTENSIONS OF THE LIMIT CONCEPT 1 19 

Since we have seen in part (b) that lim e1 1x = 0, it follows from the analogue of X---+0-Theorem 4.2.4(b) for left-hand limits that 

r ( I ) 1 I x.!..W- el /x + I = 
lim e1 1x + I = 0 + 1 

= I · x---+0-
Note that for this function, both one-sided l imits exist in IR, but they are unequal. 0 
Infinite Limits 

The functionf(x) := 1 j x2 for x -=/= 0 (see Figure 4 .3 .3 )  is not bounded on a neighborhood 
of 0, so it cannot have a limit in the sense of Definition 4. 1 .4. While the symbols 
oo(= +oo) and -oo do not represent real numbers , it i s  sometimes useful to be able to 
say that "f(x) = l jx2 tends to oo as x -+ 0." This use of ±oo will not cause any 
difficulties, provided we exercise caution and never interpret oo or -oo as being real 
numbers . 

Figure 4.3.3 Graph of 
f(x) = l jx2 (x f= 0) Figure 4.3.4 Graph of 

g(x) = 1 /x (x f= 0) 

4.3.5 Definition Let A � R let f :  A -+ IR, and let c E IR be a cluster point of A. 
(i) We say that f tends to oo as x -+ c, and write 

lim f = oo, X---+C 
if for every a E IR there exists 8 = 8 (a) > 0 such that for all x E A with 
0 < lx - c l < 8, then f(x) > a. 

(ii) We say that f tends to -oo as x -+  c, and write 

lim f = -oo,  X---+C 
if for every f3 E IR there exists 8 = 8 ({3) > 0 such that for all x E A with - 0 < l x - cl < 8, then f(x) < {3. 

4.3.6 Examples (a) lim ( I /x2 ) = oo. x�o 
For, if a > 0 is given, let 8 := 1 j fo. It follows that if 0 < l x l  < 8, then x2 < I fa so 

that l jx2 > a. 
(b) Let g (x) : =  1 /x for x -=/=  0. (See Figure 4.3 .4 .) 

44



118 CHAPTER 4 LIMITS 

-----o.;;: _ _Y__"� 

y 

Figure 4.3.1 Graph of 
g(x) = e 1 fx (x f= 0) 

Figure 4.3.2 Graph of 
h(x) = 1 / (e 1 fx + 1 ) (x f= 0) 

We leave the proof of this result (and the formulation and proof of the analogous 
result for left-hand limits) to the reader. We will not take the space to write out the 
formulations of the one-sided version of the other results in Sections 4. 1 and 4.2. 

The following result relates the notion of the limit of a function to one-sided limits. We 
leave its proof as an exercise . 

4.3.3 Theorem Let A � R let f : A ----+ R and let c E IR be a cluster point of both 
of the sets A n (c, oo) and A n (-oo, c) . Then lim f = L  if and only if 
l im f = L = l im f. x�c 

X--l-C+ X----+C-
4.3.4 Examples (a) Let f(x) := sgn (x) . 

We have seen in Example 4. 1 . 1  O(b) that sgn does not have a limit at 0. It is clear that 
lim sgn (x) = + 1 and that lim sgn (x) = - 1 .  Since these one-sided limits are different, it 

x�O+ x�O-
also follows from Theorem 4.3 .3 that sgn(x) does not have a limit at 0. 
(b) Let g (x) := e 1 fx for x -=?  0. (See Figure 4 .3 . 1 . ) 

We first show that g does not have a finite right-hand limit at c = 0 since it i s  
not  bounded on any right-hand neighborhood (0 ,  8) of 0 .  We shall make use of the 
inequality 

( I )  0 < t < e1 for t > 0, 

which wil l  be proved later (see Corollary 8 .3 .3) .  I t follows from ( 1 )  that if x > 0, then 
0 < I lx < e 1 1x .  Hence, if we take Xn = l in, then g (xn )  > n for all n E N. Therefore 
lim e 1 1x does not exist in R 

x�D+However, lim e 1 I x = 0. Indeed, if x < 0 and we take t = - I  I x in ( 1 )  we obtain x----+0-
0 < - I Ix < e- l /x . Since x < 0, this implies that 0 < e 1 fx < -x for all x < O. lt follows 
from this inequality that lim e1 fx = 0. x----+0-
(c) Let h (x) : =  1 I ( e1 1x + 1 ) for x -=1 0. (See Figure 4.3 .2 . ) 

We have seen in part (b) that 0 < l lx < e 1 fx for x > 0, whence 

which implies that lim h = 0. 
x�O+ 

1 1 O < 1 / < e l /x < x, e x + 1 

Remarque 2.32. Lorsque D = N, une fonction u : N ! R est en réalité une suite réelle. Les
définitions de limite finie (Définition 1.36) et infinie (Définition 1.43) d’une suite réelle sont en
fait une application directement de la Definition 2.30 puisque la phrase

∀ ϵ > 0, ∃M > 0 tel que ∀x ∈ D∩ ]M,+∞[, |u(x) − ℓ| < ϵ

est équivalent à écrire ;

∀ ϵ > 0, ∃N ∈ N tel que ∀x ∈ N∩ ]N,+∞[, |u(x) − ℓ| < ϵ

qui est à son tour équivalent à écrire la formule de la Définition 1.36 :

∀ ϵ > 0, ∃N ∈ N tel que ∀n ≥, |u(n) − ℓ| < ϵ

De même pour les limites ±∞ d’une suite.

Toutes les définitions du type "f tend vers une limite L quand x tend vers A" (avec L = ℓ
finie ou L = ±∞, et A = a un point de D ou A = ±∞), se résume par la formule suivante :

∀VL voisinage de L, ∃VA voisinage de A tel que si x ∈ D ∩ VA, alors f(x) ∈ VL (2.1)

On rappelle qu’un voisinage de L (c’est similaire pour A en remplaçant L par A) désigne une
partie VL de R contenant :

— pour L = ℓ finie, un intervalle du type ]ℓ− ϵ, ℓ+ ϵ[ ;
— pour L = +∞, un intervalle du type ]M,+∞[ ;
— pour L = −∞, un intervalle du type ] − ∞,M [.

La phrase (2.1) peut être adaptée à chaque cas particulier, en utilisant des voisinages adéquats.
Voici le tableau récapitulant toutes les limite possibles, subsumées par la phrase (2.1) :

```````````````̀
Voisinage VA

Voisinage VL
ℓ ∈ R +∞ −∞

a ∈ D
∀ ]ℓ− ϵ, ℓ+ ϵ[
∃ ]a− δ, a+ δ[

∀ ]M,+∞[
∃ ]a− δ, a+ δ[

∀ ] − ∞,M [
∃ ]a− δ, a+ δ[

+∞ ∀ ]ℓ− ϵ, ℓ+ ϵ[
∃ ]M,+∞[

∀ ]M,+∞[
∃ ]M ′,+∞[

∀ ] − ∞,M [
∃ ]M ′,+∞[

−∞ ∀ ]ℓ− ϵ, ℓ+ ϵ[
∃ ] − ∞,M [

∀ ]M,+∞[
∃ ] − ∞,M ′[

∀ ] − ∞,M [
∃ ] − ∞,M ′[
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2.2 Propriétés des fonctions continues

Les mathématiques sont une éducation intellectuelle à ne pas prendre les choses qui se pré-
sentent à nous comme des évidences. C’est une éducation à embrasser la complexité et à l’ac-
cueillir comme une composante normale du monde. Le théorème suivant n’a eu de démonstration
que fort tard. Il nécessite en effet une conception claire de la continuité, qui n’est apparue qu’au
XIXème. En 1817, Bolzano (1781-1848) rejette les justifications usuelles basées sur des considé-
rations liées à la géométrie, au mouvement, à l’espace, dans un domaine qu’il considère purement
analytique. La première définition de la continuité, encore intuitive et sans donner de détails,
a été publiée par Cauchy en 1821. On a longtemps pensé que la réciproque du théorème était
vraie, et que la propriété des valeurs intermédiaires caractérisait les fonctions continues. Ce n’est
qu’en 1875 que Darboux donna un contre-exemple d’une fonction discontinue ayant la propriété
des valeurs intermédiaires dans son article Mémoire sur les fonctions discontinues, après avoir
réalisé à la suite de Riemann qu’on pouvait intégrer des fonctions discontinues.

Théorème 2.33. Theorème des valeurs intermédiaires. Soit f : [a, b] ! R une fonction
continue, alors pour tout réel y compris entre f(a) et f(b), il existe x ∈ [a, b] tel que y = f(x).

Remarque 2.34. La formulation du théorème peut se faire de façon plus rigoureuse en écrivant
que si f(a) ≤ f(b), alors pour tout f(a) ≤ y ≤ f(b), il existe x ∈ [a, b] tel que y = f(x), et que
si f(a) ≥ f(b), alors pour tout f(b) ≤ y ≤ f(a), il existe x ∈ [a, b] tel que y = f(x). Les deux
cas sont essentiellement équivalents et on peut passer de l’un à l’autre en changeant le signe de
f , car si f satisfait f(a) ≤ f(b), alors g = −f satisfait g(a) ≥ g(b).

Démonstration. On suppose pour cette preuve que f(a) ≤ f(b). La preuve est très élégante, car
soit y = f(a) ou y = f(b) le théorème est valide, soit f(a) < y < f(b)[ et alors on va construire
deux suites adjacentes (an)n et (bn)n qui tendent vers une limite commune x telle que f(x) = y.
On commence par poser a0 = a et b0 = b. On va construire la suite par récurrence. Au rang 0
on a f(a0) < y < f(b0). On suppose les suites construites jusqu’au rang n telles que :

∀ 0 ≤ k ≤ n

{
ak ≤ bk

f(ak) ≤ y ≤ f(bk)

Pour construire les suites au rang n+ 1, on a alors deux cas :
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— soit f
(
an+bn

2

)
< y, on pose an+1 = an+bn

2 et bn+1 = bn, et dans ce cas an+1 ≤ bn = bn+1

et f(an+1) < y ≤ f(bn) = f(bn+1) ;
— soit f

(
an+bn

2

)
≥ y, on pose an+1 = an et bn+1 = an+bn

2 , et dans ce cas an+1 = an ≤ bn+1

et f(an+1) = f(an) ≤ y ≤ f(bn+1).
Par construction la suite (an)n est croissante et la suite (bn)n est décroissante. En outre, on a
que :

bn+1 − an+1 = bn − an
2 = b− a

2n+1

Donc la suite (bn − an)n tend vers 0. Donc les deux suites sont adjacentes et convergent vers
une limite commune, notée x. Cette limite est dans le segment [a, b] car pour tout n on a
a ≤ an ≤ x ≤ bn ≤ b. Comme la fonction f est continue, on a que (f(an))n et (f(bn))n tendent
vers f(x) quand n tend vers l’infini. Comme en outre on a l’encadrement f(an) ≤ y ≤ f(bn), en
passant à la limite on a f(x) ≤ y ≤ f(x) donc f(x) = y (théorème des gendarmes).

Remarque 2.35. Cette proposition ne dit absolument pas qu’il n’y a qu’une seule préimage à y,
il peut y avoir plusieurs voire une infinité de préimages (prendre f(x) = sin(x) sur [−3π

2 ,
3π
2 ] par

exemple et y = 0), mais juste qu’il en existe au moins une.
Exemple 2.36. Tout polynôme de degré maximal impair admet au moins une racine (réelle).
C’est à dire si P (x) = a0 +a1x+a2x

2 + . . .+a2n+1x
2n+1, il suffit de voir que le terme dominant

de P – en l’occurrence a2n+1 en ±∞ tend vers ±∞ (en fonction du signe de a2n+1), donc il
existe x ∈ R tel que P (x) = 0.

La propriété des valeurs intermédiaires a été longtemps considéré comme une caractéris-
tique des fonctions continues, c’est à dire qu’une fonction qui vérifie la propriété des valeurs
intermédiaires est nécessairement continue. Cette croyance reposait sur la définition naïve et in-
tuitive des fonctions continues qui présidait jusqu’au milieu du XIXème siècle. En 1875, Gaston
Darboux mit un terme à cette conviction dans son Mémoire sur les fonctions discontinues, en
prouvant d’une part que toute fonction dérivée vérifie la propriété des valeurs intermédiaires, et
d’autre part qu’il existe des fonctions dérivables dont la fonction dérivée n’est continue sur aucun
intervalle. Autrement dit, il existe des fonctions qui satisfont la propriété des valeurs intermé-
diaires sans être continues. On appelle fonction de Darboux toute fonction vérifiant la propriété
des valeurs intermédiaires. De telles fonctions sont nombreuses et assez générales pour décrire
l’ensemble des fonctions réelles. Toute fonction continue est une fonction de Darboux. Toute
fonction réelle est somme de deux fonctions de Darboux. Le théorème de Darboux énonce que
la dérivée d’une fonction dérivable est une fonction de Darboux, mais la réciproque est fausse.
Ce théorème peut servir à montrer qu’une fonction n’admet pas de primitive, en montrant qu’il
existe un intervalle sur lequel cette fonction ne vérifie pas le théorème des valeurs intermédiaires.
Un exemple trivial est donné par la fonction partie entière.

Corollaire 2.37. Soit I un intervalle et f : I ! R une fonction continue. Alors f(I) est un
intervalle.

Démonstration. Montrer que pour tous y < w éléments de f(I), on a que si z ∈ R tel que
y < z < w, alors z ∈ f(I). Soit a ∈ I tel que y = f(a), et b ∈ I tel que w = f(b). Alors
f(a) < z < f(b) donc par le théorème des valeurs intermédiaires, il existe c ∈ [a, b] tel que
z = f(c) donc z ∈ f(I).

Remarque 2.38. Rappel qu’un intervalle satisfait la propriété de convexité : ∀ y < w ∈ I, if
z ∈ R est tel que y < z < w, alors z ∈ I. La partie A = { 1

n n ∈ N∗} n’est pas un intervalle. Le
corollaire nous dit qu’une fonction continue f envoie une partie convexe de R – l’intervalle de
définition I – sur une partie convexe de R – son image Im(f).
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Exemple 2.39. Par contre l’image de l’intervalle I n’est pas forcément de la même nature que I.
L’image par sin : R ! R est le segment [−1, 1]. Donc un intervalle ouvert peut être envoyé sur
un segment. L’image de f : R ! R, x 7! x2 + x+ 1 est l’intervalle [3/4,+∞[. L’intervalle R est
envoyé par l’exponentielle sur ]0,+∞[. La fonction f : R ! R, x 7! 1

1+x2 a pour image ]0, 1].

5 .3  CONTINUOUS FUNCTIONS ON INTERVALS 139 

5.3.9 Theorem Let I be a closed bounded interval and letf :  I ---> lR be continuous on I. 
Then the set f(I) :=  {f(x) : x E I} is a closed bounded interval. 

Proof. If we let m := infj(I) and M := supf(I) , then we know from the Maximum­
Minimum Theorem 5 .3 .4 that m and M belong tof(/) . Moreover, we havef(I) � [m, M] .  If 
k is any element of [m, M] ,  then it follows from the preceding corollary that there exists a 
point c E I such that k = f(c) .  Hence, k E j(I) and we conclude that [m , M] � !(!) . 
Therefore, f(/) is the interval [m, M] . Q.E.D. 

Warning If I := [a , b] is an interval and f : I ---> lR is continuous on I, we have proved 
thatf(/) is the interval [m, M] .  We have not proved (and it is not always true) thatf(/) is the 
interval [f(a) , j(b) ] .  (See Figure 5 .3 .3 . )  D 

M 
f(b) 

f(a) 
m 

Figure 5.3.3 f(I) = [m, M] 

The preceding theorem is a "preservation" theorem in the sense that it states that the 
continuous image of a closed bounded interval is a set of the same type . The next theorem 
extends this result to general intervals .  However, it should be noted that although the 
continuous image of an interval is shown to be an interval, it is not true that the image 
interval necessarily has the same form as the domain interval . For example, the continuous 
image of an open interval need not be an open interval, and the continuous image of an 
unbounded closed interval need not be a closed interval . Indeed, ifj(x) :=  1 /  (x2 + 1 )  for 
x E lR, then f is continuous on lR [see Example 5 .2 .3(b)] . It is easy to see that if 
I1 := (- 1 , 1 ) , then f(/ 1 ) = (! , 1 ] , which is not an open interval . Also, if h : =  [O , oo) , 
then f(I2 ) = (0, 1 ] ,  which is not a closed interval . (See Figure 5 .3 .4.) 

1 

Figure 5.3.4 Graph ofj(x) = 1 / (x2 + 1 )  (x E JR) 

Tout cela a à voir avec la continuité, qui est en réalité une limite. Or on avait vu dans la
Remarque 2.19 qu’au passage à la limite, toute inégalité stricte f(x) < g(x) (condition ouverte)
pouvait devenir non-stricte ℓ ≤ ℓ′ (condition fermée). En général lors des passages à la limite les
conditions ouvertes (strictes) ne se préservent pas et on doit accepter de les affaiblir en conditions
fermées (non-strictes). Le slogan on le rappelle c’est qu’"on peut fermer une ouverture, mais pas
ouvrir une fermeture" Dans ce contexte, il y a une classe d’intervalles qui est préservée par les
fonctions continues : les segments.

Proposition 2.40. Soit I = [a, b] un segment et f : [a, b] ! R une fonction continue. Alors
f([a, b]) est un segment, i.e. f admet un maximum et un minimum sur [a, b].

Démonstration. Montrons que f est majorée sur [a, b]. Supposons qu’elle ne le soit pas. Cela
veut dire que pour tout n ∈ N, il existe xn ∈ [a, b] tel que f(xn) > n. Cela nous donne une suite
(xn)n de points du segment [a, b], telle que la suite (f(xn))n tend vers +∞ (ainsi que toute suite
extraite donc). Par le théorème de Bolzano-Weierstrass, il existe une sous-suite extraite (xφ(n))n
qui converge, vers un point x ∈ [a, b]. Comme f est continue en x, on sait que dans un voisinage
de x la fonction f est bornée donc la suite (f(xφ(n)))n est bornée, donc contradiction.

Comme f est majorée sur [a, b], l’ensemble f([a, b]) admet une borne supérieure M . Montrons
qu’il existe c ∈ [a, b] tel que M = f(c). Comme M est la borne supérieure, pour tout ϵ = 1

2n ,
il existe cn ∈ [a, b] tel que M − 1

2n < f(cn) ≤ M . On a donc une suite (cn)n de points du
segments. Par Bolzano-Weierstrass à nouveau, on a une sous-suite extraite convergent cφ(n) vers
un point c ∈ [a, b]. La suite (f(cφ(n)))n converge, par continuité, vers f(c). Or, par définition
de la sous-suite extraite, φ : N ! N est une application strictement croissante, et qui satisfait
donc :

M − 1
2n < M − 1

2φ(n) < f(cφ(n)) ≤ M

donc la limite de la suite (f(cφ(n)))n est la borne supérieure M , c’est à dire que M = f(c)
donc M est le maximum de la fonction f sur [a, b]. La preuve pour le minimum m se fait en
reproduisant cette preuve avec −f .

Remarque 2.41. Cette proposition nous dit que l’image f
(
[a, b]

)
est un segment [m,M ], cela ne

veut pas dire que [m,M ] = [f(a), f(b)]. La proposition veut dire que la fonction f est bornée
et qu’elle atteint sa borne supérieure (resp. inférieure) sur le segment [a, b], ce qui veut dire que
c’est un maximum (resp. minimum) global. L’énoncé de la proposition est le cas particulier d’un
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énoncé en topologie, qui dit que l’image d’un ensemble compact par une fonction continue est
un ensemble compact.

5 .3  CONTINUOUS FUNCTIONS ON INTERVALS 139 

5.3.9 Theorem Let I be a closed bounded interval and letf :  I ---> lR be continuous on I. 
Then the set f(I) :=  {f(x) : x E I} is a closed bounded interval. 

Proof. If we let m := infj(I) and M := supf(I) , then we know from the Maximum­
Minimum Theorem 5 .3 .4 that m and M belong tof(/) . Moreover, we havef(I) � [m, M] .  If 
k is any element of [m, M] ,  then it follows from the preceding corollary that there exists a 
point c E I such that k = f(c) .  Hence, k E j(I) and we conclude that [m , M] � !(!) . 
Therefore, f(/) is the interval [m, M] . Q.E.D. 

Warning If I := [a , b] is an interval and f : I ---> lR is continuous on I, we have proved 
thatf(/) is the interval [m, M] .  We have not proved (and it is not always true) thatf(/) is the 
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Figure 5.3.3 f(I) = [m, M] 

The preceding theorem is a "preservation" theorem in the sense that it states that the 
continuous image of a closed bounded interval is a set of the same type . The next theorem 
extends this result to general intervals .  However, it should be noted that although the 
continuous image of an interval is shown to be an interval, it is not true that the image 
interval necessarily has the same form as the domain interval . For example, the continuous 
image of an open interval need not be an open interval, and the continuous image of an 
unbounded closed interval need not be a closed interval . Indeed, ifj(x) :=  1 /  (x2 + 1 )  for 
x E lR, then f is continuous on lR [see Example 5 .2 .3(b)] . It is easy to see that if 
I1 := (- 1 , 1 ) , then f(/ 1 ) = (! , 1 ] , which is not an open interval . Also, if h : =  [O , oo) , 
then f(I2 ) = (0, 1 ] ,  which is not a closed interval . (See Figure 5 .3 .4.) 

1 

Figure 5.3.4 Graph ofj(x) = 1 / (x2 + 1 )  (x E JR) 

Maintenant rappelons quelques notions de théorie des ensembles, appliquées aux fonctions
réelles. Soit E et F deux sous-ensembles de R et soit f : E ! F une fonction. On note D (ou
Df ) l’ensemble de définition de l’application f , et Im(f) ⊂ F le sous-ensemble de F formé des
éléments images de f . On dit que f est :

— injective si pour tous x ̸= y ∈ D, on a f(x) ̸= f(y)
— surjective si pour tout z ∈ F , il existe x ∈ D ⊂ E tel que z = f(x)
— bijective si f est à la fois injective et surjective

En particulier, l’application f : D ! Im(f) est surjective. Nous allons maintenant caractériser
les cas où la fonction f est injective. Pour cela introduisons les notions suivantes :

Définition 2.42. Soit f : D ! R une fonction. On dit que f est :
— croissante (resp. strictement croissante) si pour tout x < y ∈ D, on a f(x) ≤ f(y) (resp.

f(x) < f(y)) ;
— décroissante (resp. strictement décroissante) si pour tout x < y ∈ D, on a f(x) ≥ f(y)

(resp. f(x) > f(y)) ;
— (strictement) monotone si f est (strictement) croissante ou décroissante.

Remarque 2.43. Une fonction constante si et seulement si elle est à la fois croissante et décrois-
sante.
Exemple 2.44. La fonction x 7! x2 n’est ni croissante ni décroissante sur R, par contre elle est
croissante sur [0,+∞[ et décroissante sur ] − ∞, 0]. La fonction x 7! x3 est croissante sur R.
Remarque 2.45. Notons que la notion de croissance, décroissance et monotonie se restreint à
celle des suites numériques lorsque D = N.
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Il est toujours vrai (voir preuve de la Proposition 2.46) qu’une fonction strictement monotone
(continue ou non) est injective. Par contre voici un exemple d’une fonction injective qui n’est
pas strictement monotone, car elle est non continue :

f : [0, 1] −−−−−−! R

x 7−−−−−−!

x si x ∈
[
0, 1

2

[
3
2 − x si x ∈

[
1
2 , 1

]
Il y a équivalence des deux notions si la fonction est continue sur un intervalle.

Proposition 2.46. Soit I un intervalle et soit f : I ! R une fonction continue. La fonction f
est injective si et seulement si elle est strictement monotone.

Démonstration. Pour montrer l’implication "strictement monotone =⇒ injective", on peut par
exemple supposer la fonction strictement croissante. Alors, si x ̸= y ∈ I, soit x < y et on a
f(x) < f(y), soit y < x donc f(y) < f(x). Dans tous les cas f(x) ̸= f(y) donc f est injective.
Si la fonction est strictement décroissante, la même preuve fonctionne avec −f .

Pour montrer l’implication "injective =⇒ strictement monotone ", nous pouvons montrer
la contraposée : "non-strictement monotone =⇒ non-injective",. Soit a < b < c trois points
de l’intervalle de définition I tels que f(b) ≤ f(a) ≤ f(c) (la fonction n’est pas strictement
monotone). Comme f est continue, par le théorème des valeurs intermédiaires, la fonction atteint
toutes les valeurs entre f(b) et f(c) sur le segment [b, c]. En particulier, elle atteint la valeur
f(a). Cela veut dire qu’il existe x ∈ [b, c] – donc x ̸= a – tel que f(x) = f(a). Donc le nombre
f(a) a au moins deux antécédents différents, donc la fonction f n’est pas injective.

Cela caractérise toute une famille de fonctions qui sont injectives sur leur ensemble de défini-
tion. Comme elle sont toujours surjectives sur leur image, nous avons que les fonctions continues
strictement monotones sont des bijections entre leur domaine de définition et leur image. Nous
allons maintenant approfondir l’étude de ces fonctions.

Définition 2.47. Pour toute fonction bijective f : Df ! Im(f) il existe une fonction f−1 :
Im(f) ! Df – dénommée "fonction inverse" ou "fonction réciproque" de f – qui est bijective et
qui satisfait :

∀x ∈ Df , f−1(
f(x)

)
= x, et ∀ y ∈ Im(f), f

(
f−1(y)

)
= y.

Remarque 2.48. Attention à ne pas confondre la notation f−1 qui est une fonction et la notation
f−1(V ) qui est le sous-ensemble de Df formé de toutes les préimages/antécédents des éléments
de V .
Exemple 2.49. La fonction exponentielle e : R ! R est strictement croissante donc injective. Elle
est aussi surjective sur son image ]0,+∞[, donc la corestriction à son image est une bijection de
R dans ]0,+∞[.

La définition ne fait pas référence à la continuité de la fonction f , par contre nous avons le
résultat suivant dans le cas où f est continue. Ce théorème synthétise à la fois ce que nous savons
sur les fonctions continues strictement monotones, et spécifie à ce cas particulier le théorème
des valeurs intermédiaires. Là où ce dernier ne nous donnait que l’existence d’une préimage, le
théorème suivant nous dit que cette préimage est unique (et donc la fonction inversible) :

Théorème 2.50. Théorème des fonctions réciproques. Soit I un intervalle et f : I ! R
une fonction continue strictement monotone. Alors :
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1. la fonction f est une bijection entre I et Im(f) = f(I) ;
2. la bijection réciproque de f strictement monotone et de même sens de variation que f ;
3. la fonction inverse f−1 est continue.

Démonstration. Nous n’allons prouver que le premier point. Comme la fonction est strictement
monotone elle est injective. Comme elle est surjective sur Im(f) = f(I), elle est bijective entre
I et f(I).

Remarque 2.51. Le premier point peut se reformuler comme un cas particulier du Théorème des
valeurs intermédiaires. Soit ]a, b[ un intervalle ouvert (de bornes finies ou infinies) et f : ]a, b[! R
une fonction continue strictement monotone. Alors, pour tout y compris entre la limite de f en
a et la limite de f en b, il existe un unique x ∈]a, b[ tel que y = f(x).
Exemple 2.52. Ce théorème permet de définir la fonction racine carrée et plus généralement les
fonctions racine n-ième. Quand n est pair, la fonction x 7! xn est strictement décroissante sur
] − ∞, 0] et strictement croissante sur [0,+∞[. On choisit par exemple le deuxième intervalle.
D’après le théorème, la fonction x 7! xn est une bijection continue strictement croissante de
[0,+∞[ sur [0,+∞[. Elle admet donc une fonction inverse bijective continue et strictement
croissante sur [0,+∞[. On l’appelle fonction racine n-ième et on a note : n

√ : x ! n
√
x. Quand

n est impair, la fonction x 7! xn est strictement croissant sur R entier donc la bijection se fait
cette fois ci sur R et la fonction racine n-ième est définie sur R entier.
Remarque 2.53. Le graphe de la fonction réciproque f−1 est le symétrique du graphe de f par
rapport à la droite diagonale y = x.
Exemple 2.54. On peut tracer la fonction exponentielle et logarithme et voir qu’elles sont effec-
tivement symétriques par rapport à la diagonale d’équation y = x.
Exemple 2.55. La fonction sinus est définie sur R, à valeurs dans [−1, 1], et est 2π-périodique.
La restriction du sinus au segment [−π

2 ,
π
2 ] est strictement croissante et atteint toutes les valeurs

entre −1 et 1. Elle définit donc une bijection entre [−π
2 ,

π
2 ] et [−1, 1], et admet donc, d’après le

théorème, une fonction réciproque. Cette fonction, appelée arcsinus, et notée arcsin est continue
et strictement croissante, et envoie [−1, 1] sur [−π

2 ,
π
2 ], et satisfait :

∀x ∈
[
−π

2 ,
π

2

]
, arcsin(sin(x)) = x et ∀ y ∈ [−1, 1], sin(arcsin(y)) = y

Exemple 2.56. La fonction cosinus est définie sur R, à valeurs dans [−1, 1], et est 2π-périodique.
La restriction du cosinus au segment [0, π] est strictement décroissante et atteint toutes les
valeurs entre −1 et 1. Elle définit donc une bijection entre [0, π] et [−1, 1], et admet donc,
d’après le théorème, une fonction réciproque. Cette fonction, appelée arccosinus, et notée arccos
est continue et strictement décroissante, et envoie [−1, 1] sur [0, π], et satisfait :

∀x ∈ [0, π], arccos(cos(x)) = x et ∀ y ∈ [−1, 1], cos(arccos(y)) = y

Exemple 2.57. La fonction tangente est définie sur R − Zπ
2 et est π-périodique. La restriction

du cosinus à l’intervalle ouvert ] − π
2 ,

π
2 [ est strictement croissante et atteint toutes les valeurs

réelles. Elle définit donc une bijection entre ] − π
2 ,

π
2 [ et R, et admet donc, d’après le théorème,

une fonction réciproque. Cette fonction, appelée arctangente, et notée arctan est continue et
strictement croissante, et envoie R sur ] − π

2 ,
π
2 [, et satisfait :

∀x ∈
]
−π

2 ,
π

2

[
, arctan(tan(x)) = x et ∀ y ∈ R, tan(arctan(y)) = y

Remarque 2.58. Ce dernier exemple nous dit que R est en bijection avec
]
−π

2 ,
π
2

[
, et donc en

réalité avec tout intervalle ouvert ]a, b[ où a < b, car on peut toujours envoyer
]
−π

2 ,
π
2

[
sur ]a, b[

par translation et dilatation.
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Définition 2.59. Soit I un intervalle et soit f : I ! R une fonction continue. On dit que f est
un homéomorphisme si la corestriction de f à son image f

∣∣Im(f) : I 7! Im(f) est une bijection
et sa réciproque f−1 : Im(f) ! I est continue.

Remarque 2.60. Attention, l’hypothèse que le domaine de définition de la fonction est un inter-
valle est importante. En effet, la fonction

g : [0, 1[ ∪ [2, 3] −−−−−−! [0, 2]

x 7−−−−−−!

{
x si x ∈ [0, 1[
x− 1 si x ∈ [2, 3]

est une bijection continue strictement croissante sur son ensemble de définition mais la réci-
proque :

g−1 : [0, 2] −−−−−−! [0, 1[ ∪ [2, 3]

x 7−−−−−−!

{
x si x ∈ [0, 1[
x+ 1 si x ∈ [1, 2]

est une bijection strictement croissante mais discontinue en g(1) = 1.

2.3 Dérivabilité

Après la continuité, et avec les outils qu’on a à portée de main, on peut définir la dérivabilité
d’une fonction réelle. C’est l’outil principal pour étudier une fonction. Ici nous procéderons
comme avec les fonctions continues. D’abord nous définirons le nombre dérivé d’une fonction en
un point a, ainsi que les nombres dérivés à gauche et à droite, puis nous en déduirons certains
conséquences importantes. Enfin nous établirons l’existence des fonctions dérivées si une fonction
est dérivable en chacun des points de son intervalle de définition. A partir d’ici, tous les domaines
de définition sont des intervalles ou des unions finies d’intervalles.

Définition 2.61. Soit f : D ! R et a ∈ D. On dit que f est dérivable en a si la limite

lim
x!a
x ̸=a

f(x) − f(a)
x− a

existe et est finie. On dénote cette limite f ′(a) (c’est un nombre réel) et on l’appelle nombre
dérivé ou dérivée de f en a.

Exemple 2.62. Soit la fonction carré : f : x 7! x2 et a ∈ R. Alors x2−a2

x−a = x + a, qui tend vers
2a lorsque x tend vers a. Donc f est dérivable en a et sa dérivée est 2a. C’est bien le résultat
attendu.

Comme la continuité à gauche et à droite, on parle aussi de dérivabilité à gauche et à droite
d’un point a ∈ D, si on se contraint à rester que d’un côté du point a.

Par exemple, le nombre dérivé à gauche (resp. à droite) en a est la limite suivante, si elle est
finie :

lim
x!a
x<a

f(x) − f(a)
x− a

 resp. lim
x!a
x>a

f(x) − f(a)
x− a


Une fonction est dérivable en a si elle est dérivable à gauche et à droite, et que les deux valeurs
coincident.
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Définition 2.63. Soit f : D ! R une fonction et soit a ∈ D. On dit que :
— f est dérivable à gauche en a si la limite f ′

g(a) = lim
x!a
x<a

f(x)−f(a)
x−a existe et est finie.

— f est dérivable à droite en a si la limte f ′
d(a) = lim

x!a
x>a

f(x)−f(a)
x−a existe et est finie.

Proposition 2.64. Soit f : D ! R une fonction et soit a ∈ D. f est dérivable au point a si et
seulement si elle est dérivable à gauche et à droite en a et que f ′

g(a) = f ′
d(a).

Exemple 2.65. Prenons la fonction valeur absolue |.| : x 7! |x| et a = 0. La dérivée à droite est :

f ′
d(0) = lim

x!0
x>0

|x| − |0|
x− 0 = lim

x!0
x>0

|x|
x

= 1

tandis que la dérivée à gauche est :

f ′
g(0) = lim

x!0
x<0

|x| − |0|
x− 0 = lim

x!0
x<0

|x|
x

= −1

Donc la dérivée à gauche et à droite de la fonction valeur absolue ne coincident pas en zéro,
donc la fonction n’est pas dérivable en zéro.

Supposons f : D ! R dérivable en a ∈ D et définissons une fonction ϵ : D ! R en posant :

∀x ∈ D, ϵ(x) =
{
f(x)−f(a)

x−a − f ′(a) si x ̸= a

0 si x = a

Il vient que la fonction ϵ est continue au point a car

lim
x!a
x ̸=a

ϵ(x) = lim
x!a
x ̸=a

f(x) − f(a)
x− a

− f ′(a) = f ′(a) − f ′(a) = 0 = ϵ(a)

L’existence d’une telle fonction ϵ caractérise en fait les fonctions dérivables :

Proposition 2.66. La fonction f : D ! R est dérivable en a ∈ D si et seulement si il existe
un nombre réel α et une fonction ϵ : D ! R tels que :

— ϵ est continue en a, et ϵ(a) = 0 ;
— f(x) = f(a) + α(x− a) + (x− a)ϵ(x) pour tout x ∈ D.

Dans ce cas, le nombre α est égal à f ′(a).

Démonstration. Une direction a déjà été montrée. Montrons la réciproque en supposant qu’une
telle fonction existe et que f est dérivable au point a. Pour tout x ̸= a, on a :

f(x) − f(a)
x− a

= α+ ϵ(x)

donc quand x tend vers a, ϵ(x) tend vers 0 par continuité, donc on déduit que le quotient de
gauche tend vers la limite finie α. Cela veut dire que la fonction f est dérivable en 0 et le nombre
α est par définition le nombre dérivé f ′(a).

Corollaire 2.67. Si la fonction f : D ! R est dérivable en a ∈ D, alors elle est continue en a.

Démonstration. On a f(x) = f(a) + α(x − a) + (x − a)ϵ(x) pour tout x ∈ D, or toutes les
fonctions à droites sont continues en a, donc la fonction à gauche est continue en a.
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Démonstration. On a une preuve plus longue et plus formelle, qui ne s’appuie par sur la Pro-
position 2.66. Soit ϵ > 0. Comme f est dérivable en a, le qutoient f(x)−f(a)

x−a tend vers une limite
finie en a, notée f ′(a). Alors on a qu’il existe δ > 0 tel que pour tout x ∈ D∩ ]a − δ, a + δ[ et
différent de a, on a : ∣∣∣∣f(x) − f(a)

x− a
− f ′(a)

∣∣∣∣ < ϵ

Quitte à prendre δ encore plus petit (c’est possible), on peut prendre δ tel que δ < ϵ
ϵ+|f ′(a)| . Or

nous savons que |u− v| < ϵ implique |u| < ϵ+ |v| donc on a :∣∣∣∣f(x) − f(a)
x− a

∣∣∣∣ < ϵ+ |f ′(a)| c’est à dire |f(x) − f(a)| <
(
ϵ+ |f ′(a)|

)
|x− a| <

(
ϵ+ |f ′(a)|

)
δ

Mais par notre choix de δ, on a précisément que (ϵ+ |f ′(a)|) δ < ϵ, donc on a que :

|f(x) − f(a)| < ϵ

c’est à dire que la f(x) tend vers f(a) quand x tend vers a : f est continue en a.

Remarque 2.68. Le corollaire 2.67 s’étend tout naturellement aux dérivées à gauche et à droite :
si une fonction f : D ! R est dérivable à gauche (resp. à droite) en a ∈ D, alors elle est continue
à gauche (resp. à droite) en a.

Nous pouvons interpréter graphiquement la dérivée en un point. Soit f : D ! R une fonction,
alors on note Gr(f) le graphe de f dans l’espace R2 = R × R. C’est un sous-ensemble de R2 :

Gr(f) =
{
(x, f(x)), x ∈ D

}
⊂ R2

Pour tout x ∈ D, on définit Mx le point du graphe de coordonnées (x, f(x)). Supposons que f
est dérivable en a ∈ D et soit Ma = (a, f(a)) le point du graphe de f correspondant à ce choix.
On prend désormais x ̸= a. La droite du plan qui passe par Ma et Mx a pour équation :

y(t) = t− a

x− a
(f(x) − f(a)) + f(a) = f(x) − f(a)

x− a
t+ xf(a) − af(x)

x− a

C’est bien une équation de droite car le membre de droite est linéaire en t. Cette équation est telle
que le point d’abscisse t = a (resp. t = x) a pour ordonnée y(a) = f(a) (resp. y(x) = f(x)), c’est
donc Ma (resp. Mx). On a donc bien l’équation de la droite (MaMx). Son coefficient directeur
(la pente) est f(x)−f(a)

x−a et l’ordonnée à l’origine est xf(a)−af(x)
x−a .

La tangente au graphe de f au point a est la droite obtenue comme limite de la droite
(MaMx) lorsque le point Mx se rapproche du point Ma. Or lorsque x tend vers a, le coefficient
directeur de la droite (MaMx) tend vers le nombre dérivé en a. Le nombre dérivé f ′(a) est donc
le coefficient directeur de la droite tangente au graphe de f au point a. Autrement dit, si f est
dérivable en a, la tangente au graphe de f en a a pour équation y = (x− a)f ′(a) + f(a).

Lorsque la fonction f : D ! R est dérivable à gauche ou à droite, on dit qu’elle admet une
demi-tangente à gauche ou à droite du point Ma = (a, f(a)). La demi-tangente à gauche est
une demi-droite qui commence au point Ma, qui est tangente au graphe de f en Ma et qui se
dirige vers l’arrière, c’est à dire vers les x < a. La demi-tangente à droite est une demi-droite
qui commence au point Ma, qui est tangente au graphe de f en Ma et qui se dirige vers l’avant,
c’est à dire vers les x > a.
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Figure 3 – Le coefficient directeur de la droite passant en Ma et Mx est la tangente de l’angle
entre la droite et l’axe horizontale : tan(Θ). C’est à dire c’est le quotient du côté opposé sur le
côté adjacent, et on retrouve bien xf(a)−af(x)

x−a . La droite rouge marque la demi-tangente à droite
au graphe de f au point a.
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Si la fonction f est dérivable à gauche et à droite, et
que la dérivée à gauche et à droite coincident, cela
s’interprète géométriquement par le fait que les deux
demi-tangentes à gauche et à droite sont exactement
alignées et coincident uniquement au point Ma pour
former une droite complète tangente au graphe de f
au point Ma. Dans ce cas on retrouve bien géomé-
triquement le résultat que la fonction est dérivable
en a. Dans le graphique suivant, la demi-tangente à
gauche est verte, la demi-tangente à droite est rouge.
Exemple 2.69. Pour la fonction valeur absolue, la dérivée à gauche est f ′

g(0) = −1 donc la
demi-tangente à gauche est la demi-droite d’équation y = −x commençant à (0,0) et s’éloignant
dans le cadrant supérieur gauche (remontant le graphe vers l’arrière). La dérivée à droite est
f ′
d(0) = 1 donc la demi-tangente à droite est la demi-droite d’équation y = x commençant à

(0,0) et s’éloignant dans le cadrant supérieur droit (continuant le graphe vers l’avant).

Remarque 2.70. Si la limite à gauche lim
x!a
x<a

f(x)−f(a)
x−a est infinie, alors on convient que la demi-

tangente à gauche est verticale (le sens de la demi-droite dépend de quel infini). C’est le même
raisonnement pour la limite à droite.
Prenons l’exemple de la fonction f : x 7!

√
|x| +

1
2 et a = 0. Comme ici f(x)−f(0)

x−0 =
√

|x|
x , la limite

à gauche de zéro est −∞ donc la demi-tangente à
gauche est verticale ascendante (car la demi-tangente
à gauche remonte le graphe de f vers les x < 0),
tandis que la limite de zéro à droite est +∞ donc la
demi-tangente à droite est verticale ascendante (car
la demi-tangente à droite suit le graphe de f vers les
x > 0) Les deux demi-tangentes (en bleu) sont donc
confondues.

Avec l’interprétation graphique de la dérivée, on peut comprendre le lien avec l’existence de
minimum et de maximum d’une fonction continue.

Définition 2.71. Soit f : D ! R une fonction (pas nécessairement continue globalement), et
soit a ∈ D. On dit que :

— f a un maximum (resp. minimum) global en a si, pour tout x ∈ D, f(x) ≤ f(a) (resp.
f(x) ≥ f(a)) ;
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— f a un maximum (resp. minimum) local en a s’il existe un voisinage V de a tel que, pour
tout x ∈ V ∩D, f(x) ≤ f(a) (resp. f(x) ≥ f(a)) ;

— f a un extremum global (resp. local) en a si f a un maximum ou un minimum global (resp.
local) en a.

Remarque 2.72. Attention au pluriel la terminaison est -a plutôt que -um.
Exemple 2.73. Prenons la fonction définie sur R par f(x) =

∣∣1 − x2∣∣. Les minima locaux (et
globaux) sont −1 et 1, et un maximum local est en 0. Pas de maxima globaux.
Remarque 2.74. Il est faux de croire que, si a est un maximum, alors f est croissante à gauche de
a, puis décroissante après. f(a) est certes la valeur maximale, mais f peut ne pas être monotone,
ni à gauche, ni à droite. Ce genre de faits contre-intuitifs viennent du fait que notre intuition se
base sur les dessins que l’on fait au tableau à main levée, or ceux-ci ne représentent qu’une infime
partie des types de fonctions. Les exemples contre-intuitifs viennent des fonctions non dessinables
justement : les fonctions nulle-part continues (la fonction de Dirichlet), les fonctions continues
nulle-part dérivables (fonction de Weierstrass), et ici les fonctions majorée nulle-part monotones.
Prendre par exemple la fonction définie pour tout x ∈ R par f(x) = −x2

2 − x2sin2
(

1
x

)
. C’est

une fonction qui oscille entre les deux polynômes d’équation x 7! −x2

2 et x 7! −3x2

2 . 0 est un
maximum global de la fonction mais elle oscille infiniment dans tout voisinage de 0.

L’interprétation géométrique des extremas d’une fonction se fait simplement : avoir un maxi-
mum local en a veut dire que le graphe de f est sous la tangente à la courbe dans un voisinage de
a assez petit, tandis qu’avoir un minimum local en a veut dire que le graphe de f est au dessus
de la tangente à la courbe dans un voisinage de a assez petit. Nous en déduisons directement le
résultat suivant lorsque f est dérivable :

Proposition 2.75. Soit f : D ! R une fonction. Supposons que f admette un extremum local
au point a ∈ D, et que f est dérivable en a. Alors f ′(a) = 0.

Démonstration. Disons que l’extremum est un maximum, et que le voisinage de a sur lequel
f(x) ≤ f(a) est de la forme ]a − ϵ, a + ϵ[, pour un certain ϵ > 0. Alors, on a les inégalités
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suivantes :

pour tout x ∈ ]a− ϵ, a[ ∩D on a f(x) ≤ f(a) et x− a < 0 donc f(x) − f(a)
x− a

≥ 0

pour tout x ∈ ]a, a+ ϵ[ ∩D on a f(x) ≤ f(a) et x− a > 0 donc f(x) − f(a)
x− a

≤ 0

Donc, par passage à la limite (dont on sait qu’elle existe car f est dérivable en a), on a d’une
part en haut f ′

g(a) ≥ 0 et d’autre part en bas f ′
d(a) ≤ 0. Comme f ′

g(a) = f ′
d(a) = f ′(a), on en

déduit que f ′(a) = 0. Si l’extremum de f est un minimum, alors −f a un maximum en ce point
et on prend le même argument.

Remarque 2.76. Attention, la réciproque de la Proposition 2.75 est fausse car on peut avoir
f ′(a) = 0 sans que f n’atteigne un extremum en a. C’est par exemple le cas de la fonction
x 7! x3 dont la dérivée s’annule en a = 0 mais qui n’a pas de maximum ou de minimum nulle
part. On appelle un tel point un point d’inflexion
Remarque 2.77. La Proposition 2.75 justifie qu’on cherche à calculer les dérivées des fonctions
pour trouver leurs extremas, et elle est en fait au fondement de toute la physique moderne depuis
le XVIII ème siècle. Le principe de moindre action de Maupertuis établit en effet que lorsqu’un
changement physique advient dans un système, la quantité d’action nécessaire à ce changement
est la plus petite possible. Le principe de Maupertuis (1744) généralise à tout système physique
le principe de Fermat (1657) qui ne concernait que la lumière et qui disait que la lumière se
propage d’un point à un autre de façon à minimiser son temps de trajet. Ce principe de moindre
action a ensuite été formalisé mathématiquement par Lagrange quelques années plus tard, qui
introduit une fonction – le Lagrangien – qui dépend des variables physiques du système et grâce
auquel on peut calculer une autre quantité – l’action – qui, lorsqu’on la minimise en calculant
où la dérivée s’annule, nous donne la solution physique du changement du système, c’est à dire
le changement de moindre action. Le calcul des dérivées est donc très important dans tous les
domaines appliqués.

2.4 Propriétés des fonctions dérivables

Définition 2.78. On dit que f est dérivable sur D si f est dérivable en tout point a de D. Dans
ce cas, la fonction :

f ′ : D −−−−−−! R
x 7−−−−−−! f ′(x)

s’appelle la fonction dérivée de f (elle n’est pas forcément continue).

Proposition 2.79. Soit f, g : D ! R, et h : D′ ! R telle que h(D′) ⊂ D. On rappelle les
formules suivantes pour la dérivée :

(f + g)′ = f ′ + g′, (f × g)′ = f ′ × g + f × g′, (f ◦ h)′ = h′ × (f ′ ◦ h)

En particulier, on déduit que
(
f
g

)′
= f ′×g−f×g′

g2 et que, si f admet une fonction réciproque f−1,
alors sa dérivée est (f−1)′ = 1

f ′◦f−1 .

Démonstration. Pour la fonction réciproque, nous avons que pour tout x ∈ D, f ◦ f−1(x) = x,
c’est à dire en dérivant à gauche et à droite : (f ◦ f−1)′(x) = 1. Par la formule de la dérivation
de la composée, on a donc (f−1)′(x) × f ′(f−1(x)) = 1, ce qui donne le résultat.
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Exemple 2.80. Soit n ∈ N∗. On rappel que la fonction racine n-ième est la fonction réciproque
de la fonction puissance n-ième x 7! xn. Si n est paire, la bijection se fait entre [0,+∞[ et
lui-même, tandis que si n est impair, la bijection est sur R entier. Dans tous les cas, calculons
la dérivée à droite de la fonction racine n-ième, quel que soit n. Notons f : x 7! xn la fonction
puissance, donc f ′ : x 7! nxn−1, et f−1 : x 7! x

1
n la fonction racine. D’après la formule de la

dérivée de la réciproque, nous avons, pour tout x > 0 :

(f−1)′(x) = 1
f ′ ◦ f−1(x) = 1

nx
n−1

n

= 1
n
x

1
n

−1

C’est bien la formule à laquelle on s’attend. Par contre on voit que dès que n ≥ 2, la dérivée
(à droite) tend vers +∞ en 0. La demi-tangente est donc verticale ascendante. Cela se voit
effectivement sur le graphe de la fonction racine n-ième (pair ou impair). La particularité du
graphe de la fonction impaire est qu’il admet une demi-tangente à gauche en zéro : une demi-
droite verticale descendante, donc le graphe admet en zéro une tangente verticale. L’image
suivante illustre ce cas avec la racine cubique : la demi-tangente à droite est en rouge, la demi-
tangente à gauche est en vert.

Exemple 2.81. Le même argument s’applique à la arctangente. Comme on sait que tan′ =
1 + tan2, on obtient que pour tout x ∈ R, arctan′(x) = 1

1+tan2(arctan(x)) = 1
1+x2 . Cette fois-ci en

zéro, la tangente au graphe est la droite diagonale d’équation y = x.

Les deux principaux théorèmes sont les théorèmes de Rolle et celui des accroissements finis
(le premier est un cas particulier du second). Le mathématicien Rolle a vécu au XVIIème siècle
(l’analyse moderne n’était donc absolument pas encore bien définie) et il a énoncé le résultat
suivant : entre deux racines d’un polynôme P , il y a une racine de sa dérivée P ′. C’est donc
dans le cadre de l’algèbre que ce résultat a été utilisé pendant plus de 150 ans.

L’extension de ce résultat au champ de l’analyse et la reconnaissance du lien entre le cas par-
ticulier de Rolle et le théorème éponyme qui ne lui a été attribué que bien après est directement
liée à l’évolution de la façon dont on démontre le théorème des accroissements finis. Joseph-
Louis Lagrange et Augustin Louis Cauchy démontrent ce théorème en montrant l’inégalité des
accroissements finis, puis en appliquant le théorème des valeurs intermédiaires à la dérivée pour
obtenir une égalité. Ils supposent pour cela que la dérivée est continue. Un changement impor-
tant a lieu en 1868 avec le Cours de calcul différentiel et intégral de Joseph-Alfred Serret. Sur
une idée de Pierre-Ossian Bonnet, ce cours adopte la présentation moderne : ramener le théo-
rème des accroissements finis au cas où la fonction s’annule aux bornes de l’intervalle et tirer
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parti du fait qu’une telle fonction admet un extremum à l’intérieur de l’intervalle où la dérivée
s’annule. Cette démarche nouvelle ne manquera pas d’être remarquée, notamment par Gaston
Darboux en 1874, qui s’intéresse alors aux fonctions dérivables à dérivée non continue. L’intérêt
de la démonstration de Bonnet est en effet d’être à la fois plus simple que les démonstrations
de Lagrange ou Cauchy, mais aussi plus générale, la continuité de la dérivée n’étant pas néces-
saire. Cependant, dans l’ouvrage de Serret, le lien avec le théorème algébrique de Rolle n’est
pas encore affirmé. Ce lien apparaîtra dans les ouvrages de mathématiques qui suivront, et peu
d’années après, la démarche de Bonnet est définitivement adoptée, le nom de Rolle étant alors
également attribué au lemme permettant de prouver l’égalité des accroissements finis. Le nom
du Théorème est donc un hommage a posteriori accordé à Rolle.

Théorème 2.82. Théorème de Rolle. Soit f : [a, b] ! R une fonction continue, dérivable
sur ]a, b[, telle que f(a) = f(b). Alors il existe c ∈ ]a, b[ tel que f ′(c) = 0.

Démonstration. La fonction f est continue sur un segment donc par la Proposition 2.40, elle
admet au moins un maximum et un minimum. Si l’un se trouve en a et l’autre en b, alors
la fonction est constante (car f(a) = f(b)) donc sa dérivée est nulle partout donc n’importe
quel choix de point dans ]a, b[ convient. Sinon, le maximum ou le minimum se trouve dans
l’intervalle ouvert. Disons par exemple que cet extremum de la fonction se trouve en c ∈]a, b[.
Alors, f ′(c) = 0.

Remarque 2.83. Attention il est nécessaire de supposer que la fonction est dérivable partout,
car on peut se retrouver dans des situations bizarres où la fonction a un extremum mais que la
dérivée en ce point n’existe pas (donc n’est pas nulle) :

Le théorème de Rolle est un cas particulier du théorème suivant, plus général. Le théorème
dit qu’il existe un point du graphe de f dont la tangente a la même pente que la droite passant
par Ma = (a, f(a)) et Mb = (b, f(b)). Les conséquences du théorème sont importantes car elles
nous donnent le sens de variation de n’importe quelle fonction dérivable.

Théorème 2.84. Théorème des accroissements finis. Soit f : [a, b] ! R continue et
dérivable sur ]a, b[. Alors il existe c ∈ ]a, b[ tel que :

f ′(c) = f(b) − f(a)
b− a
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Démonstration. On pose g(x) = f(x) −
[
f(a) + f(b)−f(a)

b−a (x− a)
]
. C’est une fonction continue

sur [a, b], dérivable sur ]a, b[ et telle que g(a) = g(b) = 0. Donc par Rolle, il existe c ∈ ]a, b[ telle
que g′(c) = 0. C’est à dire, le résultat demandé.

6.2 THE MEAN VALUE THEOREM 173 

Figure 6.2.1 Rolle 's Theorem 

Since f has a relative maximum at c, we conclude from the Interior Extremum 
Theorem 6 .2 . 1 that f' (c) = 0. (See Figure 6 .2 . 1 . ) Q.E.D. 

As a consequence of Rolle's Theorem, we obtain the fundamental Mean Value 
Theorem. 

6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval 
I := [a, b], and that f has a derivative in the open interval (a, b). Then there exists at 
least one point c in (a, b) such that 

f(b) -f(a) = f' (c) (b - a) . 

Proof. Consider the function rp defined on I by 

rp(x) := f(x) -f(a) _f(bi =�(a) (x - a) . 
[The function rp is simply the difference of f and the function whose graph is the line 
segment joining the points (a, f(a)) and (b, f(b)) ; see Figure 6.2.2.] The hypotheses of 

a 
Figure 6.2.2 The Mean Value Theorem 

Corollaire 2.85. Soit f : [a, b] ! R continue et dérivable sur ]a, b[, alors on a :
— f est constante ssi f ′ = 0 ;
— f est croissante ssi f ′ ≥ 0 ;
— f est décroissante ssi f ′ ≤ 0.

Démonstration. Dans les trois cas, le sens direct est facile, et découle de passage à la limite des
taux d’accroissements de signe constant. Montrons l’implication "f ′ ≥ 0 implique f croissante".
Soit u < v deux éléments de [a, b]. Donc f est continue sur [u, v] et dérivable sur ]u, v[. Donc
par le théorème des accroissements finis, il existe w ∈ ]u, v[ tel que :

f(w) = f(v) − f(u)
v − u

c’est à dire f(v) − f(u) = f ′(w)(v − u)

Le membre de droite est positif ou nul car f ′ ≥ 0 et v − u > 0, donc le membre de gauche l’est
aussi, c’est à dire f(v) ≥ f(u). Ceci étant vrai pour tous poins u < v dans le segment [a, b], la
fonction f est croissante sur [a, b]. Pour l’implication "f ′ ≤ 0 implique f décroissante", on prend
la même preuve pour −f .

Remarque 2.86. L’équivalence ne fonctionne pas pour l’inégalité strictement croissante. Seule les
implications "f ′ > 0 implique f est strictement croissante" et "f ′ < 0 implique f est strictement
décroissante" sont valides (cela se voit dans la preuve). Par contre, on peut avoir une fonction
strictement croissante et pourtant la dérivée f ′ s’annule en un point : par exemple f : x 7! x3.
La condition nécessaire et suffisante valide en toute généralité est donc :

f est strictement croissante sur [a, b] ssi f ′ ≥ 0 et f ′ > 0 sur une partie dense de R
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Remarque 2.87. Enfin, il est faux de croire que "f ′(a) > 0 implique que f ′ est strictement positive
sur un intervalle contenant a". C’est le cas bien sûr si la fonction dérivée f ′ est continue en a,
et ce n’est pas le cas si f ′ est discontinue en a. Par exemple prenons la fonction

f : R −−−−−−! R

x 7−−−−−−! f(x) =

0 si x = 0
x+ 2x2sin

(
1
x

)
si x ̸= 0

qui admet pour fonction dérivée :

f ′ : R −−−−−−! R

x 7−−−−−−! f(x) =

1 si x = 0
1 + 4xsin

(
1
x

)
− 2cos

(
1
x

)
si x ̸= 0

Le calcul de la dérivée en x = 0 se fait avec la limite du taux d’accroissement (la définition
classique), tandis que pour x ̸= 0, on peut dériver classiquement somme, produit et composée
de fonctions. On voit que f ′(0) = 1, mais que f ′ n’est de signe constant sur aucun voisinage de
0 car le terme 4xsin

(
1
x

)
tend vers 0 mais pas le dernier terme qui oscille entre −2 et +2.

On fini cette section par deux résultats intéressants de culture générale. Le premier est
la caractérisation des fonctions dérivées. C’est le Théorème de Darboux, qui établit que les
fonctions dérivées possèdent la propriété des valeurs intermédiaires. Jusqu’ici nous avions vu que
cette propriété était partagée par les fonctions continues, mais Darboux a montré qu’il existe
des fonctions non continues (obtenues par dérivation) qui ont cette propriété. Ce théorème est
important de par son corollaire.

Théorème de Darboux. Soit f : [a, b] ! R une fonction dérivable, alors f ′ possède la propriété
des valeurs intermédiaires.

Corollaire 2.88. Soit f : [a, b] ! R une fonction. Si elle ne possède la propriété des valeurs
intermédiaires, elle n’est pas intégrable.
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La deuxième résultat est un résultat sur les suites, définies par récurrence à l’aide d’une
fonction.

Théorème 2.89. Théorème du point fixe. Soit f : D ! R une fonction dérivable. Supposons
qu’il existe un point fixe ℓ ∈ D de f , c’est à dire tel que f(ℓ) = ℓ, et qu’il existe un intervalle
I = ]ℓ− ϵ, ℓ+ ϵ[ et un réel 0 < λ < 1 tel que pour tout x ∈ I, |f ′(x)| ≤ λ. Alors toute suite (un)n
définie par u0 ∈ I et la relation de récurrence un+1 = f(un) converge vers ℓ.

Démonstration. Montrons par récurrence que un ∈ I pour tout n. C’est vrai pour n = 0.
Supposons que cela soit vrai jusqu’au rang n. Supposons que un < ℓ (puisque sinon la preuve
est finie), et donc comme I est un intervalle, ]un, ℓ[ ⊂ I. Alors on peut appliquer le théorème des
accroissements à [un, ℓ]. Il existe c ∈ ]un, ℓ[ tel que :

f ′(c) = f(ℓ) − f(un)
ℓ− un

= un+1 − ℓ

un − ℓ

En valeur absolue et en rappelant que |f ′(c)| ≤ λ, cela donne donc :

|un+1 − ℓ| ≤ λ|un − ℓ| < |un − ℓ|

Donc la distance de un+1 à ℓ est inférieure à la distance de un à ℓ, donc un+1 ∈ I. La relation
ci dessus tient donc pour tout n ∈ N. On a donc :

|un − ℓ| ≤ λn|u0 − ℓ|

donc la suite (|un − ℓ|)n tend vers 0, autrement dit un tend vers ℓ.

Remarque 2.90. Si la dérivée de f est continue, on n’a pas besoin de supposer l’existence de I
car elle est une conséquence de l’hypothèse |f ′| ≤ λ < 1.

Exemple 2.91. Prenons la fonction f(x) = 1 + 1
x et

soit ℓ = φ = 1+
√

5
2 le nombre d’or, c’est à dire qu’il

satisfait φ2 = φ+1, autrement dit φ = 1+ 1
φ , c’est un

point fixe de la fonction. On a f ′(x) = − 1
x2 donc la

valeur absolue de la dérivée est décroissante et pour
x =

√
5

2 , on a |f ′(x)| = 4/5 < 1. Donc pour tout
x ∈ ]φ − 1

2 , φ + 1
2 [, on a |f ′(x)| ≤ 4/5 < 1. Donc par

le théorème du point fixe, toute suite qui commence
dans cet intervalle et définie par récurrence grâce à
un+1 = A+ 1

un
converge vers ℓ = φ.

2.5 Convexité

Dans la suite on va prendre D = I un intervalle de R.

Définition 2.92. Soit f : I ! R une fonction. On dit que f est convexe si quels que soient les
nombres a < b ∈ I, on a :

f(ta+ (1 − t)b) ≤ tf(a) + (1 − t)f(b) pour tout t ∈ [0, 1].

On dit que f est concave si la fonction −f est convexe.
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Donnons l’interprétation géométrique de cette définition. Soit f : I ! R une fonction, et
soit a < b ∈ I. On pose A = (a, f(a)) et B = (b, f(b)) les points du graphe de f d’abscisse a
et b, respectivement. Lorsque la variable t parcourt le segment [0, 1], le point xt = ta+ (1 − t)b
parcourt le segment [a, b] depuis b (pour t = 0) vers a (atteint en t = 1). La droite passant par
A et B a pour équation

y = x− a

b− a
(f(b) − f(a)) + f(a) = f(b) − f(a)

b− a
x+ bf(a) − af(b)

b− a

Soit t ∈ [0, 1], et xt = ta+ (1 − t)b. Le point de la droite d’abscisse xt a pour ordonnée :

yt = ta+ (1 − t)b− a

b− a
(f(b) − f(a)) + f(a)

= (1 − t)(b− a)
b− a

(f(b) − f(a)) + f(a)

= tf(a) + (1 − t)f(b)

L’ensemble des points de la droite qui ont pour abscisse xt et ordonnée yt est le segment [A,B] :

[A,B] =
{
Mt =

(
ta+ (1 − t)b, tf(a) + (1 − t)f(b)

)
, t ∈ [0, 1]

}
Maintenant soit Pt le point du graphe de f d’abscisse xt = ta+ (1 − t)b (la même que Mt). Le
point a logiquement pour ordonnée f(ta + (1 − t)b). La condition de convexité, nous dit donc
que le point Pt est en dessous du point Mt, pour tout t ∈ [0, 1].
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192 CHAPTER 6 DIFFERENTIATION 

Proof. Applying Taylor's Theorem at x0, we find that for x E I we have 
f(n) (c) n f(x) = Pn- ! (x) + Rn- ! (x) = f(xo) + -- (x - xo ) , n !  

where c is some point between x0 and x. Sincef (n) i s  continuous, iff(n) (x0) -=f. 0 ,  then there 
exists an interval U containing x0 such thatf(nl (x) will have the same sign as f(nl (x0) for 
x E U. If x E U, then the point c also belongs to U and consequently f(nl (c) and fnl (x0) 
will have the same sign. 

(i) If n is even andf(nl (xo )  > 0, then for x E U we havefnl (c) > 0 and (x - x0t ;::: 
0 so that Rn- ! (x) ;::: 0. Hence, f(x) ;::: f(xo ) for x E U, and therefore f has a relative 
minimum at x0. 

(ii) If n is even and fnl (x0 ) < 0, then it follows that Rn- !  (x) :S: 0 for x E U, so that 
f(x) :S: f(x0) for x E U. Therefore, f has a relative maximum at x0. 

(iii) If n is odd, then (x - xor is positive if X > Xo and negative if X < Xo . Conse­
quently, if x E U, then Rn- !  (x) will have opposite signs to the left and to the right of x0. 
Therefore, /  has neither a relative minimum nor a relative maximum at x0 .  Q.E.D. 

Convex Functions ________________________ _ 
The notion of convexity plays an important role in a number of areas, particularly in the 
modern theory of optimization . We shall briefly look at convex functions of one real 
variable and their relation to differentiation. The basic results, when appropriately 
modified, can be extended to higher dimensional spaces. 

6.4.5 Definition Let I <:::; lR be an interval . A function f : I ---> lR is said to be convex on I 
if for any t satisfying 0 :S: t :S: 1 and any points x1 , x2 in I, we have 

Note that if x1 < x2 , then as t ranges from 0 to 1 ,  the point ( I - t)x1 + tx2 traverses 
the interval from x1 to x2 . Thus iff is convex on I and if x1 , x2 E I, then the chord joining 
any two points (x1 , f(x! ) )  and (x2 , f(x2) )  on the graph of flies above the graph off (See 
Figure 6.4. 1 . ) 

Figure 6.4.1 A convex function 

A convex function need not be differentiable at every point, as the example 
f(x) := l x l , x E JR, reveals. However, it can be shown that if I is an open interval and if 
f : I ---> lR is convex on I, then the left and right derivatives of f exist at every point of I. As a 

Une fonction f : I ! R est donc convexe si et seulement si, pour tous points distincts A
et B du graphe de f , le graphe de f entre A et B est en dessous du segment [A,B]. Pour une
fonction concave c’est l’inverse : le graphe est au dessus du segment [A,B]. On utilise le mot
convexe car une fonction est convexe si et seulement si la partie du plan qui se situe au dessus
du graphe de f est convexe dans le sens topologique. En topologie, une partie d’un espace est
convexe si tout segment entre deux points de cette partie est contenu dans cette partie.
Exemple 2.93. Prenons la fonction polynomiale f : x 7! x2 + 1 définie sur R. Prenons a < b et
définissons A = (a, f(a)) et B = (b, f(b)). Nous avons donc, pour tout t ∈ [0, 1] :

f
(
ta+ (1 − t)b

)
=

(
ta+ (1 − t)b

)2 + 1 = t2a2 + (1 − t)2b2 + 2t(1 − t)ab+ 1

Ajoutons ta2 − ta2 = 0 et (1 − t)b2 − (1 − t)b2 = 0 au membre de droite. En notant que
1 = t+ (1 − t), on obtient alors :

f
(
ta+ (1 − t)b

)
= tf(a) + (1 − t)f(b) − t(1 − t)(a− b)2

Comme t ∈ [0, 1], (1−t) ∈ [0, 1], et comme (a−b)2 > 0 le dernier terme t(1−t)(a−b)2 est positif.
Comme il est précédé d’un signe −, on a bien la condition de convexité comme on pouvait le
voir sur un dessin.
Exemple 2.94. En France, l’impôt sur le revenu est une fonction convexe du revenu (dessin).

Les propositions suivantes caractérisent une fonction convexe, selon qu’elle est ou non déri-
vable, ou non doublement dérivable.

Lemme 2.95. Une fonction f : I ! R est convexe si et seulement si pour tous a < b éléments
de I, on a :

∀x ∈ [a, b] f(x) − f(a)
x− a

≤ f(b) − f(a)
b− a

Démonstration. Soit a < b deux tels nombres. Ce sont les abscisses des points A et B. Quand t
parcourt le segment [0, 1], le point xt = ta+ (1 − t)b parcourt le segment [a, b] (de b à a). On a
alors xt − a = (1 − t)(b− a), ce qui nous donne que l’inégalité de la proposition peut se récrire :

∀ t ∈ [0, 1] f(xt) ≤ f(a) + (xt − a)f(b) − f(a)
b− a

= tf(a) + (1 − t)f(b)
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C’est bien la condition de convexité de la fonction f .

Remarque 2.96. On ne le montrera pas mais le lemme dit de manière équivalente que f est
convexe si et seulement si pour tout a ∈ I, la fonction x 7! f(x)−f(a)

x−a est croissante sur I.

Corollaire 2.97. Soit I un intervalle ouvert. Si f : I ! R est convexe sur I alors elle est
dérivable à gauche et à droite en tout point de I, donc continue sur I.

Démonstration. Comme I est un intervalle ouvert, pour tout a ∈ I, il existe x et y tel que
x < a < y. On a alors, d’après la remarque précédente :

f(x) − f(a)
x− a

≤ f(y) − f(a)
y − a

En outre, pour x < a, le taux d’accroissement de gauche est une fonction croissante de x, majorée
par le membre de droite, donc admet une limite en a, qui n’est autre que la dérivée à gauche
de f en a. D’autre part, le taux d’accroissement de droite est une fonction croissante de y > a.
Il diminue donc lorsque y tend vers a. Comme il est minoré par le membre de gauche, il admet
une limite en a qui est la dérivée à droite de f en a. On a donc :

f ′
g(a) ≤ f ′

d(a)

Etant dérivable à gauche et à droite, f est continue à gauche et à droite, donc continue.

Soit f : I ! R une fonction deux fois dérivable. Cela veut dire que la fonction dérivée f ′ est
elle-même dérivable. On note f ′′ sa fonction dérivée et on l’appelle la dérivée seconde de f . En
particulier, cela veut dire que f ′ est continue (mais pas forcément f ′′).

Proposition 2.98. Soit f : I ! R une fonction deux fois dérivable. f est convexe ssi f ′′ ≥ 0.

Démonstration. Comme f est dérivable sur I, elle est continue sur I. Montrons que si f ′ est
croissant alors f est convexe. On pose g(x) = f(x)−

[
f(a) + f(b)−f(a)

b−a (x− a)
]
. C’est une fonction

continue sur [a, b], dérivable sur ]a, b[ et telle que g(a) = g(b) = 0. Donc par le Théorème
de Rolle, il existe c ∈ ]a, b[ telle que g′(c) = 0. Or la fonction g′ est croissante, puisqu’on a
g′(x) = f ′(x) − f(b)−f(a)

b−a . Cela veut donc dire que pour tout x ∈]a, c], g′(x) ≤ 0, et pour tout
x ∈ [c, b[, g′(x) ≥ 0. Ce qui veut dire que g est décroissante sur [a, c] et croissante sur [c, b].
Comme g(a) = g(b) = 0, on déduit que g(x) ≤ 0 pour tout x ∈ [a, b]. Autrement dit, pour tout
x ∈ [a, b]

f(x) ≤ f(a) + f(b) − f(a)
b− a

(x− a) ⇐⇒ f(x) − f(a)
x− a

≤ f(b) − f(a)
b− a

ce qui montre que f est convexe.
Inversement, montrons que si f est convexe, alors f ′ est croissante. Soit a < b ∈ I, on

rappelle que nous avons deux fonctions croissantes :

x 7−!
f(x) − f(a)

x− a
et y 7−!

f(y) − f(b)
y − a

Donc, pour tout x, y ∈]a, b[, on a :
f(x) − f(a)

x− a
≤ f(b) − f(a)

b− a
= f(a) − f(b)

a− b
≤ f(y) − f(b)

y − b

Quand x tend vers a par la droite, le membre de gauche tend vers f ′
d(a) = f ′(a) car f est

dérivable, tandis que quand y tend vers b par la gauche, le membre de droite tend vers f ′
g(b) =

f ′(b). Donc on a f ′(a) ≤ f ′(b) pour tous a < b de I donc f ′ est croissante. Pour le deuxième
énoncé, si f ′′ ≥ 0 alors f ′ est croissante.

66



Remarque 2.99. Une version affaiblie de cette proposition dit que si la fonction f : I ! R est
dérivable, alors f est convexe ssi f ′ est croissante. Dans ce cadre, nous pouvons montrer que
pour tout x et a dans l’intervalle I, on a :

f(x) ≥ f(a) + f ′(a)(x− a) (2.2)

Le membre de droite est l’équation de la tangente au graphe de f au point (a, f(a)). Ainsi, si
f ′ est croissante (et donc convexe), cela veut dire que le graphe de f est au dessus de chacune
de ses tangentes. C’est une autre caractérisation géométrique de la convexité.
Exemple 2.100. Puisque la fonction exponentielle est sa propre dérivée (et est strictement posi-
tive), alors la fonction exponentielle est convexe. D’autre part en appliquant l’équation (2.2) à
a = 0 on obtient :

ex ≥ 1 + x pour tout nombre réel x.
Exemple 2.101. Pour tout x > 0, on a que la dérivée seconde du logarithme est ln′′(x) = − 1

x2 < 0
donc la fonction logarithme est concave (car f = −ln est convexe). La formule (2.2) évaluée en
a = 1 donne alors

−ln(x) ≥ 0 − (x− 1) ⇐⇒ ln(x) ≤ x− 1
Remarque 2.102. Avec la caractérisation de la convexité/concavité par rapport à la dérivée
seconde, on peut montrer que f est convexe ssi f−1 est concave. En effet on exprime (f−1)′′ en
fonction de f et f ′ par :

(
f−1)′′ = − f ′′◦f−1

(f ′◦f−1)3 .

Définition 2.103. Soit f : I ! R une fonction. On appelle point d’inflexion tout point a ∈ I
où f change de convexité. Plus précisément il existe ϵ > 0 tel que f est concave sur [a− ϵ, a] et
convexe sur [a, a+ ϵ], ou inversement. Lorsque f est deux fois dérivable, cela revient à dire que
la dérivée seconde change de signe en a.

Exemple 2.104. La fonction f : x 7! x3, de dérivée seconde f ′′(x) = 2x, admet un point
d’inflexion en 0. La courbe passe de concave à convexe. La fonction arctangente admet comme
dérivée première arctan′(x) = 1

1+x2 et comme dérivée seconde arctan′′(x) = − 2x
(1+x2) . Cette

dernière change de signe en x = 1. La courbe passe de convexe à concave.

Proposition 2.105. Soit f : I ! R une fonction dérivable, et soit a ∈ I un point d’inflexion.
Alors au point (a, f(a)) le graphe de f traverse sa tangente.
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