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1 Suites et convergence dans les espaces vectoriels normés

1.1 Suites de fonctions et convergence

Dans ce chapitre on va regarder les suites et séries de fonctions f,, : D — R sur un domaine
D C R (la généralization a C se fait sans trop de problémes). On appelle suite de fonctions une
famille de fonctions f,, : D — R indexées sur I’ensemble N des entiers naturels. Pour chaque
n € N, f, est une fonction de D dans R. L’ensemble de définition D est le méme pour toutes les
fonctions de la famille. Comme on peut s’y attendre, on s’interroge sur la convergence ou non
(et & quel sens) de cette suite de fonctions. Commencons par souligner que si on fixe un élément
x € D, alors f,(z) € R pour tout n € N, et donc la famille (f,(x)), est une suite de nombres

réels.


https://gerardlavau.fr/

Définition 1.1. Soit f : D — R une fonction (dont on ne suppose rien du tout). Soit (f,)n une
suite de fonctions f, : D — R. On dit que la suite (fy), converge simplement vers f si, pour
tout x € D, la suite réelle (fn(x))n converge et admet comme limite f(x) :

lim |fn(z) = f(2)] =0

n—-+o0o

On appelle f: D — R la limite simple de la suite de fonctions (fn)n-

La condition ci dessus peut s’écrire sous forme de proposition logique :
VeeD,Ve>0, INeN telque Vn>N |fo(z)— f(z)] <e (1.1)

Attention dans cette proposition logique, N dépend de x et de €!

Ezemple 1.2. Regardons convergence simple de la suite de fonctions (fy), définies par f, :
[0,1] - R,z +— 2™ Si z € [0,1], fo(z) tend vers 0 quand n tend vers linfini car c’est la
définition d’une suite géométrique (z"), pour |z| < 1. Par contre, si z = 1, pour tout n > 0,
fn(1) = 1 et la suite réelle (f,(1)), est la suite constante égale a 1, qui donc converge vers 1.
Définissons la fonction f : [0,1] — R par :

0si0<zx<1
f(x) = .
lsiz=1

Alors la suite de fonctions (fy,), converge simplement vers la fonction f (discontinue en 1).

On peut représenter graphiquement le processus |
par le dessin de droite. Les graphes des fonc-
tions f, deviennent de plus en plus "carrés" avec
I’angle en bas & droite. Si on fixe z € [0, 1], & un
moment donné (pour n assez grand), le point
fn(x) se rapprochera aussi pres que ’on veut de
l’axe horizontal. Par contre le point f,(1) =1 |
reste inchangé pour toutes les fonctions. Toutes |
les fonctions f, sont continues, mais a la li-
mite donc, on obtient une fonction f discontinue
(en 1). Nous avons donc :

lim lim f,(x) # lim lim f,(x)

n—+oo r—1 r—1 n—-+4o0

Ezemple 1.3. La suite de fonctions (fy,), définies par f,, : R — R,z %:—x) converge simple-
ment vers f la fonction nulle. En effet, nous savons que [sin(u)| < 1 pour tout u € R. Soit = € R,
nous avons donc pour tout n > 1 :

0<|snte) | < 1
n

Le membre de droite tend vers 0 quand n tend vers I'infini, donc le membre de gauche aussi (et
ce pour tout x), et nous avons bien la convergence simple de la suite (f,,), vers la fonction nulle.
On peut écrire les premieres fonctions f,, grace aux identités trigonométriques :

_ sin(2z)

filz) = sin(z),  fa(z)

sin(3x sin(2x)cos(x cos(2x)sin(x sin(x)cos?(x cos?(z) — sin?(z))sin(z
fola) = 23)= (2; (@) | (2?2 () _ ()3 () | (cos®(x) 3()) (z)
_ 2sin(z)cos?(z) — sin®(z) sin(x)

3 3

= sin(z)cos(x),

= sin(z)cos?(z) —




On peut "voir" que les fonctions deviennent de plus en plus petites en amplitude maximale (la
suite (fn)n tend bien vers la fonction nulle).

Ezemple 1.4. La suite de fonctions (fy,), définies par f, : R — R,z +— /2?2 +% converge

simplement vers la fonction valeur absolue f : R — R,z — V22 = |z|. On voit que toutes les

fonctions f,, sont dérivables sur R puisque f/(z) = —-= mais f ne I'est pas en 0! Donc on

/I2+l )
n
voit que la convergence simple peut aussi perdre certaines propriétés (ici on a perdu la dérivation
en zéro). Donc dans cet exemple on ne peut pas intervertir dérivation et limite :

d( lim fn(x)> #  lim &n

dxr \n—+oo n—-+oo dx

()

C’était en réalité aussi le cas dans I’exemple précédent.

Ezemple 1.5. La suite de fonctions f, : [0,+00]— R,z — +4n converge simplement vers la
fonction f identiquement nulle sur [0, +o00[. L’intégrale de f sur cet intervalle est nulle, mais

pour tout n > 1, on a :

M M n M M 1
(@)dr= [ 1- dr= | 1-
/0 Jn(@)dx /0 nta /0 /0 1+

L’intégrale impropre f0+°° fn(x)dx est obtenue en faisant tendre M vers +oo. Mais dans ce cas
le membre de droite tend alors vers l'infini car le logarithme M — In(1 + ) augmente moins

gdx:M—nln(1+%)

n

vite que la fonction linéaire M ~— M, donc l'intégrale impropre f0+°° fn(x)dx est divergente
(vaut +00). Donc on voit que dans cet exemple que :

—+00

/0+00 <nETmfn(:E)) dr # nllgloo ; fn(z) de

En résumé, avoir que toutes les fonctions f,, : D — R sont continues n’implique PAS que la
fonction limite simple f : D — R est continue; que toutes les f, sont bornées n’implique PAS
que f est bornée (cf + bas); que toutes les f,, sont intégrables (resp. dérivables) n’impliquent
PAS que f est intégrable (resp. dérivable)... La notion de convergence simple est donc tres fragile
car aucune des propriétés des fonctions ne sont préservées a la limite. Il faut d’autre notion de
convergence, avec un autre choix de norme sur ’espace des fonctions.

Définition 1.6. Soit (f,), une suite de fonctions f, : D — R et soit f : D — R une fonction.
On dit que la suite (f,)n converge uniformément vers f si pour tout n assez grand la fonction
fn— f est bornée, et que

lim  sup | () — f(2)] = 0 (1.2)
n—-4oo zeD
On appelle f: D — R la limite uniforme de la suite de fonctions (fn)n.
La condition incongrue "pour tout n assez grand la fonction f,, — f est bornée" est la pour

justifier que pour n assez grand, la borne supérieure sup |f,(z) — f(x)| — le plus petit majorant
zeD

de l'ensemble A,, = {|fn(z) — f(z)|, ot & € D}~ est bien définie. Dans ce cas, prendre la limite
n — 400 est possible. La condition (1.2) peut se réécrire avec des quantificateurs comme :

Ve>0, INeN telque Vn>N,VexeD |fo(z)— f(z) <e (1.3)

Attention la position du quantificateur Vo € D n’est pas la méme que dans le phrase lo-
gique (1.1). Dans la convergence uniforme, N ne dépend que de € mais PAS de x!



La convergence uniforme est plus forte que N
la convergence simple. Elle peut s’interpréter
ainsi : fixons € > 0; alors il existe N € N tel
que tout n > N, la distance entre le graphe de
la fonction f, et le graphe de la fonction f ne
dépasse jamais €. Cela se traduit par le fait que
pour tout © € D, |f,(z) — f(x)| < € pour tout
n > N. Cette idée est illustrée sur l'image a
droite, ot on a pris n,n’ > N. Le ruban entre
pointillés rouges est appelé voisinage tubulaire >
du graphe de f de rayon e.

On peut comparer la convergence simple et la convergence uniforme de facon intuitive en
terme de vitesse de convergence. Si une suite de fonctions (fy,), converge simplement vers une
fonction f, la vitesse de convergence dépend du point z; c’est & dire que pour certains x, la
suite (fy,(z)), tend plus vite vers f(z) que pour certains autres x. Penser par exemple a la suite
de fonctions f, : [0,1] — R,z — 2™ qui converge simplement vers la fonction f de l’exemple
1.2, et comparer la vitesse de convergence de la suite en = 0,001 et = 0,999 : on converge
beaucoup plus vite vers 0 en x = 0,001 qu’en x = 0, 999.

Par contre, si la suite de fonctions (fy), converge uniformément vers une fonction f, la
vitesse de convergence ne dépend pas de I’endroit ou on se place sur I’axe horizontal. Comme le
mot 'indique, la vitesse de convergence se fait uniformément sur tout le domaine de définition.
On peut le voir dans I'exemple 1.10 ci dessous, ou la convergence vers f est contrdlée par la
suite (%)n Dans la suite pour distinguer la convergence simple et uniforme, on notera :

cvs

convergence simple fn——f
n—-+00

cvu

convergence uniforme fn—— f
n—-+o00

Remarque 1.7. Soit D un domaine de K (ot K = R ou C) et f: D — K une fonction bornée.
On définit alors la notation suivante :

| flloo = sup | f ()|
xeD

Lorsque f n’est pas bornée, la borne supérieure n’est pas définie (n’existe pas), et donc ¢a n’a
pas de sens mathématique d’écrire || f||oo. L’opération f +— || f||oo définit une norme sur I'espace
des fonctions définies sur I’ensemble D (nous verrons plus bas ce qu’est une norme). On l'appelle
la norme infinie. Noter alors que la condition (1.2) dans la définition de la convergence uniforme
peut s’écrire :

i [|fu— fllee =0 (1.4)

Cette formule est importante! On retrouve 1'idée qu’une suite converge vers une limite.

Ezemple 1.8. Soit (fyn)n la suite de fonctions f, : R — R définies par :

fulz) = (1 + Z)n

Pour tout x € R on a lirf (1+ %)" = e”, donc la suite de fonctions ( f,,), converge simplement
n—-+0oo

vers la fonction exponentielle : f(z) = e®. Par contre, elle ne converge pas uniformément, car
pour tout n > 1, la fonction = — |f, () — f(z)| n’est pas bornée (il suffit de faire tendre x vers

+00). Donc la borne supérieure sup | f,(z) — f(z)| n’est pas définie, et la condition (1.2) ne peut
zeD
pas étre satisfaite.



Ezemple 1.9. Soit (f,)n la suite de fonctions f,, : R — R définies par f, : = — m Soit
x € R, alors f,,(z) tend vers 0 quand n vers I'infini. La fonction limite simple est donc la fonction
constante f = 0. Pour tout n € N, la fonction f, est positive est majorée par 1 (valeur atteinte
en z = n). La différence |f,,(x) — f(x)| = fn(x) est donc bornée MAIS la condition (1.2) n’est pas

satisfaite car sup |fn(z) — f(x)| = supfn(z) = 1 pour tout n € N, et donc ne peut pas converger
zeR zeR
vers 0. La suite de fonctions (f,), ne converge donc pas uniformément vers f.

Ezemple 1.10. Soit (fy,), la suite de fonctions f,, : R — R définies par :

1

—siz=0
fal) = {1sin (Z)siz#0

xT

Ces fonctions sont continues en zéro (elles généralisent la fonction Smﬂjﬂ) A x fixé, si on fait

tendre n vers l'infini, on obtient que f,(x) tend vers 0, quel que soit z. La limite simple f : R — R
de la suite de fonctions (f,), est donc la fonction constante nulle, ce qu’on dénote f = 0.

En ce qui concerne la convergence uniforme, on observe que pour tout u nombre réel, on a

(L
|sin(u)| < |u|. Nous avons alors que |sin (£)] < |i—‘ et donc % < 1.0n a donc la majoration
suivante, pour tout x € R fixé :

sin (£ 1
0 Ifula) - fla)] = [22i) _of < L

Cette majoration étant vraie indépendamment du point x, nous en déduisons que :

0 < sup |fn(z) — f(z)] <
xeD

S|

En prenant la limite quand n tend vers l'infini, nous obtenons donc, par le théoréme des enca-
drements :

lim | fn(2) = f(2)] =0

n—-+00

Ceci prouve que la suite de fonctions (f,,), converge uniformément vers la fonction nulle.

Ezemple 1.11. Regardons la suite de fonctions (f,), définies par f, : R — R,z — —~. Soit

n+e*
x € R; la limite de la suite réelle (f,,(z)), quand n tend vers I'infini est donnée par 1’équivalent :

n n

~ —:1
n +e? n—oon

Ceci étant vrai quelle que soit la valeur de z, la suite de fonctions (f,), converge simplement
vers la fonction constante f = 1. Maintenant évaluons la différence suivante :
e’ 1

n+ e+ - 1+ ne =

n
n—+ e*

(o)~ £@)] = |

Si on évalue cette fonction de 2 au point z = In(n), on a alors | fn(2,) — f(zn)| = 3. Autrement

dit, on a une minoration de la borne supérieure sup |f,(z) — f(x)|, ce qu’'on peut écrire :
zeD

1
S ”fn _fHoo

O |

Cette minoration est vraie pour tout n € N, puisqu’en définissant la suite réelle (x,), par
z, = In(n), nous observons que la suite réelle (|f.(r,) — f(xn)]), est la suite constante dont
tous les termes sont égaux a % Chaque terme de cette suite minimise la borne supérieure



|| frn = fl|oo, donc la minoration % < ||fn— flloo est vraie pour tout n € N. Autrement dit la suite
réelle positive de normes infinies (||fn — f[loo),, est minorée par 1/2, donc la suite (|[fn — fllo),,
ne peut pas converger vers 0 quand n tend vers l'infini. De ce fait, on voit que nous ne pouvons
pas avoir la condition de convergence uniforme.

Dans les deux exemples précédents, nous avons vu deux cas différents : une suite de fonctions
uniformément convergente, et une suite de fonction non-uniformément convergente. Discutons
un peu de quelles sont les stratégies a mettre en oeuvre pour montrer I'un ou l'autre cas. Pour
montrer une convergence uniforme, il faut vérifier la condition suivante (1.2). On peut récrire
cette formule en définissant le sous-ensemble de R suivant :

Cela permet de récrire la condition (1.2) de convergence uniforme comme :

li Ap) =

i sup(4,) =0

ou ici la borne supérieure est bien la borne supérieure ensembliste des sous-ensembles de R (qui

n’est bien définie que lorsque A,, est majoré donc). Calculer la borne supérieure sup | f,,(z) — f(x)| =
xeD

sup(Ay) pour tout n peut étre compliqué. A la place on peut chercher & majorer les sous-
ensembles A, par une suite réelle positive (uy), qui converge vers 0, c’est a dire :

VvneN 0< A4, <u, et lim u, =0
n—-+o0o
En effet, si on a une suite (uy), telle que, pour tout n, on a Vu € A,,0 < u < u,, alors

nécessairement pour tout n on a l'encadrement 0 < sup |f,(z) — f(z)| < uyp; si d’autre part
zeD

cette suite (uy), converge vers 0, alors on a bien que lim sup |f,(z) — f(x)| = 0.
n—+00 yep

Maintenant, dans le cas contraire, si une suite de fonctions (f,,), ne converge PAS unifor-
mément vers une fonction f, alors la proposition logique (1.3) n’est pas vraie, c’est sa négation
qui est vraie :

Je>0 telque VN eN, dn>N, 3z e D telsque |fu(z)— f(x)|>e€
On peut la récrire de fagon équivalente comme :
Je>0 telque VN eN, 3n>N, Jz, € D telsque |fn(zn)— f(zn)] > €

Autrement dit, lorsque (fy), ne converge PAS uniformément vers une fonction f, il existe une
suite (x, ), de points de D telle que la suite réelle positive (ay,), de terme général a,, = | fp(zy,) —
f(zy)| ne converge PAS vers 0 (c’est la signification du début de la phrase logique ci dessus). On
a donc une méthode pour démontrer qu’'une suite de fonctions ne converge pas uniformément.

Procédure générale a suivre : dans le cas général ou on s’intéresse a une suite de fonctions,
on cherche d’abord la limite simple des f, : D — R — qu’on dénote f : D — R — puis, une fois
trouvée, on essaie

1. soit de majorer 'ensemble A,, = {|fn(z) — f(z)|, = € D} par une suite positive (up)n qui
converge vers 0. Si les fonctions f,, sont positives, en général on peut calculer la dérivée
de f,, — f par rapport a x et on prend la valeur u, = f,(z) — f(x) en le point = ou cette
dérivée s’annule (la ou f,, — f atteint un max). Si la suite (uy )y tend vers 0, la convergence
uniforme est ainsi montrée ;



2. ou bien, de trouver une suite (x,,), d’élément de D, telle que la suite (a,,), de terme général
an|fn(zn) — f(x,)| ne converge pas vers 0. Par exemple en choisissant une suite (z,),, telle
que (ap), converge vers une limite non-nulle, cela convient. En général, en regardant la
forme des fonctions f,, on essaie de faire disparaitre n en choisissant astucieusement x,,, ou
bien dans le pire des cas a contrdler la variable n. Avec une telle suite (zy,),, cela démontre
que la suite de fonctions ne converge pas uniformément.

Ezxemple 1.12. La suite de fonctions de I'exemple 1.2, ol f,, :  — 2™, ne converge pas uniformé-

ment car sion pose 2, = 1—1 <1, ona que f(z,) =0 donc a, = |fp(zn) — f(zn)| = (1 - %)n

n
On a que (1 — %) - % donc la suite (ay), converge vers % = 0. A partir d’'un certain rang
n—-roo
1

N, les éléments a,, sont donc au dessus de € = 5. Donc la borne supérieure de I’ensemble A,,
étant plus grande que a,, est donc elle aussi nécessairement au dessus € = % On en déduit
que la suite (sup(An))n ne peut pas tendre vers 0 car minorée a partir d’un certain rang par
une constante strictement positive. Cela montre que la suite de fonctions de 'example 1.2 ne

converge pas uniformément.

Ezemple 1.13. Soit (f,)n la suite de fonctions f, : [1,b] — R définies par f, : x — %ij;;. Az
fixé, on a ’équivalent suivant lorsque n tend vers l’infini :

onx? — 1 2nx?

—_— ~Y
ne + 2 n—+oo nx

=2

donc la suite de fonctions tend simplement vers la fonction f : [1,b] — R,z — 2z. Maintenant,
a z fixé, la différence |f, (z) — f(z)| est :

onx? — 1 | 2z% + 1
. 9=

nr + x2 nr + x2

On aimerait majorer le membre de droite par une suite u, qui tend vers 0. Pour cela, il suffit
de majorer le numérateur, et de minorer le dénominateur. Or nous avons 1 < z < b donc
223 +1 <20 + 1 et n+ 1 < nw + 22, ce qui donne que pour tout x € [1,b] on a :

0<

2 3 3
2nx 1—23:‘—256 +1<2b +1

ne + 2 Tz 422 n+1l

On pose u, = 221’?1 et donc d’aprés 'inégalité ci dessus vraie pour tout = € [1,b], on a que
0 < sup(4,,) < u,. En observant que la suite (uy), converge vers 0, d’apres la discussion ci-
dessus, cela nous dit que la suite de fonctions f,, converge uniformément vers f. Attention, la
convergence uniforme se fait sur le segment [1, b], ca ne converge plus uniformément sur [1, +oo|,

car la majoration par b ne marche plus.

Proposition 1.14. Soit (f,), une suite de fonctions f, : D — R qui converge uniformément
vers une fonction f : D — R. Alors la suite de fonctions converge uniformément vers f sur tout
segment [a,b] C D.

Démonstration. Cela vient de la majoration simple 0 < sup |f,(z) — f(x)| < sup |fn(z) — f(2)].
z€[a,b] xeD
O

Attention, la réciproque est fausse : une suite de fonctions (f;,), définies sur un domaine de
définition D peut converger uniformément vers une fonction f sur tout segment [a,b] C D, mais
pas sur D tout entier. Cela s’explique car un segment est fermé borné (on appelle ¢a un compact
en topologie), tandis que D peut étre ouvert a un des bords, ou les fonctions f,, — f peuvent ne
pas étre bornées.



Ezxemple 1.15. Reprenons 'exemple 1.13 mais cette fois ci les fonctions f, :  — %Zﬁ;zl sont

définies sur [1 4+ oo[. Cette suite de fonctions admet pour limite simple f(z) = 2z comme
précédemment. Maintenant observons que la différence |f,,(z) — f(x)| admet 1’équivalent suivant
lorsque z tend vers 400 :

2° +1
[fu(z) = f2)] =
Ainsi la fonction | f,(z) — f(x)| n’est pas majorée sur [1,4+oc[, car le membre de droite (I'équi-

valent) tend vers +o0o quand z — +oo, donc la borne supérieure sup |f,(z) — f(x)| n’est pas
xzeD
définie, donc la convergence de la suite (f,), n’est PAS uniforme sur [1,+oco[. Par contre, sur

tout segment (fermé borné) de type [1,b] avec b > 1 fixé, on a vu dans 'exemple 1.13 qu'il y
avait convergence uniforme.

— ~ 2z
nx + x2 n—+oo

Ezxemple 1.16. Dans I'exemple 1.9, nous avons vu que la suite de fonctions f, : R — R,z —
m ne converge pas uniformément vers la fonction constante f = 0. Maintenant soit b > 0,
sur le segment [0, b] nous avons la majoration suivante :

Vn>b Vo el0,b] |ful@)— f(@)] = falz) < falb)

Cela vient du fait que la fonction f,, est croissante sur | — oo, n|, intervalle contenant [0, b] des
que n > b. La majoration étant vraie pour tout x € [0,b], la borne supérieure est donc aussi
majorée :
1
Vn=b  sup [ful2) = f(@)| < fulb) = ——
z€[0,b] " " I+n-20

Le membre de droite tend vers 0 quand n tend vers +o0o ce qui veut dire que la condition (1.2)
est satisfaite sur le segment [0, b], et la suite de fonctions (f,), converge uniformément vers la
fonction nulle sur le segment [0, ] (et plus généralement, sur tout segment de R).

Proposition 1.17. Si une suite de fonctions converge uniformément sur D, alors elle converge
simplement sur D.

Démonstration. Fait en exercice. O

La notion de convergence uniforme a été introduite par Cauchy au début du XIXeme siecle
pour répondre a la question : si on a une suite de fonctions (f,,), continues en un point a € D
convergeant vers une fonction f, comment savoir si la fonction limite f est continue en a?
Autrement dit on se demande si on peut intervertir les deux limites suivantes, et pour quelle
notion de convergence :

: . 7 :
i i fo(e) = Jim o (o)

On a déja vu dans l'exemple (1.2) que la convergence simple n’est pas suffisamment forte pour
permettre I’échange des limites.
Théoréme 1.18. Soit (f,)n une suite de fonctions fp, : D — R, et a € D. On suppose que :

1. chaque fonction f, : D — R est continue en a ;
2. la suite (fy)n converge uniformément sur D.

Alors la fonction limite uniforme f : D — R est continue en a et f(a) = lim f,(a).
n—oo

Remarque 1.19. En réalité il suffit d’avoir que la suite (f,), converge uniformément sur un
voisinage de a dans D.



Démonstration. Soit € > 0. Ecrivons 'uniforme convergence des f,, :
€

dNeN, Vn>N,VzeD |fn(:c)—f(cc)|<3

Prenons un tel N, qui ne bougera pas jusqu’a la fin de la preuve. On a alors par l'inégalité
triangulaire :

[f (@) = fla)] < [f(x) = fn(@)| + |fn(2) = (@) + | fv(a) = fla)l

Le premier et le dernier terme du membre de droite sont majorés par ||fx — f|lco, lui méme

majoré par 5. Nous avons donc :

17(2) ~ Fla)l < 25+ | f(a) — f(a)

Ecrivons ce que ¢a veut dire d’étre continue en a pour la fonction fy, une fois fixé € :
€
35 >0,V tel que [z —a| <0 ]fN(m)—fN(a)\<§

Choisissons z tel que |z — a| < J. On a alors par l'inégalité triangulaire :

2¢ €
r)—Jfla)| < +5=c¢€
F(a) — f@) < 254 S
Autrement, dit on a prouvé que si on fixe € > 0, il existe 6 > 0 tel que pour tout = € Ja— 4, a+ 9],
on a |[f(x) — f(a)| < e. Clest vrai pour tout €, donc la fonction f est continue en a (c’est la
définition). O

Est-ce qu’il y a une réciproque? C’est a dire si la suite de fonctions (f,,), continues en a
converge simplement vers la fonction f continue en a, a-t-on que la suite converge uniformément
vers f 7 Non, par exemple la suite de fonctions f, : [0,1] — R, +— nz"™(1 — x) sont continues et
converge simplement vers la fonction constante f = 0, continue elle aussi. Cependant si on pose

iUn:l—%,ona
=4 1))

et donc |fn(xn) — f(zn)| = fu(xn) - 1, donc la convergence n’est pas uniforme. Cependant,
n—-+oo

si aux deux hypotheses que les fonctions f, et la fonction limite simple f sont continues, on
rajoute I’hypothese que f,, < f,41 pour tout n assez grand, alors la convergence de la suite (f,)n
est uniforme : c’est le Théoreme de Dini.

Corollaire 1.20. Soit (f)n une suite de fonctions de f, : D — R. On suppose que :

1. chaque fonction fy, est continue sur D ;

2. la suite (fp)n converge uniformément sur D.

Alors la fonction limite uniforme f : D — R est continue sur D.

La condition d’uniforme convergence est une condition suffisante, pas nécessaire, car il est
tout a fait possible qu’on ait une suite de fonctions convergeant simplement vers une fonction
continue mais pas convergence uniforme (plein d’exemples vus jusqu’ici le montrent). Notons
aussi que comme la notion de continuité est locale, on n’a besoin que de la convergence uniforme
locale (sur tout segment de D). Le fait qu’une suite de fonctions ne converge pas uniformément
sur R, mais converge uniformément sur tout segment de R est une situation qu’on rencontre
par ailleurs fréquemment (voir par exemple les Exemples 1.15 et 1.16). On peut reformuler le
corollaire 1.20 en terme de convergence locale uniforme :



Corollaire 1.21. Soit (f,)n une suite de fonctions f, : D — R. On suppose que :

1. chaque fonction f, est continue sur D ;

2. pour tout x € D, il existe un segment I C D contenant x sur lequel la suite (fy)n converge
uniformément.

Alors la fonction limite uniforme f : D — R est continue.

Pour finir sur ce sujet, notons que la contraposée du corollaire 1.20 est 1’énoncé suivant (tres
important a retenir!) :

Corollaire 1.22. Soit (f,), une suite de fonctions de f, : D — R. On suppose que chaque
fonction f, est continue sur D. Si la fonction limite simple f : D — R n’est pas continue sur D,
la suite (fn)n ne converge pas uniformément sur D.

Remarque 1.23. On dit qu’une suite de fonctions (f,,), est uniformément bornée si
iM >0, VneNVzeD |fn(2)] < M

autrement dit || f,,||cc < M pour tout n. Dans ce cas la fonction limite (par convergence simple)

est bornée par M, car par 'inégalité triangulaire on a pour tout x € D :

[f(@)] < |ful) = f@)| + [fa(@)] < |[fo = flloo + M

et comme lim ||f, — f|loc = 0 par convergence uniforme (voir discussion autour de la formule
n—+o00

(1.4)), on a en passant a la limite que |f(x)| < M.

Comme pour l'interversion des deux limites lirf et lim permise par la convergence uni-
n— o0 T—a

forme, nous pouvons intervertir lirf et 'intégration sur un segment [a, b] (c’est important !).
n—-—r+oo

Attention sur un intervalle quelconque — c¢’est a dire pour les intégrales généralisées — la conver-
gence uniforme ne suffit pas et il faut d’autres hypotheses additionnelles. Dans tous les cas, la
condition de convergence uniforme est suffisante pour intervertir limite et intégrale, mais n’est
pas nécessaire.

Proposition 1.24. Soit a < b deux réels, et (fy)n une suite de fonctions continues f, : [a,b] —
R. On suppose que la suite converge uniformément vers une fonction (nécessairement continue)
f i [a,b] — R. Alors la suite numérique de terme général f; fn(x)dx converge et sa limite est
Uintégrale de f (autrement dit on peut permuter limite et intégrale) :

lim /b fn(x)dx = /b lim f,(x)dx
a a

n—-—+o00 n—+00
=f(=)
Démonstration. Pour tout n > 0, on a I\ [,
|
b b b A |
il
o[ tu= [ 1< [ 1= £1Z G- a0~ Sl . .,
a a a | = %
e
Et le membre de droite tend vers 0 quand n tend vers I'in- ///)
fini (définition de la convergence uniforme, voir la condi- - S -
tion (1.4)). O =59 <88
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Ezemple 1.25. Attention I'hypotheése que la convergence uniforme se fait sur un segment [a, b]
est importante ! Si ¢’est un intervalle ouvert, la limite ne commute pas forcément avec I'intégrale.
Par exemple, regardons la suite de fonctions f, : [0, +00[— R définies par :

%siogwgn
_ x 2
fal@) =4 -5+ 2sin<z<2n
Osixz>2n

Soit n > 1. Le graphe de la fonction f, est un tri-
angle. La hauteur du triangle est le maximum de

la fonction, atteint en z = n et valant f,,(n) = L.
La borne supérieure de la fonction f, vaut donc

| fnlloo = . Quand n augment, le triangle s’ap- = .
"

n
platit. La suite de fonctions (fy,), converge sim-

plement vers la fonction constante nulle. Comme
fn = flloo = lIfalloo = %, la condition (1.4) est 7
satisfaite et il y a convergence uniforme de la o — LV

suite de fonctions (fp)n. :
L’intégrale de la fonction limite f = 0 est nulle. L’intégrale de la fonction f,, est I'aire du triangle

de base % et de hauteur %, donc :

T : ) }—-
LA

|
;
|
{
i

T = = no_q

2 2

+oo base x hauteur  2n x
/0 Fol) da =

et ce pour tout n > 1. On observe donc que lirf JoF® fa(@)dz # [7°° f(z)dx (parce que
n—-roo

Pintégration n’est pas sur un segment et le théoréme ne s’applique pas).

La proposition 1.24 permet de retrouver des résultats bien connus sur I'intégrale de Riemann.
Rappelons comment l'intégrale est définie. Soit [a, b] un segment de R. On définit 'intégrale de
f :]a,b] — R par la méthode de Riemann. On dit qu'une fonction f : [a,b] — R est étagée — ou
en escalier — si :

1. il existe n € N* et n 4+ 1 points du segment [a, b], tels que :
a=20<21 <9< ... <Tp_1<Tp=">0

2. et f est constante sur tous les intervalles ouverts du type |z;_1, x;[.

Si f est étagée, alors pour tout 1 < i < n, il existe m; € R tel que f(z) = m; pour tout
x € |zi,, x;[. Toute fonction étagée f : [a,b] — R admet une intégrale, définie par :

b n
/ f(z)dz = Zmz(ﬂfz — 1)
@ i=1

Les fonctions étagées nous permettent de définir les in-
tégrales pour des fonctions plus générales Une fonction
f i [a,b] — R est intégrable (au sens de Riemann) si, pour
tout € > 0, il existe deux fonctions étagées u : [a,b] — R
et U : [a,b] — R telles que :

b
u< f<U and /(U—u)(aj)dazge

11



Nous pouvons maintenant définir la valeur de I'intégrale d’une fonction intégrable. Soit f :
[a, b] — R une fonction intégrable. Alors il existe, pour tout € > 0, au moins une fonction étagée
u < f et une fonction étagée U > f. Les intégrales des fonctions étagées sur [a,b] sont bien
définies donc on peut définir les deux sous-ensembles de R suivants :

b
A= {/ u(zx) dzx avec u : [a,b] — R fonction étagée telle que u < f}

b
B = {/ U(z)dx avec U : [a,b] — R fonction étagée telle que U > f}

Pour tout « € A, il existe une fonction étagée u : [a,b] — R telle que a = | ; u, et pour tout
B € B, il existe une fonction étagée U : [a,b] — R telle que = f; U. Comme par définition
u < f<U,onadoncu < U et donc en intégrant on a que a < 5. On en déduit que tous les
éléments de A sont inférieurs ou égaux aux éléments de B. En passant a la borne supérieure
et inférieure, on en déduit que sup(A4) < inf(B). Il se trouve que pour une fonction intégrable
f, on a l'égalité sup(A) = inf(B) (la preuve se fait avec les € de la définition d’une fonction
intégrable). Ce nombre unique s’appelle l'intégrale de f, et on le note :

/a " f(2) dx = sup(A) = inf(B)

L’intégrale de f : [a,b] — R correspond a ’aire sous la courbe du graphe de f entre les bornes
a et b. Il est a noter que les fonctions d’une variable continues (par morceaux) sur le segment
[a, b] sont intégrables au sens de Riemann.

Comme toute borne supérieure (resp. inférieure) d’un ensemble réel peut étre approchée par
une suite d’éléments de I’ensemble, nous déduisons que si f est intégrable, il existe une suite de
fonctions étagées (uy,)n (resp. (Up)n) telles que

1. up < f (resp. U, > f) pour tout n, et
2. lim f;un =sup(A) = f;f(a:) dx (resp. liI_’I_l f;U = inf(B) = f;f(q:) dx).
n—-+0oo

n—-+oo
Nous voyons donc que l'intégrale de Riemann de la fonction f peut étre obtenue comme la limite
d’une suite d’intégrales de fonctions étagées. Maintenant, étudions comment la proposition 1.24
nous permet de retrouver ce résultat sur l'intégrale de Riemann lorsque f est une fonction
continue par morceaux sur le segment [a, b]. Nous ne prouverons pas les deux résultats suivants,
nous les accepteront :

1. toute fonction continue par morceaux f sur [a,b] peut étre approchée uniformément par
une suite de fonctions étagées (fy,), sur [a,b]. Autrement dit, la suite de fonctions étagées
(fn)n converge uniformément vers f;

2. la proposition 1.24 est encore valide sous I’hypothese ou les fonctions f, sont continues
par morceaux, a condition qu’on suppose que la limite uniforme f soit aussi continue par
morceaux.

Avec ces deux énoncés dont on accepte la véracité, on déduit que 1. si f est une fonction
continue par morceaux sur [a, b| (donc intégrable), il existe une suite de fonctions continues par
morceaux (fy), qui converge uniformément vers f, et que 2. sous ces hypothéses, la proposition
1.24 (appliquée aux fonctions continues par morceaux) nous donne le résultat que l'intégrale
de Riemann de la fonction continue par morceaux f est obtenue comme la limite d’une suite
d’intégrales de fonctions en escaliers f;, :

] b b
7£%Lh=4f
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Remarque 1.26. La proposition 1.24 se généralise aux primitives. En effet, si pour tout n on
définit hy,(z) = [ fn(t)dt la primitive de la fonction f,, qui s’annule en a, alors sous les hypo-
theses de la proposition, la suite de fonctions (hy,), converge uniformément vers une fonction
h:[a,b] — R qui est la primitive de la fonction f s’annulant en a.

Proposition 1.27. Soit I un intervalle de R, et (f,)n une suite de fonctions C' sur I. On
suppose que :
1. la suite de fonctions (fn)n converge simplement sur I, vers une fonction f: I — R ;
2. la suite de fonctions (f))n converge uniformément sur (tout segment de) I, vers une fonc-
tion (nécessairement continue) g : I — R.
Alors :

1. la suite de fonctions (fn)n converge uniformément sur (tout segment de) I vers f, et
2. la fonction f est de classe C* sur I et f' = g, autrement dit on peut permuter limite et
dérivation :

n—too dr  dx

dfn, d
i — ( lirf fn) c’est a dire liIJIrl f;l = f/

Ezxemple 1.28. On peut utiliser la contraposée de la proposition pour montrer qu’une suite de
fonctions ne converge par uniformément. La suite de fonctions (f,,), de classe C! sur R définies

n
pas dérivable en zéro, mais dont la dérivée est bien définie sur R* par :

f($):{+1 siz>0

par fn(z) = (/22 + 1 converge simplement vers la fonction valeur absolue f : z + |z|, qui n’est

—1siz<O

x

de fonctions continues (g, ), converge simplement vers la fonction g : R — R définie par :

. La suite

Pour tout n > 1, la dérivée de la fonction f, est donnée par g, : R — R;x —

+1sixz>0
g(x)=40siz=0
—1siz <0

Cette fonction n’est pas continue, donc par le corollaire 1.22 la convergence de la suite (gp)n
n’est pas uniforme. Donc la proposition 1.27 n’est pas applicable ici. La convergence uniforme
est une condition suffisante dans cette proposition, donc si elle n’est pas satisfaite, on ne peut
rien en déduire sur la conclusion, mais dans le cas présent, f’ # g car g est définie sur R entier
tandis que f n’est définie que sur R*.

Nous finissons ce chapitre par quelques résultats intéressants que nous donnons a titre indi-
catif, pour la culture général. Les idées apparaissant dans ces théoréemes sont tres profondes, et
ont joué un role important dans le développement de I'analyse mathématique au XIXeme siecle.

Théoréme de Weierstrass. Toute fonction continue sur un segment est la limite uniforme
d’une suite de polynomes.

Théoréme de Féjer. Toute fonction continue 2w-périodique sur R est la limite uniforme d’une
suite de polyndomes trigonométriques.
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1.2 Espaces vectoriels normés

L’étude des suites de fonctions et leur convergence simple/uniforme est un cas particulier de
I’étude des suites de vecteurs dans les espaces vectoriels normés. La convergence simple et la
convergence uniforme sont des convergence de suites, par rapport a deux topologies différentes.
Une suite dans un ensemble E' donné est une application u : N — E| et on la note habituellement
(un)nen- A partir de maintenant on prendra E un espace vectoriel de dimension finie (sauf si
on précise autrement). Une suite d’éléments de E est donc une suite de vecteurs. Pour définir la
convergence d’une suite dans F, il faut une notion de distance qui existe naturellement dans R
(la valeur absolue) ou C (le module), et qu’on peut vouloir généraliser a tout espace vectoriel de
dimension n ou infinie éventuellement. Dans la suite on travaillera sur des R-espaces vectoriels (le
plus souvent de dimension finie), mais tout se généralise sans problémes aux C-espaces vectoriels.
On notera K pour le corps R ou C.

Un espace vectoriel E est un groupe abélien (E,+) muni d’une multiplication externe -

— ce qui le différencie d’'un anneau dont la multiplication est interne — avec les propriétés de
compatibilité entre - avec la loi de groupe + qui ressemblent & celles d'un anneau (c’est a dire
qui sont naturelles) :

— VAeK, Va,ye E, A-(z+y)=A-x+ Ay

— V\peK VeeE, A+p)-z=Xz+p-z

— V\NpeK, VeeE, A (p-z)=(A\p) -z

— Vax€eFE Ig-x==x
Ezxemple 1.29. Nous avons les exemples d’espaces vectoriels suivants :

— de dimension finie : R, C ~ R?, R", M,,(R) I'espace vectoriel des matrices

— de dimension infinie dénombrable : 'anneau R[X] 'espace vectoriel des polynémes sur R,
I’ensemble des suites réelles (uy,), qui ont un nombre fini d’éléments non nuls

— le corps des fonction rationnelles R(X) c’est a dire les fractions sur les polynémes (on inclut
les inverses tous les éléments de 'anneau R[X], comme Q est le corps des fractions sur
l’anneau Z), ’ensemble de toutes les suites réelles qu’on note RN, Pensemble des fonctions
continues sur R ou sur n’importe quel segment [a, b]

La dimension d’un espace vectoriel est définie a partir du cardinal de ses bases. Une base
d’un espace vectoriel E est une famille de vecteurs B = {e }aca de E — « est un indice qui prend

valeur dans un ensemble A qui est soit fini {1,2,...,n—1,n}, soit infinie dénombrable isomorphe
a N soit infinie indénombrable isomorphe a R — qui est libre et génératrice. Une famille libre
veut dire que pour toute sous-ensemble fini de cette famille — disons {en,, €ays---s€a,} C B —

on a la condition suivante :

n
VAL A2 .. " eK Z)\iei:OE — M =0pourtout 1 <i<n
i=1

Une famille génératrice veut dire que pour tout vecteur x € E de ’espace vectoriel, on peut
choisir une famille finie de vecteurs {eqn,, €ay; - - - » €a,, } C B pour un entier m € N, et de scalaires
AL AZ LA™ tels que @ = I Me;. Par la premiere propriété, cette décomposition est unique.
Si ’ensemble B ayant ces propriétés est fini on dit que la dimension de I’espace vectoriel est
finie, sinon, elle est infinie (dénombrable ou indénombrable, selon le cardinal de A). On parle
souvent de base de Hamel ou base algébrique dans le cas infini.

Convention 1.30. ATTENTION la notation A’ ne veut PAS dire que A € K est a la puissance i. \*
est un nombre scalaire (réel ou complexe). C’est la notation d’Einstein. L’index en bas dénote les
vecteurs de l’espace vectoriel, I'index en haut (puissance) dénote un nombre scalaire. Einstein
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a utilisé cette notation pour pouvoir supprimer les symboles somme o de ses équations. Le
convention d’Einstein c’est que s’il y a un indice en haut identique a un indice en bas, alors il y
a une somme sur ces indices. Par exemple 37" | Me; s’écrit chez Einstein Ae;. Par anticipation
des applications des cours, on adopte des maintenant la notation d’Einstein : les vecteurs de
base de E on un indice en bas, les scalaires (coefficients) on un indice en haut.

Proposition 1.31. Les bases d’un espace vectoriel & ne sont pas uniques mais toutes les bases
de E ont le méme cardinal (fini, infini dénombrable ou infini indénombrable).

Définition 1.32. La dimension d’un espace vectoriel E est le cardinal de n’importe laquelle de
ses bases.

Exemple 1.33. Nous avons les exemples d’espaces vectoriels suivants :

— base de R = le vecteur 1 (dim = 1), une base de C ~ R? est {1,i} (dim = 2), une base de
R" =R xR x...x R est faite des vecteurs (1,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1),
une base de M, (R) est 'ensemble des matrices F; j avec des 0 partout excepté a la ligne
7 et a la colonne j ou on a1

— une basede R[X] est {1, X, X2, X3 ..., X" ...} cest & dire une famille infinie dénombrable
de vecteurs de base, une base de ’ensemble des suites réelles (uy), qui ont un nombre fini
d’éléments non nuls est ’ensemble formé des suites ey = (1,0,...), eg = (0,1,0,...), ...,
en=1(0,...,0,1,0,...) (le 1 est au rang n + 1)

— pour tous les espaces de dimension infinie non dénombrable, en général la base est formée
de tous les éléments générant les droites vectorielles

Exemple 1.34. Expliquons en quoi I’ensemble RN des suites réelles est de dimension infinie
indénombrable. On a une famille naturellement candidate pour une base de RN : les suites
eo = (1,0,...),e1 =(0,1,0,...), ...., e, = (0,...,0,1,0,...) (le 1l est aurang n+1) (il y en a un
nombre infini dénombrable). Dans ce cas toute suite réelle (u, ), peut s’écrire comme la somme in-
finie }°, cn unen mais cette somme n’est pas finie, donc la famille de suites {eg, e1,€2,...,€n,...}
ne satisfait pas les critéres d’une base de Hamel. L’espace RN est donc de dimension finie indé-
nombrable.

A partir de maintenant on prend K = R ou C, et on considére un espace vectoriel E de
dimension finie n € N* (on dira si c’est de dimension infinie), c’est & dire que £ ~ R". Il y a
donc une base {e1,e2,...,e,} de E. Tout élément x € E se décompose donc de fagon unique
sur cette base : il existe #',22,...,2™ € R (les exposants ne sont pas des puissances mais des
indices, pour autoriser la convention de sommation d’Einstein) tels que z = Y1, 2%¢; — en
notation d’Einstein on écrit zie;. Pour tout = = Yo z'e; € E, on définit la norme 2 — ou
norme Euclidienne — de x comme étant le nombre réel positif suivant :

zllz = /(@2 + (@2)2 + ... + (27)?

Les propriétés de |||, sont les mémes que celles de la valeur absolue et du module sur R et
C respectivement. En effet le module des complexes satisfait les propriétés suivantes :

1. Vz € C,|z| > 0 (positivité)

2.VzeC, |z| =0 <= 2z =0 (caractere défini),

3. VA eR, VzeC, |\z] =) x |z] (homogénéité);

4. Vz,2 €C, |2+ 2| <|z| + |#| (inégalité triangulaire).
On observe que la norme 2 a les mémes propriétés sur 'espace vectoriel . Ce qui nous permet
de définir la notion de norme;
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Définition 1.35. Soit E un espace vectoriel (dimension finie ou infinie). On appelle norme sur
lespace vectoriel E toute application N : E — R (positivité) telle que :

1.Vx € E, N(z) =0 <= z =0 (caractére défini),

2.VAeK,Vx e E, N(Ax) = |\|N(x) (homogénéité) ;

3. Vx,ye E, N(x+vy) < N(x)+ N(y) (inégalité triangulaire).
On appelle espace vectoriel normé (en abrégé evn) tout K-espace vectoriel E muni d’une norme.
Ezemple 1.36. La valeur absolue sur R, le module sur C, et la norme 2 sur tout espace vectoriel
de dimension finie I, sont des normes.

Ezemple 1.37. Soit D une partie de R et soit B(D) ’ensemble des fonctions bornées sur D. C’est
un espace vectoriel que nous pouvons équiper de la norme infinie qu’on définit comme suit :

£ loo = supyeplf ()]

En effet, si une fonction f n’est pas bornée, la borne supérieure n’est pas définie (n’existe pas)
donc la norme infinie de f (non bornée) n’existe pas. La norme infinie [|.|| ., est une norme
sur B(D) au sens ci dessus.

Ezemple 1.38. Soit C°([a,b]) I'ensemble des fonctions continues sur [a,b] (donc en particulier
bornées). En plus de la norme infinie, la famille d’applications suivantes sont des normes, pour
tout p € N* :

b
Wl = {/ [ 17@)par

qu’on appelle norme p sur I'espace des fonctions. L’inégalité triangulaire correspond a ce qu’on
appelle I'inégalité de Minkowski.

Remarque 1.39. Notons que la norme 1 n’est pas une norme sur U'espace B([0,1]) des fonctions
bornées sur [0, 1]. Cela vient du fait que la fonction f : [0,1] — R définie par :

0si0<zx<1
f(x) = .
lsiz=1

satisfait || f||1 = 0 mais n’est pas la fonction nulle. L’application norme 1 ||.||; : B([0,1]) — R4
satisfait le caractére défini sur le sous-ensebme CY([a, b]) mais pas sur B([0, 1]) entier. Ce dernier
est donc un espace vectoriel normé pour la norme infinie, mais pas pour la norme 1.

Ezemple 1.40. On peut équiper 'espace des polynémes a coefficients réels R[X| d’une "norme

infinie", c’est a dire que pour tout P € R[X] s’écrivant P = > 1" a; X", on a ||P|lec =
max(ag, a,...,a,). Il existe aussi une norme 1 définie comme la somme des valeurs absolues
des coefficients, c’est a dire ||P||1 = Y1y |ail.

Comme pour les fonctions, il existe d’autres normes sur F ~ R", pour tout p > 1 :

2]l = /IatfP + [22P + ...+ |an]p

On les appelle normes p ou normes de Holder. Ce qui donne en particulier ||z||; = 31 |27,

qu’on appelle distance de Manhattan. On a en outre la norme infinie — ou distance de Tchebychev
— sur F définie par :
— 1 2 n
||#]loo = max{[z"|, [27],. .., |2"|}
Nous montrerons en exercice que si € R™, alors la suite (||z| |P>p est une suite positive décrois-
sante — donc minorée donc convergente — et que lim ||z||, = ||z||o. La notation est donc bien
p—00

trouvée! Il existe d’autres normes sur R" mais elles sont moins utilisées.
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La distance de x & 'origine dépend de la norme choisie! Par exemple on peut voir que :
l2]loo = max{|z], |2, [a"} < [at| + [2%] + ...+ |2"] = ||2[]s

En particulier la notion de sphére unité n’a de sens que par rapport a une norme donnée. La
spheére unité dans R™ par rapport a la norme p € N* U {oo} est définie par :

S||-||p(0’ 1) = {z € R" tel que ||z||, = 1}
Voici plusieurs exemples de sphéres unité dans R?, selon les trois normes les plus utilisées :
Sy (0,1) = {(w,y, z) € R3 tel que max(|z|, |y, |2|) = 1} cube centré en zéro
S),0,1) = {(m,y, z) € R? tel que 2% 4+ 9° + 2% = 1} sphere de rayon 1 inscrite dans le cube
Sy, (0,1) = {(x,y, z) € R? tel que |z| + |y| + |2| = 1} octaedre régulier inscrit dans la spheére

Selon la norme que 'on prend, on aura donc des sphéres (donc des boules) unité différentes.
Cela pose probleme pour ce qu’on veut faire — définir la convergence pour les suites — car elle
implique la notion de voisinage, qui elle méme repose sur la notion de boule et donc de sphere.
On définit les boules ouvertes et fermées de rayon R dans R™ a partir de l'intérieur des sphéres
de rayon R.

Définition 1.41. Soit E un espace vectoriel normé (de dimension finie ou infinie), et de norme
N :FE — Ry. Soit x € E et soit R > 0 un nombre réel positif. On définit la boule ouverte de
centre x et de rayon R (par rapport a la norme N ) comme étant l’ensemble :

By (z,R) = {y € R3 tel que N(y — ) < R}
et la boule fermée de centre x et de rayon R (par rapport a la norme N ) comme étant l’ensemble :
By(z,R) = {y € R3 tel que N(y —z) < R}

Remarque 1.42. On voit donc que la boule fermée de centre x et de rayon R contient la sphere
de centre x et de rayon R, et plus précisément :

By(z,R) = By(z,R) U Sn(z, R)

4\ 1

1/2 1

F1G. 1 - Les boules By, (0,3) C B1(0,1) C B3(0,1) C Boo(0,1) dans R?
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Pour E = R3 et pour p = 1,2 et p = 00, en nous appuyant sur les expressions des spheéres
unités ci dessus, nous avons les inclusions suivantes :

By, (0,3) € By, (0.1) € By, (0,1) € Byy_(0,1)

La chaine d’inclusion est aussi valide pour les boules fermées. Nous voyons que les boules de
rayon 1 associées aux normes 1 et 2 sont prises en sandwich entre deux boules associées a la
norme infinie : celle de rayon % (ou tout nombre strictement positif inférieur) et celle de rayon
1 (ou tout nombre strictement positif supérieur). Plus généralement dans F ~ R" on a que la

boule (fermée ou ouverte) de centre 0 et de rayon R pour la norme p est incluse dans :

— la boule (fermée ou ouverte) de rayon R pour la norme ¢, pour n’importe quel p < ¢ et
méme ¢ = 00,
— la boule (fermée ou ouverte) de rayon nR pour la norme m, pour n’importe quel m < p.

C’est a dire, en termes mathématiques, pour tout couple d’entiers r < s :
By, (0, R) € By (0, R) € By (0,nR) (1.5)

Autrement dit toute boule pour une norme p € N* U {oo} donnée est incluse dans une boule
pour n’importe quelle autre norme ¢ € N* U {oco}, pour un rayon éventuellement différent. Ce
résultat trés profond est caractéristique de la dimension finie, comme nous allons le voir bientot.

Définition 1.43. Soit E un espace vectoriel normé (de dimension finie ou infinie) de norme
N :FE — Ry. Soitx € E; on appelle voisinage de x par rapport a la norme N tout sous-ensemble
V C E qui contient une boule ouverte centrée en x, c’est a dire tel qu’il existe € > 0 tel que
Byn(z,e) C V.

Proposition 1.44. Si E un espace vectoriel de dimension finie (donc E ~ R™); soit p,q €
N* U {oo} et soit © € E, alors un sous-ensemble V. C E est un voisinage de x par rapport a la
norme p si et seulement st ¢’est un voisinage de x par rapport a la norme q. Autrement dit, en
dimension finie, la notion de voisinage est indépendante de la norme p € N* U {oco} choisie.

Démonstration. Soit x € E ~ R™. Nous utilisons la succession d’inclusions (1.5) des boules
ouvertes, que 'on récrit pour tout s < r € N*U{oo} avec pour centre x € R" et de rayon € > 0 :

By, (x,€) C By (x,€) C By (z,n¢)

Soit V' C E un voisinage de x par rapport a la norme p. Il existe donc € > 0 tel que Bll-Hp(O’ €) C
V. Sip < q, d’apres la série d’inclusions ci-dessus pour » = p et s = g, il existe une boule ouverte
BH.”q(x, €) incluse dans B||-||p(0’ €) donc dans V', donc V' est un voisinage de x par rapport a la
norme ¢q. Si ¢ < p, alors pour r = ¢ et s = p on a que

By, (z,5) C By (z,€) CV

On a donc que V est un voisinage de x par rapport a la norme ¢ (dans tous les cas).

Inversement, la preuve pour montrer qu’un voisinage de x par rapport a la norme ¢ est un
voisinage de x par rapport a la norme p se fait de fagon similaire. ]

La proposition 1.44 est un cas particulier, démontrée avec les outils qu’on connait, d’un
résultat plus général et plus profond propre a la dimension finie : que la notion de voisinage ne
dépend pas de la norme choisie sur I'espace. Pour expliquer ce résultat plus général — énoncé
dans le Corollaire 1.53 — nous devons introduire la notion de topologie.
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Définition 1.45. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
N : E — Ry. Un sous-ensemble U C E est dit ouvert (par rapport a la norme N ) si c’est un
voisinage de chacun de ses points. Autrement dit, si :

Vo e U, Je> 0 tel que By(xz,e) CU
Un sous-ensemble F' C E est fermé si son complémentaire F¢ = E\F' est ouvert.

Ezxemple 1.46. Dans R, les segments sont des fermés, les intervalles ouverts sont des ouverts.
Dans n’importe quel espace vectoriel normé, les boules ouvertes sont ouvertes et les boules
fermées sont fermées. Il existe des sous-ensembles qui ne sont ni ouverts ni fermés, par exemple
dans (R, |.|), le sous-ensemble {0}U]1, 2] est ni ouvert ni fermé.

Définition 1.47. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
N : E — Ry. L’ensemble de tous les sous-ensembles ouverts de E (par rapport d la norme
N ) est appelé la topologie métrique de E par rapport a N, et noté T(E,N). On prend comme
convention que l’ensemble vide () est ouvert.

Remarque 1.48. Comme ’ensemble vide () est ouvert, son complémentaire — qui est l’espace
vectoriel E/ complet — est un ensemble fermé. Or E est ouvert car tout point de E est le centre
d’une boule de rayon 1 incluse dans E. Donc E est un ouvert fermé. L’ensemble vide est aussi
fermé car c’est le complémentaire de E, un ouvert. L’espace total E et I’ensemble vide () sont les
deux seuls ensembles ouverts et fermés a la fois dans la topologie métrique d’un espace vectoriel
normé. La topologie de F vis a vis de la norme N est un sous-ensemble de I’ensemble des partie
de E, qu'on note P(E).

Tous ces résultats en dimension finie sur 'inclusion des boules ouvertes/fermées viennent
d’une observation assez profonde qui veut que les différentes normes sur R™ (espace vectoriel de
dimension finie donc) sont équivalentes entre elles, dans le sens suivant :

Définition 1.49. Soit E un espace vectoriel (de dimension finie ou infinie). On dit que deux
normes N : E — R, et N': E — Ry sont équivalentes si il existe 0 < a < f3 tels que pour tout

reFEFona:
aN(z) < N'(z) < BN(x)

Cela définit une relation d’équivalence sur l’espace des normes sur E.

Remarque 1.50. Objectivement, si on a aN(z) < N’'(z) < BN(zx) alors on a %N’(:p) < N(x) <

L N'(z) donc c’est bien une relation d’équivalence.

Proposition 1.51. Equivalence de toutes les normes en dimension finie. Toutes les
normes sur un espace vectoriel de dimension finie sont équivalentes. D’autre part, en ce qui
concerne les normes p dans R"™, pour p € N* U {oc}, on a les inégalités suivantes pour tout
xeR™ :

|zlloo <o < allpra < lzllp < - < Hlzll2 < 2]l < nllzfe

Démonstration. La preuve dans le cas général (pour n’importe quelle norme en dimension finie)
est compliquée donc nous ne la faisons pas. Par contre nous allons montrer 1’équivalence des
normes p € N* U {oo} dans R". La preuve se fait par récurrence : soit x € R"; alors on voit
d’apres la définition que :

l|zlloo < l[l1 < nll2[|o

donc la norme 1 et la norme oo sont équivalentes. Pour la norme 2 — la norme Euclidienne usuelle
— nous avons le résultat direct ||z||c < ||z||2 tandis que de 'autre coté :

n

(l2]]l2)* = Y (a")? < iw £ (@l = (llalln)?

i=1 Gik=1
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Donc ||z|l2 < ||z]}1 < n||z||ec. Ceci montre que les normes 1,2 et oo sont toutes les trois
équivalentes. En réalité on peut montrer que ||z|l2 < /n||z||co, et plus généralement, nous
déduisons de I'inégalité de Holder que :

1
l|zlfoo < J2fl1 < nPz]|o
Ceci prouve I’équivalence des normes p € N* U {oco} dans R™. O

Remarque 1.52. L’inégalité de Holder nous dit que pour tout wi,us, ..., Uy, v1,v2,...,0, € C,
et pour tout p € R}, on a :

3 vt < (3 ut) (3 o
k=1 k=1 k=1
Nous verrons que cette inégalité est encore valide quand n tend vers +oo.

Corollaire 1.53. Soit E un espace vectoriel normé de dimension finie. La topologie métrique
de E ne dépend pas de la norme choisie, c’est a dire que pour n’importe quel choixz de normes
N E—-Ry etNy: E—Ry surE, ona:

T(E,N1)=T (E,Ny)

Remarque 1.54. C’est en particulier vrai pour les normes p € N*U{oo}, donc les boules ouvertes
par rapport & une norme p restent ouvertes par rapport a une norme ¢ # p. C’est le sens des
inclusions 1.5.

Démonstration. Nous savons par la proposition 1.51 qu’en dimension finie que toutes les normes
sont équivalentes. La notion de voisinage ne dépend ainsi pas de la norme choisie (on peut
toujours inclure un voisinage d’une norme dans le voisinage de n’importe quelle autre norme).
On en conclut que la notion d’ouvert ne dépend pas de la norme choisie non plus. Et donc la
topologie métrique ne dépend pas de la norme choisie. ]

En dimension finie donc, comme les normes sont toutes équivalentes, la topologie métrique
ne dépend pas de la norme choisie : un ouvert par rapport a une norme reste ouvert par rap-
port a n’importe quelle norme. En dimension infinie dénombrable — voir Exemple 1.40 — et
indénombrable — voir Exemple 1.38 — les normes ne sont pas forcément équivalentes. Et donc
la topologie de I'espace ambiant dépend de la norme choisie. Cela pose probleme car c’est la
topologie (les voisinages) qui gouvernent la convergence des suites : deux topologies différentes
selon deux normes différentes peuvent donner des suites convergentes différentes. Regardons cela
plus en détail. Nous souhaitons reproduire la notion de convergence pour les suites (et plus tard
les fonctions) dans les espaces vectoriels normés, en utilisant les normes en dimension finie ou
infinie. Comme pour les suites réelles ou complexes, une suite a valeurs dans un espace vectoriel
normé E est une application u : N — E, qu’on note habituellement (uy,),. Pour tout n € N, u,
est donc un élément de E. Pour la méme raison, une limite est un vecteur de FE.

Définition 1.55. Soit E un espace vectoriel normé (de dimension finie ou infinie) de norme
Il - E — R4. On dit qu’une suite (uy), de E converge vers une limite { € E si la suite d
termes positifs (|lun — £|]) ~converge vers 0, c’est d dire si :

Ve>0, AN €N tel que Vn> N, ||lu, — || <€

Remarque 1.56. Autrement dit, la suite de vecteurs (uy), converge vers { € Esiu: N — E
envoie tout voisinage de 400 (dans N) dans un voisinage de ¢ dans E.
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Ezemple 1.57. Prenons E = B([0, 1]) I'ensemble des fonctions bornées sur le segment intervalle
[0,1] C R, et la norme sur E est la norme infinie ||.| . Un vecteur de E est une fonction
bornée sur [0, 1]. Alors la notion de convergence pour les suites donnée ci-dessus correspond a
la convergence uniforme des suites de fonctions.

Ezemple 1.58. Prenons E = M;(R) l'espace des matrices réelles carrées 2 x 2. La choix de la
norme n’a pas d’importance car elles sont toutes équivalentes en dimension finie, mais prenons
la norme 1 car c’est la plus simple. C’est a dire que :

a1 a
VA= < . 12) € Mz(R) [|[All1 = |a11| + [a12] + |a21| + |azz|
a a

Soit (up)n la suite de matrices de terme général :

VneN, wu,= (1+7> ’ n
0 (1-1)

(&

La suite de matrices converge vers la matrice £ = (O

o= O

> car pour tout n € N* :

1
e = €11 = (”0") ooy 0)
(1) -
R 0 (1_%)11_% 1
— (1+1>n—e +0+0+’(1—1>n—1
mn n e

Les deux termes convergent vers 0 quand n tend vers l'infini, donc ||u,, — £||; tend vers 0 aussi
ce qui prouve la convergence de la suite (uy,), vers la matrice limite /.

Avec cette définition, la convergence des suites de vecteurs dans les espaces vectoriels normés
de dimension finie ne dépend pas de la norme choisie (voir Proposition 1.51), car toutes les normes
sont équivalentes, comme le montre la proposition suivante :

Proposition 1.59. Soit E un espace vectoriel (de dimension finie ou infinie) et soit deux
normes |.|| et ||.|| sur E. Les deux normes ||.|| et ||.|" sont équivalentes si et seulement si toute
suite convergente pour ||.|| est convergente pour ||.| et inversement.

Démonstration. Nous allons montrer le sens : "normes équivalentes' = "les suites convergentes
par rapport a une norme sont convergentes par rapport a l'autre, et inversement'. L’idée de la
preuve vient de Eylil.

Soit ||.]| et ||.|| deux normes équivalentes sur I'espace vectoriel E. Alors il existe 0 < a < f3
tels que pour tout x € E, o||z|| < ||z||" < B||z||. Soit (uy), une suite de E qui converge par
rapport a la norme ||.|| vers une limite ¢ € E. D’apres 1’équivalence des normes, on a donc pour
tout n € N, les inégalités suivantes :

allun = €| < fjun = L] < Bllun — ||

Les termes de gauche et de droite tendent vers 0 quand n tend vers I'infini. Par le théoréme des
gendarmes (encadrements), on déduit que la suite réelle positive (|lu, —£||'), tend vers 0 quand
n tend vers I'infini, donc la suite (u,), converge vers £ par rapport & la norme ||.||".
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Montrons aussi que toute suite convergeant par rapport a la seconde norme, converge aussi
par rapport a la premiére norme. Comme on a, pour tout = € E, que o|lz|| < ||z||" < B]|=|],
cela est équivalent a écrire %Hx“’ < |lz|| < L||z|/". Soit (vs)n une suite de E qui converge par
rapport a la norme HH/ vers une limite ¢/ € E. D’apres 1’équivalence des normes, on a donc pour
tout n € N, les inégalités suivantes :

1
B

Les termes de gauche et de droite tendent vers 0 quand n tend vers l'infini. Par le théoreme des
gendarmes (encadrements), on déduit que la suite réelle positive (||v, —£'|]) tend vers 0 quand
n tend vers Uinfini, donc la suite (vy,),, converge vers ¢’ par rapport a la norme ||.||. O

1
[lon = €11 < Jlvn = £1" < ~|lon — €]/

Du fait de I’équivalence des normes en dimension finie, une suite de vecteurs est convergente
quelle que soit la norme choisie. Attention, ceci n’est pas le cas en dimension infinie o toutes
les normes ne sont pas équivalentes et donc certaines suites sont convergentes par rapport a
certaines normes mais pas par rapport a d’autres.

Ezemple 1.60. Soit E = C°([0,1]) I'espace des fonction continues sur [0,1] (donc bornées car
toute fonction continue sur un segment est bornée). Il existe plusieurs normes sur cet espace,
comme la norme infinie et les normes p définies dans 'exemple 1.38. Selon la norme choisie,
les suites convergentes ne sont pas les mémes, car la convergence des suites en norme 1 sur les
fonctions continues ne donne pas les mémes suites convergentes qu’en norme infinie. En effet, la
suite de fonctions (fy,), de terme général f, : [0,1] — R,z — 2™ converge en norme 1 vers la
fonction constante nulle f = 0 sur [0, 1], car

1 1 1
1 fn = fll1 = ||fn|h=/0 Ix”\d:n:/O 2y — 0

n—+1 n—+oo

Cependant cette suite de fonctions ne converge pas en norme infinie vers la fonction nulle car la
suite (fy)n n'est pas uniformément convergente sur [0, 1] (et la limite simple de la suite (f,,)n est
discontinue donc en dehors de C°([0, 1])). Le choix de la norme sur E — lorsqu’il est de dimension
infinie — a donc des conséquences majeures sur quelles suites sont convergentes ou non.

Voici une autre caractérisation utile de la convergence d’une suite dans une espace vec-
toriel normé de dimension finie. Soit £ ~ R™ un espace vectoriel de dimension finie, et soit
{e1,...,em} une base de E. Soit (u,), une suite de vecteurs de E. Pour tout n € N, on peut
décomposer chaque vecteur u, € E sur la base, de fagon a ce qu’on ait m suites de scalaires

A 1 m ]
réels (Ag), .-+ (An),, telles que u, = 37" Al e;, pour tout n € N.

Proposition 1.61. Soit E un espace vectoriel de dimension finie, c’est a dire E ~ R™. Soit
(un)n une suite de vecteurs de E et soit £ € E. La suite (up)n, converge vers { € E si et
seulement si chacune des suites numériques (\.), (pour tout 1 <i < m) converge (au sens des
suites réelles classiques) vers £*, la i-éme composante du vecteur £. C’est a dire que :

Uy —— £ st et seulement si /\il — pour tout 1 < i < m.
n—-+o0o n—-+4o0o

Démonstration. Soit (v,), la suite de vecteurs de E de terme général v,, = u, — £. On a que
(up,)n converge vers ¢ ssi (vy,), converge vers 0 (par rapport a n’importe quelle norme). La i-éme
composante de v, = 3 ;_1m vie; est v = A}, — /!, En dimension finie, comme toutes les normes
sont équivalentes, on peut prendre la norme 1, c’est & dire que ||v,||1 = 27 |\, — £f]. Dans ce
cas, le fait que (v,), converge vers 0 veut dire que chaque terme |\, — ¢?| tend vers 0 quand n
tend vers 'infini. Cela montre que la suite réelle ()\il)n tend vers £. Dans le sens inverse, si la
i-eme composante de u, tend vers ¢' cela signifie que la suite (uy), tend vers £ quand n tend
vers I'infini. O
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Remarque 1.62. Attention, ici comme avant, 'exposant i de ¢ n’est pas une puissance mais la
i-eme composante du vecteur £ € E.

Ezemple 1.63. Prenons E = M3 (R) 'espace vectoriel des matrices 2x2. Comme on est dimension
finie, toutes les normes sont équivalentes, donc on peut en choisir une qui nous arrange, par
exemple la norme 1, c’est & dire celle définie par :

a a
VA= ( M 12>, [[Al[1 = la11] + |aia] + |a21| + |azs]

az1 a2
Soit a,b € R; prenons comme suite de matrices la suite suivante :
k
"1 (a 0
Vn eN, un:kz_% zilo

avec la convention que (& 2)0 = (39) la matrice identité de 2 x 2, qu’on note habituellement I5.
Donc en particulier :

2
a 0 a 0 1f{a 0O
uO—IQ,ul—IQ—i-(O b>7u2_12+<0 b>+2<0 b> , etc.

Il faut voir qu’on a, pour tout n € N :

n ak
" — (Zko T 0 )
n — n bk
0 dk=0 Fr

Les vecteurs de base de E = M(R) sont E11 = (), E12 = (34), Bar = (19), Ea2 = (59).
Nous avons donc :

n k

n_opk
VneN, wu,= <Z CI;> FEi1+0FE19 +0FE9 + (Z k") FEy9

k=0 k=0

Or nous savons (ou pas) que Y p_g %I,C tend vers e* quand n tend vers I'infini. On obtient donc

que la suite de terme général ‘ZZ:O 71 — €°| tend vers 0 quand n tend vers I'infini. Posons

= (e; eob) On a donc d’apres la Proposition 1.61 :

nk
> e
k=0 ’

Les deux termes du membre de droite tendent vers 0 quand n tend vers I'infini. Donc le membre
de gauche tend vers 0 aussi, ¢’est a dire que la suite (uy,), tend vers £. Autrement dit nous avons

montré que
6(88) = (ea 0)

0 eb

Les suites convergentes nous permettent de donner une deuxieme caractérisation des en-
sembles fermés, dont le slogan est "un fermé est une partie stable par passage a la limite" :

Proposition 1.64. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
|.Il - B — Ry4. Soit A un sous-ensemble de E. Alors A est fermé si et seulement si pour toute
suite convergente u : N — A de points de A, la limite liT Uy appartient a A.

n—-r+oo
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Démonstration. Supposons que A est fermé. Alors son complémentaire A€ est ouvert dans F.
Soit (uy), une suite de points de A convergeant vers une limite ¢ € E. Montrons que ¢ € A.
Par 'absurde, si jamais ¢ ¢ A, cela veut dire que la limite appartient au complémentaire A€, qui
est ouvert rappelons le. Mais alors la caractérisation des ensembles ouverts nous dit qu’il existe
e > 0 tel que By |(¢,€) C A°. Comme la suite est convergente, il existe N € N tel que [|u, —£|| < €
pour tout n > N. Autrement dit, nous avons que u,, € B||_||(£, €) pour tout n > N. Mais alors
tous ces vecteurs sont dans le complémentaire A°, ce qui n’est pas possible par hypothese sur la
suite (up)n. C’est absurde.

Réciproquement, supposons que la limite de toute suite convergente d’éléments de A ap-
partient & A. Montrons que A est fermé, c’est a dire que le complémentaire A€ est ouvert. Par
I’absurde encore. Supposons que A€ n’est pas ouvert. Alors il existe £ € A° tel que pour tout
e > 0, la boule ouverte B(¢,¢) n’est pas completement incluse dans ’ensemble A°. Autrement
dit, pour tout € > 0, nous avons que B({,e) N A # (). En particulier, pour n > 1, il existe un
élément u, € B (E, %) N A. De ce fait, la suite (uy), ainsi créée converge vers £. Mais alors, par
hypothese, ¢ appartient a A. Ceci est une contradiction ! O

Exemple 1.65. Nous posons A = {%, n e N*}. Alors A n’est pas fermé car le point d’accumula-
tion 0 n’est pas dans A, mais 'ensemble B = {0} U A est fermé car le complémentaire (union
infinie d’intervalles ouverts) est ouvert.

Ezemple 1.66. Soit M,,(R) l'espace vectoriel des matrices réelles carrées n x n. On dit qu'une
matrice M € M, (R) est nilpotente si M™ = 0. Maintenant concentrons nous sur la dimension
n = 2. Soit donc M2 (RR) 'espace vectoriel des matrices réelles carrées 2 x 2, muni de la norme
|.Il; (voir Exemple 1.63). Soit Na le sous-ensemble des matrices nilpotentes 2 x 2. Attention,
ce n'est pas un sous-espace vectoriel! Soit (M,), une suite de matrices 2 x 2 nilpotentes qui
converge vers une matrice M en norme 1. Alors on a que pour tout p > 0, (Mp)2 = 0. Cette
identité (égalité) passe a la limite donc M? = 0 aussi. Donc les limites des suites de matrices
nilpotentes sont dans No donc Ny est un fermé.

Définition 1.67. Soit E un espace vectoriel normé (de dimension finie ou infinie), et soit A un
sous-ensemble quelconque de E. On définit les notions suivantes (relatives a la norme sur E) :

— Dintérieur de A — noté A — est le plus grand ouvert contenu dans A ;
— ladhérence de A — notée A — est le plus petit fermé contenant A ;

— la frontiere de A est I’ensemble des points d’adhérence qui ne sont pas intérieurs :

A =A\A

Autrement dit nous avons que A c AcA. Nous disons que A est dense dans E si A = E.

Ezemple 1.68. Sur R, Iintérieur de Pensemble [0, 1[U{2} est D'intervalle ouvert A =0, 1[. L’in-
térieur de ’ensemble A = {%, n e N*} est vide car cet ensemble est discret (discontinu), son

adhérence est A = {0} U A. On a bien que A c A c A Dans n’importe que espace vectoriel
normé, l'intérieur de la boule fermée de centre x et de rayon R est la boule ouverte de centre z
et de rayon R. L’adhérence de la boule ouverte de centre x et de rayon R est la boule fermée de
centre x et de rayon R.

Proposition 1.69. Soit E un espace vectoriel normé (de dimension finie ou infinie), et soit A
un sous-ensemble quelconque de E. Alors

— (A) = A" et (o) =14,
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— A est ouvert si et seulement si A= A ;
— A est fermé si et seulement si A= A;
— la frontiére OA est fermée;

— A est dense dans E si et seulement si tout point de E est atteignable comme limite d’une
suite de points de A.

Démonstration. Les trois premiers points découlent de la définition. La frontiere est I'intersection
de deux ensembles fermés A et A°, donc c’est un fermé. Nous ne démontrerons pas le dernier
point. Cela revient a montrer qu'un point x appartient a I’adhérence de A si et seulement si il
existe une suite de points de A qui converge vers x. ]

Remarque 1.70. La notion d’ouvert, de fermé, et donc d’intérieur et d’adhérence dépend de
la norme choisie en dimension infinie. Mais en dimension finie comme toutes les normes sont
équivalentes, ces notions sont stables méme si on change de norme. La densité d’un ensemble en
dimension finie est donc indépendante de la norme choisie.

Ezemple 1.71. Nous savons les rationnels sont denses dans les réels, dans le sens ou tout intervalle
ouvert de R contient un (en fait une infinité) de rationnels. Cette définition coincide avec celle
de la densité que nous venons de voir, c’est a dire que Q = R. En effet, tout nombre réel peut
étre atteint comme limite d’une suite de rationnels, donc R est le plus petit fermé contenant Q.

Ezemple 1.72. 11 se trouve que GL,(R) — 'ensemble de toutes les matrices inversibles (de déter-
minant non-nul) — est un ouvert dense de M,,(R). Nous pouvons le voir facilement en dimension
2. L’espace M3(R) est 'union de trois sous-ensemble (pas des espaces vectoriels) : I'ensemble
GLoy(R) des matrices inversibles de déterminant positif, 'ensemble GLs_(R) des matrices in-
versibles de déterminant négatif, et ’ensemble Ms get—o(R) des matrices non-inversibles (de
déterminant nul). Chaque ensemble G Loy (R) est ouvert. En effet, le déterminant d’une matrice
M = (‘cl 3) est det(M) = ad — be. Si on se déplace un peu autour de M, c’est a dire si on change
un peu les coefficients a, b, ¢ et d, alors le déterminant change continument (c’est une fonction
continue sur My (R)). Mais alors dans ce cas, si on prend M une matrice inversible de détermi-
nant det(M) > 0 strictement positif, on peut définir une petite boule de centre M et de rayon
€ > 0 assez petit, tel que toutes les matrices dans cette boules ont un déterminant strictement
positif. Cela montre que GLa4(R), on fait de méme avec GLy—(R). Par complémentarité de
I'union GLa24(R) U GLa—(R) dans I'espace ambiant, on en déduit que Ms get—o(R) est fermé.

Pour la densité de GL,(R) on procéde comme suit : soit A une matrice de M,,(R). Alors
posons pour tout p € N*, A, = A—%Ig ot I = (}9) est la matrice identité. Comme le spectre de
A est fini (il contient au maximum 2 valeurs propres), on est slir que la matrice A, est inversible
pour tous les p € N* sauf 2 au maximum (si jamais une des valeurs propres de A est % par
exemple pour un certain entier n non nul). On a donc une suite de matrices inversible (4,), qui
converge vers la matrice A (vis a vis de n’importe quelle norme car nous sommes en dimension
finie). Ceci montre que I'adhérence de GL,(R) est bien tout ’espace M,,(R).

Comme avec les suites numériques, la notion de suite de Cauchy et les résultats que 1’on
connait déja sont toujours valides si on adapte la définition aux espaces vectoriels :

Définition 1.73. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
.l : E — R4. On dit qu’une suite de vecteurs (uy)n est une suite de Cauchy si elle posséde la
propriété suivante :

Ve>0, AN €N tel que Vp,q > N, |lup —ugl| <€
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On a la propriété (toujours vraie dans un espace vectoriel normé de dimension finie ou infinie)
que toute suite convergente est une suite de Cauchy (cela se montre facilement). Par contre la
réciproque — si une suite est de Cauchy, alors elle est convergente — n’est vraie que dans certains
espaces, dont R™ et C". Comme cette propriété est importante, ces espaces méritent un nom :

Définition 1.74. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
|.ll - B — Ry. On dit qu'une partie A de E est compléte (vis d vis de la norme ||.||) si toute
suite de Cauchy d’éléments de A converge dans A. Un espace vectoriel normé complet — c’est a
dire que toute suite de Cauchy de E converge — est appelé espace de Banach.

Remarque 1.75. Attention notons bien que la complétude est une propriété relative a un choix de
norme ! Stefan Banach (1892-1945) est un mathématicien polonais. Ses travaux ont surtout porté
sur ’analyse fonctionnelle dont il est I'un des fondateurs, avec I’école Polonaise de mathématiques
du début XXeme siecle.

Ezxemple 1.76. R et C sont des espaces de Banach. Z est une partie complete de R car toute suite
de Cauchy entiere est constante a partir d’un certain rang. Sinon, Q est un sous-ensemble de R
qui n’est pas complet, car des suites de rationnelles peuvent étre convergente (donc de Cauchy)
vers un irrationnel (en dehors de Q). R est le plus petit complété de Q : on lui a juste rajouté
les limites des suites de Cauchy.

Ezemple 1.77. Une partie non complete de I'espace vectoriel R est A =]0, 1] car la suite réelle
de terme général u,, = % est de Cauchy, mais elle ne converge pas dans ]0, 1], car elle converge
vers 0 qui se trouve & lextérieur. Par contre nous voyons que A = [0, 1] est complet. Etre fermé
et étre complet a donc un lien fort.

Proposition 1.78. Soit E un espace vectoriel normé, de norme ||.| : E — R. Toute partie de
E qui est compléte (vis a vis de la norme ||.||) est fermée (vis da vis de la norme ||.||), et tout
sous-ensemble fermé d’une partie compléte est complet. De ce fait, dans un espace de Banach,
un sous-ensemble est complet si et seulement si il est fermé.

Démonstration. Soit A une partie compléete de E, c’est & dire un sous-ensemble pour lequel toute
suite de Cauchy d’éléments de A converge dans A. Prenons une suite convergente d’éléments
de A, alors c’est une suite de Cauchy, donc elle converge dans A par complétude. Donc par la
Proposition 1.64, A est fermé.

Maintenant, soit B C A une sous-ensemble fermé de A. Prenons une suite de Cauchy d’élé-
ments de B. Comme B C A, et que A est complet, alors la suite de Cauchy choisie converge
dans A (au moins). Mais comme B est fermé, la limite de cette suite est nécessairement dans
B, par Proposition 1.64. Donc la suite de Cauchy converge dans B donc B est complet. O

Proposition 1.79. Tout espace vectoriel normé de dimension finie est de Banach (c’est a dire
complet), vis a vis de n’importe quelle norme.
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Démonstration. L’idée c’est de se ramener a travailler avec des suites de Cauchy réelles, dont
on sait qu’elles convergent. Soit F un espace vectoriel normé de dimension finie, disons m € N*.
Comme toutes les normes sont équivalentes en dimension finie, choisissons d’utiliser la norme 1.
Prenons une suite de Cauchy (uy,), et montrons qu’elle est convergente dans E. Ecrivons ce que
cela veut dire étre de Cauchy dans ce contexte :

Ve>0, 3N e Ntel que Vp,q > N, |lup —ugyll; <e

On peut décomposer chaque terme wu, en composantes sur une base (ei,...,ey) de E, c’est a
dire u, = 37, Meey, de fagon & ce qu'on ait m suites réelles (AL),,..., A™),. On peut récrire
la condition de Cauchy vis a vis de la norme 1 comme :

Ve>0, 3N € N tel que Vp,q > N, |)\11J—)\;|—|-|)\12J—)\3|+...+\)\gl—)\;”|<6

Cela veut dire que individuellement, chaque suite réelle (A),, est une suite de Cauchy. Mais
dans R, toute suite de Cauchy est convergente! Donc les m suites réelles (AL)y, ..., A™),, sont
convergentes. On en déduit par la Proposition 1.61, que la suite (uy,), est convergente. 0

Proposition 1.80. L’espace des polynomes a coefficients réels R[X] muni de la norme infinie
n’est pas un espace de Banach.

Remarque 1.81. La norme infinie sur R[X] est définie comme suit : pour tout polynéme P € R[X]
s'écrivant P = Y_7_ arX*, on pose ||P||o = max(|agl, |a1], .-, |an|).

Démonstration. Pour montrer que R[X]| n’est pas complet, il suffit d’'un exemple de suite de
Cauchy qui ne converge pas dans R[X]. Définissons une suite de polynémes de terme général
P,=%7r %X k¥ donc en particulier ag = 0 pour tout polynéme P,. Alors pour tout 1 < p < ¢,
on a :

1 1 1
IRl = | 3 50 = () <

Montrons que la suite (P,), satisfait le critére des suites de Cauchy. Soit € > 0, et on pose

N=F (%) Comme la partie entiere est telle que z < E(z) + 1, on a, pour z = % :
! < E( ) +1 id ! <e d <
- ce qui donne ——~—— < e donc €
E(1)+1 N+1
Alors, pour tout IV < p < ¢, nous avons :
1P, = Pyl < —— <
TP = s 1 T N+ 1°

Méme raisonnement pour tout N < g < p. Cela nous dit que la suite (P, ),, satisfait la condition
de Cauchy :
Ve>0, 3N € Ntel que Vp,q > N, ||Py — Pyllec < €

La suite (P,), est donc une suite de Cauchy dans R[X]. Supposons que cette suite converge
vers un polynéme qui s’écrit P = Zévzo ap X" pour un certain N € N et certains coefficients
fixés a1, a9,...,any € R, et montrons une contradiction. Si la suite converge vers P alors la suite
réelle (|| P, — Pllo),, tend vers 0 quand n tend vers I'infini. Alors on a pour tout n > N :

P,—P= Z(—ak>Xk+ Z

k= N+1
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Mais dans ce cas, pour tout n > N :

1
——a
N N

g ey

1
1Py — Pl = max (‘1 —

1 1>> 1
"N+1""""n) = N+1

En particulier le membre de droite st nécessairement supérieur ou égal a ﬁ Nous voyons

donc que ||P, — Plloc > ﬁ donc la suite réelle (||P, — P|), est minorée par un nombre
réel strictement positif donc ne peut pas converger vers 0, ce qui est une contradiction. L’espace
vectoriel normé (R[X], ||.||.,) n’est donc pas complet. O

Ezemple 1.82. Un autre espace non-complet est le suivant : on prend I’ensemble des polynomes
a coefficients complexes, noté C[X], avec comme norme I'application N : C[X]| — Ry définie
par :
VP e CIX] N(P) = 51|1p |P(2)]
|z|=1

Alors (C[X], N) n’est pas complet.

Proposition 1.83. Soit D une partie non-vide de R, alors ’espace vectoriel B(D) des fonctions
bornées sur D muni de la norme infinie est un espace de Banach.

Démonstration. L’idée de la preuve est la méme que celle de la proposition 1.79, mais avec une
infinité de suites de Cauchy, chacune d’entre elles correspondant & un point 2 de D. Soit (fn)n
une suite de fonctions bornées sur D C R, qui satisfait le critére de Cauchy vis a vis de la norme
infinie. Montrons qu’elle est convergente. Nous devons d’abord définir sa limite f : D — R,
puis montrer qu’elle converge vers cette limite avec la norme infinie, c¢’est a dire qu’elle converge
uniformément vers f.

Soit € > 0. Il existe NV € N tel que pour tout p,q > N, nous avons ||f; — fp||cc < €. Cela veut
dire que :
sup | fo(x) — fp(z)| <€
zeD

En particulier, fixons z € D, nous avons donc que pour tout p,q > N, |fy(x) — fp(z)| < e. La
suite réelle (fy(x)), est donc une suite de Cauchy (dans R!). Elle converge donc vers une limite
que l'on dénote f(x). On répete le raisonnement pour tout = dans D. A la fin, on a donc, pour
tout = dans D, une régle qui assigne au point  un nombre réel f(x). Cela définit une fonction
f: D — R, telle que la suite de fonctions (f,), converge simplement vers la fonction f.

Montrons que la suite converge uniformément, c’est a dire que la suite (f,), converge vers
f dans B(D) vis a vis de la norme infinie. Tout d’abord il faut pour cela d’abord montrer que f
est bien bornée. Nous ne le montrerons pas mais cela s’appuie encore sur le critére de Cauchy.
On admet donc que f € B(D). Montrons que (f,), converge uniformément. Soit € > 0, comme
la suite est de Cauchy, il existe donc N € N tel que pour tout p,q > N, ||f; — fpllec < €. Cela
signifie que pour tout @ € D, |f,(z) — fp(x)| < €. Faisons tendre p vers I'infini, la suite réelle
( fp(x))p tend vers f(z). Nous obtenons donc que pour tout ¢ > N et tout z € D, nous avons

|fq(z) — f(z)| < €, autrement dit, pour tout ¢ > N, |[|fq — fllec < €. C’est la définition de la
convergence uniforme. O

Ezxemple 1.84. Un autre exemple d’espace de Banach qui s’appuie sur une preuve similaire est
Pespace des suites réelles ou complexes bornées (uy,),, muni de la norme infinie définie par

[[tn|]oo = sup |un|
n>0

Corollaire 1.85. Soit a < b deux réels, alors l’espace vectoriel CO([a, b)) des fonctions continues
sur [a,b] muni de la norme infinie est un espace de Banach.
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Démonstration. Si D est un segment [a, b], alors C%([a, b]) est un sous-espace vectoriel de B([a, b])
car toutes les fonctions continues sur un segment sont bornées. Soit (f,), une suite de Cauchy
de fonctions continues sur [a,b]. Comme C%([a,b]) C B([a,b]) et que ce dernier est complet, la
suite de fonctions (f,,), converge dans B([a, b]) (par rapport & la norme infinie) vers une fonction
bornée f. Comme la limite d’une suite de fonctions continues qui converge uniformément est elle
aussi continue (voir Théoréme 1.20), on en déduit que la fonction limite f vit bien dans C°([a, b]).
L’espace vectoriel de dimension infinie C°([a, b]) est donc complet avec la norme infinie. O

Remarque 1.86. Attention ce n’est plus forcément le cas que CO([CL, b]) est complet avec d’autres
normes car en dimension infinie, toutes les normes ne sont pas équivalentes! Par exemple :

Exemple 1.87. L’espace vectoriel de dimension infinie C° ([a, b]) n’est pas complet avec la norme 1.

En effet si on définit la suite de fonctions (f,), suivante :
pour tout n € N* on pose

fo: [0,]] —— R f
lsize [0,%}
}

z — 1—n<x—%) sixe[
Osizxe {%4—%,1}

Pour tout p < ¢ € N* nous avons que f, > f, (il faut dessiner les fonctions pour voir

comment l'intégrale se comporte). On a donc :

+ :

N[ =
S|

)

[l

1
11 1
)

Figure 11.4.1 The sequence (f,)

pr—fq”l:/01|fp_fq’:/()lfp_fq:/é;+;fp_/;;+;fq:21p—21q=;(;—;)

Comme la suite (%) converge (vers 0), c’est une suite de Cauchy, donc le membre de droite
n

ci-dessus peut devenir aussi petit que 'on veut, donc le membre de gauche aussi. On en déduit
que la suite de fonctions (f,), est une suite de Cauchy. Par contre elle ne converge pas dans
C%([a, b]) car la limite simple de la fonction est la fonction

f: [0,]] — R

lsiz e 0,%
r /> 1
Osize |3,1

qui est discontinue, donc en dehors de C%([a, b]).

Ezxzemple 1.88. Un autre exemple d’espace vectoriel non complet avec une norme mais complet
avec une autre est le suivant E = C!([a, b]), pour un choix de réels a < b fixés. Avec la norme
infinie, I’espace n’est pas complet car une suite de fonctions C' peut converger uniformément
vers une fonction f, mais celle-ci n’est pas forcément C'. En effet, il faut des hypothéses supplé-
mentaires, voir Théoréme 1.27. Par contre, avec la norme suivante :

VieE, |lIfll=1flloc+Iflo,
I'espace E = C!([a,b]) est un espace complet (dit de Banach donc).

Les exemples précédents nous montrent plusieurs cas assez inattendus. En dimension finie,
tous les espaces vectoriels normés sont complets. En dimension infinie indénombrable, ¢a dépend
de la norme. Nous verrons dans le chapitre suivant comment caractériser les espaces complets.
Pour I'instant, nous avons juste le joli résultat suivant que nous ne prouverons pas :

Proposition 1.89. Tout espace de Banach est de dimension finie ou infinie non-dénombrable.

Corollaire 1.90. Tout espace de dimension infinie dénombrable n’est jamais complet, quelle
que soit la norme.
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2 Séries de vecteurs, séries numériques et séries de fonctions

Assez tO0t dans I’histoire des mathématiques on a observé que la somme des termes d’une
suite pouvait converger. Par exemple, on savait au début du XVIIleme siecle que la somme des

L divergeait mais que la somme des +
n n

1 1 1

1 1

It tmtptetat

32

42

52 62

convergeait, c’est a dire que I’on savait que la somme était majorée.

Malheureusement, c’était plus compliqué pour
trouver la limite car la somme converge lente- .
ment. Le probleme de trouver la limite de cette
somme a été posée en premier en 1644 par Pie-
tro Mengoli puis étudiée par Jacques Bernoulli
a Bale — d’ou le surnom du probleme — et enfin
étudiée par Stirling dans les années 1730 puis
démontrée par Euler en 1735 et plus rigoureuse-
ment encore en 1744, et on a :

1. Sir igitur propsfiea hacc fevies Leibnirzii o
S=r1—14+1—1+1—1+&
in qua cum omnes rermini fint aequales , fient omnes diffe-
rentiac == o, ideoque ob =1, erit S=1%.
1. Si pr opq[ta ifia feries :
S=1—2+3—3+s5—6+ &
Diff. I O e O

= r, 1, &c
Cum ergo fit s=1, Da=1, erit S=1

—

NE

.

2
O

1L  Sit propofira hacc feries :

) S=1—3+3—7+o—&a
Dft L. = 2, 2, 2, 2, &c

Ob a==1 & Ap=12 fit Se=i—2=0,

IV. Sit propofira haec feries mgonalmm AHUMEroY M «

S-——I—3+6—-lo+15——21+&c

Dif I. = 2, 3, 4, 5 6 &ec.
T 2 Diff. 1. = 1, ‘1, ’1, ’ e
Z — = Hic ergo ob a—I,Ar:.._.z,&AAa——I erit
n 6
n=1 S S

V. Sir propofira feries qundmtamm

. S=r1—4+9— 16+ 23— 36+ &

Difi . = 3, 5, 7, 9, 11, &

Diff. 1L 2, 2, 2, 2, &
Gg

A droite, document d’Fuler attribuant diverses
valeurs & des séries divergentes par méthode de
différences finies.

La compréhension des sommes des termes d’une suite numérique, qu’on appelle "séries numé-
riques’, s’est faite du XVIIeme au XIXeme siecle. Par la suite, trés naturellement, des le XIXeme
siecle les mathématicien - nes en sont venues a sommer des fonctions. Cela permet de définir des
fonctions aux propriétés étranges (par exemple continue mais nulle part dérivable), mais aussi
d’approximer une fonction quelconque par des polynémes (son développement de Taylor), qui
généralisent les développement limité a tout ordre. Nous voulons aussi faire sens de I'expression
suivante, tres utilisée en science :

—_
——
—_

Ob

fn

exp(f Z

ou f: E — FE est une fonction continue (il faut donc définir ce que cela veut dire) d’un espace
E dans lui méme (en particulier, on peut prendre une matrice). Comme les suites vectorielles
nous pouvons sommer un nombre fini de fois des vecteurs dans un espace vectoriel normé. La
somme peut converger ou non. Comprendre cela va nous occuper le reste du semestre. Pour
bien comprendre comment les sommes de vecteurs (et de fonctions donc) convergent, on va
commencer avec les sommes de suites réelles, c’est a dire les séries numériques. Comme les séries
numériques a terme positif vont resurgir dans le cas général on va commencer par cela.

2.1 Généralités sur les séries

Définition 2.1. Soit (E, N) un espace vectoriel normé et u : N — E une suite de vecteurs de
E. Pour tout n € N, posons :

Sn
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On Uappelle la somme partielle de rang n de la suite (uy)y ; ¢’est un vecteur de E. La suite de
sommes partielles (Sy)n est une application de N dans E, qui s’appelle la série de terme général
Uy, notée habituellement > uy,.

On dit que la série Y u, est convergente si la suite (Sy,)n est convergente dans E par rapport
d la norme N choisie. Dans ce cas, on définit la notation suivante :

+oo
S:I;Ouk:ngrfwsn €eF

C’est un vecteur de E qu’on appelle la somme de la série des uy,.

Remarque 2.2. ATTENTION la notation > u, est un symbole pour désigner la suite de sommes
partielles (Sp,)n. Cette suite est donc appelée "série des u,," et est notée > u,, mais ne doit PAS
étre confondu avec la notation ZLOB U, qui symbolise la limite de la suite des sommes partielles
(Sn)n, et qu’on peut penser comme la somme totale. Autrement dit :

+o0
Z uy, est la suite (Sy,), (existe toujours) # Z uy, n’existe que quand (S, ), converge, c’est un vecteur de F
k=0

Faites attention aux notations, vous allez faire des erreurs longtemps.

Exemple 2.3. L’exemple fondamental est celui de la série géométrique. Soit £ = R le corps
des réels et soit ¢ € R. On connait la suite géométrique de terme général ¢". On sait qu’elle est

convergente si et seulement si |g| < 1 ou g = 1, et elle est divergente si |¢g| > 1loug=—1.Sig=1
alors la somme partielle de rang n de la suite (¢"), vaut S, = S0 o =19+ 11 + 124 ... +1" =
n+1 fois

n + 1. La suite des sommes partielles tend vers +o0o quand n tend vers +oo. La série ) g™ est
dans ce cas divergente. Maintenant supposons que g # 1. Dans ce cas la somme partielle de rang

n vaut :
1— qn+1

n
Sa=> "=+ +@+ P +d" . "=
k=0 1—q
1. Si |q] < 1, on a que la suite (¢"), converge vers 0. Dans ce cas, la suite des sommes
partielles converge vers l%q. Ce qui veut dire que la série géométrique > q™ converge et :

+oo 1
Z ¢ = lim S,=—
k=0 notee L—q
2. Si par contre |g| > 1, la suite géométrique des valeurs absolue (\q[")n tend vers +oo. Dans
ce cas la suite des somme partielles satisfait :

n+1
lq| oo

| n| n—-+o0o ‘1 — q| n—-+00
Ainsi dans le cas |¢| > 1 la série Y ¢ diverge.

3. Si finalement ¢ = —1, on observe que Sp = (—=1)° =1, 51 = S+ (-1)! =1-1 =0,
Sy =81+ (-1)2=1,8 =S+ (-1)3 =1—-1 = 0, etc. On obtient que Sy, = 1 et
Sop+1 = 0. Ainsi la série ) ¢" diverge aussi (ne converge pas).

La nature d’une série — convergente ou divergente — ne dépend pas de ses premiers termes.
En effet, si deux suites (up)n et (vy), sont identiques a partir du rang N € N, alors pour tout
n >N, S, —Sy =5, — S\, ou S, est la somme partielle de la suite u et S/, est la somme
partielle de la suite v. Les termes de rang inférieurs a N n’interviennent pas pour savoir si les
séries convergent ou non. Par contre, bien entendu, si les deux séries sont convergentes, alors on

n’a pas >0 %0 Uy, = > vy, si les premiers termes sont différents.
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Définition 2.4. Soit (E,N) un espace vectoriel normé et soit (uy)n, une suite de vecteurs de

E. Supposons que la série Y u, est convergente, de limite S = lirf Sn = Z;:"?) uy. Pour tout
n—-+0oo

n > 0, définissons :
+oo
R,=585-5,= Z Uy,
k=n+1
C’est un vecteur de E qu’on appelle le reste de de la série > u,, de rang n.
Remarque 2.5. En théorie, cela n’a pas de sens d’écrire Z;ﬁ% 41 Uk car Z;ZOB u) est juste une
notation abstraite pour désigner la limite de la suite des sommes partielles. Mais il se trouve

que cette notation est trés pertinente et trés pratique, car on peut 'utiliser pour symboliser
comment écrire le reste d’une série convergente :

“+o0 n —+o00
RnIS—SZZuk—Zuk: Z U,
k=0 k=0 k=n+1

Ezemple 2.6. Retour sur la série géométrique, pour |¢| < 1 on sait que la série converge donc le
reste est définissable et on a :

1 B 1— qn+1 _ qn+1

+o0
k=n+1 1—q 1—¢ 1—q

Le reste de rang n est la différence entre la somme partielle de rang n et la limite de la suite
des sommes partielles. On peut le voir comme 'erreur commise en prenant S5, comme valeur
approchée de la limite S. Comme la suite (S,), tend vers sa limite S, nous déduisons que la
suite des reste (Ry), tend vers 0. Par convention, on pose parfois S_1 = 0, et d’autre part
R_1=5-5_1=S5. Dans I'exemple de la série géométrique on voit bien que R_1 = 5 = %_q et
que la suite (R;,), converge vers 0. Faits simples mais importants :

— On peut récupérer la suite & partir de la série, puisqu’on a u, = S, — S,—1 (avec la
convention S_; = 0).

— Si la série converge, alors on peut récupérer la suite a partir de la suite des restes puisque
Uy = R,_1 — Ry, avec la convention que R_1 = S = EZE’) Uy,

— La convergence d’une suite peut toujours se traduire par celle d’une série : la série téles-
copique. Soit (uy), une suite, alors on a que u, = > j_ U — Ug—1 avec la convention que
u_1 = 0. Donc la suite (u,), converge si et seulement si la série Y u, 41 — u, converge.

Proposition 2.7. Soit (uy), une suite de vecteurs de E, espace vectoriel normé. Si la série
> uy, converge, alors la suite (uy)n converge vers 0 (le vecteur nul).

Démonstration. Si la série > u, converge, cela veut dire que la suite des sommes partielles
(Sp)n converge, vers une limite donnée S (vecteur de F). Or nous avons que pour tout n € N,
U, = S, — S,—1. Le membre de droite tend vers 0 car a la limite il vaut S — S. Le membre de
gauche tend donc vers ’origine. O

Cette proposition est extrémement importante car elle nous donne une condition néces-
saire a la convergence, et que sa contraposée nous donne une condition suffisante pour la non-
convergence d’une série. Rappelons que si P = @) alors la contraposée de cette phrase logique
est non — () = non — P. La contraposée est équivalente a la phrase logique P = Q).

Proposition 2.8. Contraposée de la Proposition 2.7. Soit (uy), une suite de vecteurs de
E, espace vectoriel normé. Si la suite (uy), ne converge pas vers 0 (le vecteur nul), alors la
série est divergente.
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Définition 2.9. Soit (uy), une suite de vecteurs de E, espace vectoriel normé. On dit que la
série est grossierement — ou essentiellement — divergente si la suite (uy), ne converge pas vers
0 (le vecteur nul).

On a trois donc cas principaux de suite grossierement divergentes dans R ou C :
— toute suite qui tend vers +oo, par exemple u,, = n?;

)

3=

— toute suite qui converge vers une limite non-nulle, comme u,, =1 +

nTr

— toute suite périodique, comme u,, = €’

— toute suite dense dans un compact, comme u,, = cos(n).

Attention, la Proposition 2.7 n’est pas une équivalence. Nous rappelons que P = ) ne nous
donne une information sur @), que si P est vraie. Si P est fausse, () peut étre soit vraie soit
fausse, sans contrainte. En particulier, il est possible d’avoir @) vraie (la suite (u,), tend vers
0), et P fausse (la série Y u, diverge), comme ’exemple suivant le montre.

Proposition 2.10. La série harmonique Z% est divergente.

Démonstration. La divergence a été prouvée pour la premiere fois le mathématicien francais
Nicolas Oresme au XIVeme siecle. Par I’absurde : supposons que la suite des sommes partielles
(Sn)n converge. Dans ce cas ce serait une suite de Cauchy. Or nous avons, pour tout n € N* :

> 1 1 a1
Sm=Si= D pZ gz X 579,70
k=n+1 <~ n k=n+1 n n
Donc la condition de Cauchy ne peut pas étre satisfaite, ce qui est une contradiction. O

Démonstration. Deuxiéme preuve! On raisonne encore une fois par I’absurde. Tout d’abord
observons que pour tout n € N*, on a :

1 1 1 1

2n—1+%_5+2n(2n—1)

On peut réarranger la somme partielle Sy, en paquets de deux fractions, dans lesquels on utilise
la relation ci-dessus :

s 1 1 1 1 1
2n — + = +3+4+5+ +§+§ .+ om— 1
O e
2 3 4 5 6 7 2n—1  2n
o) G (b3 ) (i)
2 3 30 n  2n(2n —1)

1 1 1 1 " 1
_s, 4L S S -
+(2+ +30+56+ +2n(2n—1)) 12 2%(2k — 1)

Si la série harmonique converge, alors les sommes partielles convergent vers la méme limite S et
la somme sur la droite converge aussi, et on obtient :

+o0 oo
1 1
S = S—{—Zi c’est a dire 27:0
£ 2k (2k — 1) £ 2k (2k — 1)
Ceci est absurde. O
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Remarque 2.11. Autrement dit, méme si la suite (%) converge vers 0, elle converge trop len-
n

tement pour que la série harmonique converge!! Par contre, la série ) % converge vers sa

limite %-. Ainsi, il faut qu'une suite (u,), tende suffisamment vite vers 0 pour que la série

> uy converge. On voit que tout se passe a l'infini. On verra plus tard que ’exposant limite de

convergence est s = 1. C’est a dire que la série ) % converge si et seulement si s > 1.

Définition 2.12. Soit E un espace vectoriel normé, de norme ||.| : E — Ry, et soit u: N — E
une suite. On dit que la série Y u, est convergente en norme (par rapport d la norme ||.||) si la
série numérique positive Y ||uy|| est convergente. On dit que la série Y u, est inconditionnelle-
ment convergente si ['ordre de sommation n’a pas d’influence sur la nature (convergente) de la
série et sa limite.

Bien siir, et c’est tout I'intérét de la définition. Toutes les séries convergentes ne sont pas
convergentes en norme ou inconditionnellement convergentes. Le résultat suivant est central
dans le cours et explore le lien entre convergence en norme et convergence classique :

Proposition 2.13. Soit (E,||.||) est un espace de Banach. Si une série de vecteurs est conver-
gente en norme alors elle est (inconditionnellement) convergente.

Démonstration. Nous allons montrer que la convergence en norme de la série implique la conver-

gence de la série. Nous n’adresserons pas la question de la convergence inconditionnelle qui est

beaucoup plus compliquée. Soit (uy,), une suite de vecteurs de E. Supposons que la série > u,,
— it A

est convergente en norme. Notons T;, = 3°;% | [|ugl| le reste de rang n de la série > [[u, || et

notons S, = Y7, ur la somme partielle de la suite de vecteurs (uy,)n,

On veut montrer que la suite des sommes partielles (S,,), est une suite de Cauchy. La
complétude de E nous permet de conclure sur sa convergence. Soit donc p, g € N tels qu’on peut
supposer p < ¢ (la preuve est la méme si c’est 'autre cas), nous avons alors :

q q
HSp_SqH = Z Ul < Z [Juk]| =T4-1Tp
k=p+1 k=p+1

En faisant le méme raisonnement avec ¢ < p, on a que ||\S, — 54| < T, — T,. En comparant les
deux résultats, on voit donc que :

Vp,qeN 1Sy — Sqll < [T}, — T4

Mais comme la série > ||uy|| converge, la suite des restes (7},), converge vers 0, donc est une
suite de Cauchy. Soit € > 0, il existe donc N € N tel que pour tous p,q > N, on a |T, — Tj| < e.
Mais dans ce cas on a aussi que [|S, — 5y|| < e. Ce résultat étant vrai pour tout choix d’epsilon,
nous voyons que la suite (S,), est une suite de Cauchy. Comme 'espace E est complet, elle
converge. Donc la série > u,, converge. O

Nous voyons que la complétude de I’espace E est cruciale dans la preuve. Dans les espaces vec-
toriels non-complets, il existe donc des séries convergentes en normes qui ne sont pas convergente,
par exemple prenons I'exemple suivant : ’espace vectoriel normé est CO([O, 1]) muni de la norme
1. Ce n’est pas un espace complet pour cette norme, comme on ’avait vu dans ’Exemple 1.87.
Prenons la suite de fonctions (f,,), définie dans cet exemple. La série télescopique Y f, — fn—1
converge en norme 1 car pour tout n > 1 :

1 1 1

1 1
| frne1 = fully :/0 1 = fal :/0 o= foi1 = 2n 2(n+1) - 2n(n +1) =

L
2n?
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/s 1 2 s /s s
Or nous savons que la série 3 5 converge (V(—;‘lrs % ). Donc la série numérique positive Y- || f, — fu—1lly
converge aussi car majorée par la série ) —5. Par contre la série télescopique > f, — fn—1 ne

converge pas car la suite (f,,), est divergente : la fonction limite simple vit en dehors de C°([0, 1]).

En réalité, la Proposition 2.13 est d’ailleurs une caractérisation des espaces de Banach, car
on peut montrer qu'un espace vectoriel normé (E,|.||) est de Banach si et seulement si, dans
cet espace, toute série convergente en norme est (inconditionnellement) convergente. En ce qui
concerne la réciproque de la Proposition 2.13, nous avons le résultat suivant qui précise ce qu’il
se passe :

Theoréme de Dvoretzky—Rogers. Soit E un espace de Banach. La dimension de E est finie
st et seulement si toute série inconditionnellement convergente est convergente en norme.

Avec ce théoréme nous voyons donc que le paradis des séries ce sont les espaces vectoriels
normés de dimension finie. En effet, ils sont automatiquement complets par la proposition 1.79,
et avec le théoréme ci dessus nous voyons que la convergence en norme est une convergence
robuste pour les séries de vecteurs en dimension finie. Nous étudierons donc d’abord les séries
dans les espaces de Banach de dimension finie, puis dans les espaces de Banach de dimension
infinie indénombrable — et notamment les séries de fonctions.

2.2 Séries numériques

Soit E un espace vectoriel normé de dimension finie, disons dim(E) = m. Soit (e1,...,ep)
une base de E. Soit (uy), une suite de vecteurs de E. Pour tout n entier, on peut décomposer
le vecteur u,, € E sur la base, en termes de ses composantes AL, ... A™ :

Uy = /\}lel —|—)\i62 + ...+ A em

Rappel : les exposants ne sont pas des puissances mais des notations! Pour chaque 1 < k < m,
la suite des k-émes composantes (A\F),, est une suite réelle. Nous avons le résultat suivant qui
explique pourquoi nous pouvons passer a I’étude des séries numériques a la place des séries de
vecteurs en dimension finie :

Proposition 2.14. La série Y u, converge si et seulement si les m séries numériques Y A\
convergent, pour 1 < k < m. De plus, st tel est le cas :

+00 m +oo
S =Y (X M)
n=0

k=1 \n=0

Ainsi, la convergence d’une série de vecteurs d’un espace vectoriel normé de dimension finie
revient a la convergence des séries de ses composantes. On peut donc se ramener a I’étude des
séries numériques réelles pour comprendre beaucoup de choses factuelles sur la convergence des
séries de vecteurs dans le cas de la dimension finie. En dimension infinie — par exemple dans
les espaces de fonctions — nous ne pouvons pas faire I’économie de 1’étude directe des séries de
vecteurs/fonctions. Nous adresserons ce cas plus tard.

Commencons par I’étude des séries numériques a termes positifs car leur connaissance nous
aidera pour toutes les séries numériques réelles. Soit (u, ), une suite réelle positive. Dans ce cas,
la suite des sommes partielles (.S,,),, est une suite réelle positive croissante. Nous avons donc les
quelques résultats immédiats obtenus directement & partir des mémes résultats sur les suites :

Proposition 2.15. Soit (uy), et (v,)n deuz suites réelles positives, alors :

— La série Y u, converge si et seulement si la suite (Sy), est majorée.
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— Si jamais uy, < vy & partir d’un certain rang, nous avons que Si Y, v, converge, alors Y un
aussi, et si Y up, diverge, alors > v, ausst.
— Sijamais u, ~ vy, alors les séries Y u, et > v, sont de méme nature (simultanément
n—-+o00

convergente ou simultanément divergente).

Ezemple 2.16. Un example fondamental : les séries de Riemann. Soit s € R, étudions la série
S (otn>1).

— Si s <0, la suite (%) ne tend pas vers 0 donc la série est grossierement divergente.
n

— Si s €]0,1], pour tout n > 1, on a % < #, or la série harmonique E% diverge par la

Proposition 2.10, donc la série > # diverge aussi.

— Sis>1,onva chercher une série télescopique Y tp4+1 — Un d une suite convergente (Un)n,
telle que upr1—up ~ =5 Essayons la "primitive discrete" de , c’est a dlre qu’en s’inspirant
de Dintégration [* ¢~ sdt %—, on pose, pour tout n > 1 up = §— - En connaissant le
développement limité de (1 + 2)!7* =1+ (1 — s)x + o(x), nous avons :

_ 1 1—s 1—s _nl_s 1\~ nl_sl_s_ 1
wnin = (0 =) = (0 0) ) T

Donc la série > # est de la méme nature que la série télescopique > up+1—uy,, qui converge
si et seulement si la suite (uy,), converge. Comme 1 — s < 0, la suite (uy), converge vers
0, donc la série Y # converge quand s > 1.

Théoréme 2.17. Séries de Riemann. La série ) n% est convergente si et seulement si s > 1.

Démonstration. Une autre preuve de la convergence de la série Z pour s > 1 est donnée
par Cauchy dans son cours d’Analyse a I’Ecole Polytechnique de 1821 Soit p > 1, la somme
partielle Sop+1_7 de la série 3 # au rang 2PT!1 — 1 peut se couper en sommes de 2¥ termes pour
k=1,...,p

e S 11 1 = P2l
S = — =+ = = ——
op1_1 nz::l — 1S+< +38)+( et ty ) +Z 2p+z ];); 2F + i)

On observe que chaque paquet peut étre majoré de fagon intelligente :

1 11 _2 1 1 1, 1. 1 _4 1 1 /1y
1s P TF Sy e piETE T SE o 2 ’

et plus généralement, nous avons la majoration suivante de chaque paquet :

0<2§1—1+1+1++ 1 <2’€_1_<1>’f
> rr (2k T i)s (2k)s (2k i 1)5 (Qk T 2)3 (Qk + 2k _ 1)5 — (Qk)s (2k)s—1 92s—1
2k+1_1

Et donc la somme partielle Syp+1_; peut étre majorée :

p 1 k

0< Sorn1 <3 (25—1>

k=0

On reconnait a dr01te la somme partielle de la série geometrlque de coefficient 25 s:=1. Cemme

s—1>0,onaque 23 55—t < 1 et donc la série géométrique Y 25 53—1 est convergente et admet pour
limite ——. Du fait que la série numérique positive de terme général - -5 est majorée par la

23
série geometrlque de terme général 25,—_1, la série de Riemann converge. O
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Proposition 2.18. Soit (uy), et (vy)n deux suite réelles positives telles que u, ~ . U Nous
n—-r+oo

avons les résultats suivants :
— Si la série Y v, est divergente, alors > uy, aussi et Sy (u) ~ Sp(v).
n—-—r1roo

— Si la série Y v, est convergente, alors Y u, aussi et Ry, (u) ~ R, (v).
n—-—+0oo

Remarque 2.19. Résultats similaires avec grand O : u,, = O+ (vp) (c’est a dire que (Z‘—") est
n—-+oo n/n
une suite bornée), et petit o : u, = o (vn) (c’est a dire que (7;—") est une suite qui converge
n—-+4o00 n/n

vers 0).
Avec ce résultat revenons sur les séries de Riemann. Pour tout s # 1, nous savons que :
1 nl—s

— o~ Uptp] — Uy, ou U, = pour tout n > 1.
ns n—+oo -8

— Sis <1, la série Y # est divergente, donc nous avons équivalence des sommes partielles :

> Uks1 — Up = Ungy — ug = e T

ns n—>+oo

z”: 1 " (n+1)t=s 1
k=

k=1

_ (4Dt nt=

Or u; est constante et wy41— T—s— ~ 'T—5» donc on obtient I'équivalent suivant de

la somme partielle :
1-s

zi: n

—>+001—5

— Si s> 1, la série Y % est convergente, donc nous avons équivalence des restes :

00 1 %) 1—s

Z — Z Ug+1 — U = —Upt+1 z

s _
Pt n n—>+oo e n—+too 1 — §

On obtient donc cette fois ci un équivalent du reste :

io: 1 nl—s nl—s
75 ~ — _ = —
fmiq T n—+oo 1—8 s—1

— Pour s = 1, la série harmonique Z = est dlvergente Inspirons nous de I'intégration [;* dt

et prenons ln(n) comme primitive dlscrete de . Rappelons alors que

In(n+1) —In(n) =1In (1 + 1) o1

n/ n—+ocon

Dans ce cas d’apres la proposition, nous avons que

n—-+o0o

Z% émz In(k+1) —In(k) =In(n +1) ~ In(n)
k=1

Autrement dit nous avons 1’équivalent des sommes partielles de la série harmonique, tres

important :
"1
; % —>+oo n)
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Souvent, il est plus facile de manipuler une intégrale qu'une somme. Faisons un petit rappel.
Soit @ > 0, f : [a,+00]— R une fonction continue (par morceaux) sur [a,+oo[. On dit que
l'intégrale impropre de f sur [a, +0oo[ converge si la limite suivante existe et est finie :

T
i
A [
et dans ce cas on note cette limite [ a+ °° f(t)dt ou plus simplement |, J °° f. Si la limite n’est pas
finie ou n’existe pas on dit que 'intégrale de f diverge. Par la suite nous allons principalement
prendre des fonctions positives.

Ezemple 2.20. La fonction z — [ % = Inx tend vers 'infini quand z tend vers 'infini donc

I'intégrale de la fonction f : [1,4o00[— R,t — % diverge : on ne peut pas intégrer la fonction

t — 1 sur [1,+oo[. Par contre l'intégrale de la fonction ¢ — 1/t> converge, avec pour limite
SEES
1 t2 T 1

L’analogie qui existe entre les propriétés des intégrales impropres de la forme [;° f(t)dt et
celles des séries 2;’{2‘6 u, sont évidentes. Pour toute suite © : N — R,n — wu,, on définit la
fonction suivante :

f:[0,400] —— R

T U

Donc en particulier, sur U'intervalle semi-ouvert [k, k + 1], on a f(z) = ug. Et si on intégre sur
cet intervalle on a :

k+1 k+1
/ f(t)dtz/ up dt = uy - [(k+1) — k] = ug
k k

C’est une fonction continue par morceaux donc
intégrable sur tout segment [0,n]. Dans ce cas
nous avons le résultat immédiat :

Comme l'intégrale impropre f0+°° f est la limite quand n tend vers +o0o du membre de droite,
nous avons donc que la suite de sommes partielles (S),), converge si et seulement si I'intégrale
impropre de f sur [0, +00o[ converge. C’est & dire que I'une converge (resp. diverge) si et seulement
si l'autre converge (resp. diverge). Autrement dit la série > u, converge si et seulement si la
fonction f est intégrable sur [0,+o0[ : la série > u, est de la méme nature que l'intégrale
impropre de f sur [0, 4o0].

Nous avons commencé par prendre une suite a partir de laquelle nous avons construit une
fonction continue par morceaux, puis nous avons comparé la série et 'intégrale impropre de
la fonction. Maintenant, prenons ’autre sens : on prend une fonction a partir de laquelle on
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définit une suite, puis on comparera la série de la suite et I'intégrale impropre de la fonction.
Soit a € N et soit f : [a, +00[— R une fonction continue (par morceaux), qu’on suppose positive
décroissante. Dans la discussion qui suit on prend a = 0 mais les arguments restent les mémes
pour a = 1, a = 2, a = 3, ... Comme f est décroissante, nous avons ’observation évidente

suivante :
N7

VkeN, Vte [k k+1] flk+1) < f@t) < f(k)

et donc en intégrant sur le segment [k, k + 1] de
longueur 1, on obtient : A [

k+1
vk eN, f(k+1)§/k F(t)dt < f(k)

puis en sommant de k =0a k =n — 1, pour un /M z
entier naturel n — 1 fixé, nous obtenons : ./?"lf

b

S

2
pl

C’est a dire, en notant S, (f) = >.p_, f(k) la somme partielle de la suite k — f(k), qu'on a :

n—1 n n—1
S fk+1) g/ fitydt <3 f(k)
k=0 0 k=0

S5 = 5O = [ F®dt < Sua(5) = Su() - £(n) (2.1)
De facon équivalente, cette inégalité peut se récrire :
o+ [T rwa< s, < 0+ [ s (2.2

Le raisonnement pour obtenir ces deux inégalités sont a apprendre par coeur, pour les fonctions
réelles continues par morceaux positives décroissantes. Des deux inégalités précédentes, nous
avons le résultat suivant :

Proposition 2.21. Soit a € N, et f : [a,+o0[— R une fonction continue par morceauz positive
décroissante. Alors :

— la série " f(n) est convergente si et seulement si f est intégrable sur [a,+o0] ;

— si la série Y f(n) est divergente, alors Sy (f) e S f(t)dt

— si la série Y. f(n) est convergente, alors Ry, (f) ~ f;roo f(t)dt;

— la série Y uy, de terme général u, = [ | f(t)dt — f(n) converge.
Démonstration. Pour la preuve on suppose que a = 0 mais tout s’adapte a n’importe que a
entier. Pour le premier, le deuxieme et le troisieme point, nous venons de voir la démonstration :
les encadrements (2.1) et (2.2) permettent de nous dire que la série Y f(n) et I'intégrale impropre
de f sur [0, 4o00[ sont de méme nature (pour le point 1), et de trouver un équivalent (pour les
points 2 et 3). Pour le quatrieme point, nous observons que pour tout n > 1 :

wn= [ C () - f))dt >0

car la fonction f est décroissante. On a donc bien une suite réelle positive. On peut majorer les
sommes partielles de la série > u, pour montrer qu’elle converge. Soit n > 1 :

n n k n
up, = Fydt— fk) ) = [ F@)dt — Su(f) + £(0
> u ;(H“ <>> | = 5.0+ 1(0)
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En utilisant I'inégalité de droite de (2.2), nous voyons que [" f(t)dt — Sp(f) < —f(n). EN se
rappelant que la fonction f est positivie, nous obtenons que Y p_; ux < f(0) — f(n) < f(0), ce
qui majore les sommes partielles de la série > u,,. O

Remarque 2.22. Nous pouvons interpréter la convergence de la série Y u,. Soit k € N* 1
quantité wu est laire du triangle curviligne sous la courbe de f, au dessus du rectangle de
hauteur f(k) et de base le segment [k — 1, k]. Comme la fonction f est décroissante, cette aire
est décroissante, c’est a dire que la suite réelle positive (uy), décroit. La somme partielle des
aires de tous ces rectangles entre k = 1 et k = n est la somme partielle Y p_; ux. Quand on fait
tendre n vers +00, on voit que la série converge car elle ne peut pas étre plus grande que f(0)
(le majorant qu’on a vu dans la preuve).

Ezemple 2.23. Soit f = 1 fonction positive décroissante sur |0, +o0o[, on utilise ’encadrement
< [ fwde < fn-1)

-1

pour déduire un équivalent de la somme partielle >-7_; ﬁ On déduit I’encadrement pour n > 2 :

En intégrant on a :

On en déduit que >}, ﬁ ~ 2./n.

Grace au deuxieme point de la Proposition 2.21, on peut arriver a ce résultat plus rapide-
ment : on sait que S, (f) — [" f(t)dt converge vers une limite finie £. On a alors :

/ — +{+0(1)

Et donc comme on connait I'intégrale, qui vaut 2y/n — 2 on a :

n

Z\}E:Q\/ﬁ+€—2+o(1)

on obtient donc bien Y p_; ﬁ ~ 2./n.

Ezemple 2.24. Soit 0 < ¢ < 1. La fonction f : [0,400[— R,z — ¢* = e™(a) est une fonction
décroissante car In(q) < 0. Or nous savons que la série géométrique Y ¢" = Y f(n) converge
(vers — ) D’apres le point 3 de la Proposition 2.21, nous avons donc que :

+oo
n q

Trouver ’équivalent du reste d’une série convergente peut étre utile un jour.

n

Nous pouvons revisiter les séries de Riemann avec cette proposition. Soit s # 1, et soit
n € N* alors nous avons alors que

n dt H=s ™ pl-s 1
/1 s |1—s 1_1—5_1—5
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Si s > 1, alors nous avons que 0 > 1 — s et donc lorsque n tend vers l'infini, ”1 > tend vers

+00 dt
! ts converge (vers [ %

s > 1 converge (vers une limite différente de —) D’apres le point 3 de la Proposition 2.21 :

oo dt nt=s

Si s < 1, alors nous avons que 0 < 1 — s donc lorsque n tend vers l'infini, ? tend vers
Iinfini et Dintégrale [{ f—f explose (diverge vers + infini). La série Z pour s < 1 tend vers

I'infini, et on a d’aprées le point 2 de la Proposition 2.21 :

" dt nl—s
Sn(f) ~

n—too Jo 5 n—too 1 — s

0 et 'intégrale = —1—15 > 0). Cela nous dit que la série Z pour

Sis= 1 la série harmonique > % diverge. Elle est de la méme nature que l'intégrale impropre

I Ldt = in(z) qui tend vers 400 quand n tend vers +oo. D’apres le point 2 de la Proposition
2.21, on retrouve 1’équivalent des sommes partielles qu’on avait déja obtenu :
n
1
;;1 T e In(n)

Dans la suite, pour tout n > 2, posons u, = [" dtt L —In(n) —In(n—1) — L. Le point 4 de

la Proposition 2.21 nous dit que la série > u, converge. Ecrivons les sommes partielles :

Zuk:ZIn(k)—ln(k:—l)—k -3 -y
k=1

k=2 k=2 k=2

N‘\»ﬂ
=

Cela veut dire que pour tout n > 2 :

n

Z%—ln —1—Zuk

k=1

La série de droite converge d’apres le point 4 de la Proposition 2.21. Donc le membre de droite
converge vers une limite, qu'on note . Cela veut dire que la différence Y _; k — In(n) tend
vers cette limite finie. On appelle v la constante d’Euler. C’est un nombre qui vaut environ
0,5772156, et on ne sait pas encore s’il est irrationnel mais si il était rationnel, le dénominateur
possederait au moins 242000 chiffres.

Pour les séries numériques positives, nous ajoutons deux autres criteres pour déterminer si
une série est convergente ou divergente. Le premier revient & se comparer a une série géomé-
trique :

Proposition 2.25. Critére de d’Alembert. Soit (uy,), une suite réelle strictement positive,
telle que la suite (UZ—“) converge vers une limite L € Ry U {+oo}. Alors :
n/n
— st L>1, la série Y uy, est grossiérement divergente ;
— st L < 1, la série Y uy est convergente ;
— st L =1, tout peut arriver.

Ezxemple 2.26. Soit a > 0. On pose, pour tout n € N*, u,, = W > 0. Et donc on
utilise le critére de d’Alembert :

Unt1 n" 1 1>—" < o > ( 1>—"
= 1)————— = 1 1+ — 1+ ——)-(1+=
" (@+n+ )(n—i—l)”‘H (a+n+1) +1< + to +o

Le membre de droite converge vers % quand n tend vers l'infini, qui est une limite strictement
inférieure a 1. On en déduit avec d’Alembert que la série > u,, converge.
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Ezxemple 2.27. Par exemple pour les séries de Riemann on tombe dans la zone d’indécidabilité.
En effet, pour tout s € R, nous avons :

1

(n+1)s_( n )S_ L 1
i o 1)° =
n+1 (1+ﬁ> n—-+o0o

ns

On voit que quel que soit s, la limite L c¢’est 1, mais on a vu dans le Théoreme 2.17 que la série
> n% ne converge que pour s > 1. Ainsi tout peut arriver, tout dépend du terme général de la
série.

Proposition 2.28. Critére de Cauchy. Soit (uy,), une suite réelle positive, telle que la suite
(/un),, converge vers une limite L € Ry U {+oc}. Alors :

— si L>1, la série > u, est grossiérement divergente ;
— st L < 1, la série Y uy est convergente ;

— st L =1, tout peut arriver.

Ezemple 2.29. Soit a > 0, on pose pour tout n € N*, u,, = % Appliquons le critére de Cauchy :

D
la suite de terme général (un)% = = converge vers 0 donc la série ) u, converge.
Remarque 2.30. Le critére de Cauchy est plus général que celui de d’Alembert, car il peut
s’utiliser sur des suites qui ont des termes nuls, et permet parfois de donner des solutions que
d’Alembert ne peut pas donner. Par contre il est plus difficile & mettre en place.

Nous avons étudié les séries numériques positives. Maintenant nous allons nous tourner vers
le cas plus général des séries numériques dont le terme général n’est pas forcément positif, mais
réel.

Définition 2.31. Soit (uy), une suite réelle (ou complexe). On dit que la série > uy, est abso-
lument convergente si la série des valeurs absolues (ou modules) > |uy| converge.

Proposition 2.32. Sila série numérique Y u, est absolument convergente, alors elle est conver-
gente.

Démonstration. R et C sont des espaces de Banach (les suites de Cauchy réelles ou complexes
convergent). La norme sur R (resp. C) est la valeur absolue (resp. le module). La proposition ci
dessus est donc la Proposition 2.13 appliqué a R et C. 0

Définition 2.33. Soit (uy), une suite réelle (ou complexe). Si la série Y u, converge mais pas
la série des valeurs absolues (ou modules) Y |uy|, on dit que la série Y u, est semi-convergente.
(=nn

~ est

Ezemple 2.34. Soit s < 1, nous verrons dans la proposition suivante que la série >

convergente mais pas la série positive de terme général ’%‘ = % (voir Theoreme 2.17). C’est

donc une série réelle semi-convergente

Pour la culture générale nous avons ce résultat fondamental et impressionnant de Riemann,
qui explique la notion de convergence conditionnelle et inconditionnelle (la somme dépend de
lordre de sommation ou non) :

Theoréme de réarrangement de Riemann. Soit > u, une série réelle.

— si Y u, est semi-convergente, alors pour tout L € R U {xoo}, il existe une bijection o :
N — N (appelée réarrangement) tel que la série > Ug(n) tend vers L quand n tend vers
UVinfini. Autrement dit la série est conditionnellement convergente.
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— 81> u, est absolument convergente, vers une limite £ € R disons, alors quelle que soit le
choix de bijection 0 : N — N, la série ) uq(,) converge vers L. Autrement dit la série _ uy,
est inconditionnellement convergente.

Ainsi pour les séries réelles a terme général positif, la convergence absolue est équivalente a
la convergence, tandis que pour les séries réelles non nécessairement positives, ce n’est plus la
méme chose : la convergence absolue implique la convergence, mais pas l'inverse. D’autre part, si
la série des |uy,| est divergente, cela ne veut pas forcément dire tout le temps que la série des u,,
diverge! En effet, les termes successifs peuvent se compenser et donner une somme finie. C’est
le cas en particulier des séries alternées que nous allons étudier maintenant. Elles ne forment
qu’un cas particulier des séries numériques réelles, mais on les rencontre suffisamment souvent
pour avoir développé un traitement a part. On se base sur le résultat suivant :

Proposition 2.35. Soit (uy), une suite réelle positive décroissante convergeant vers 0. Alors
la série >~ (—1)"uy, est convergente.

Démonstration. On pose S, = S°7_ (—1)*uy la somme partielle de la suite ((—1)"uy),. Pour
tout p € N, on pose z, = Sy, et y, = Sop1+1. On va montrer que les suites (xp), et (yp), sont
adjacentes. Soit p € N, alors on a :

Tpt1 — Tp = So(pt1) — S2p = (—1)2(p+1)“2(p+1) + (—1)2p+1U2p+1 = Ugpt2 — Uzpt+1 < 0

car la suite (up), est décroissante. Donc la suite (x,), est décroissante. Pour la méme raison,
on peut montrer que la suite (yp)p est croissante.

D’autre part on a x, —y, = Sop —Sopt1 = —(—1)2p+1qu+1 = ugpy1 > 0 car la suite (uy,), est

positive, donc x;, > y,. Et comme x, — y, = ugp+1 — 0 quand p tend vers I'infini, le théoreme
des suites adjacentes nous dit que les suites (x,), et (yp), sont adjacentes donc convergent vers
la méme limite £. Autrement, dit les suites des sommes partielles paires et impaires convergent
vers la méme limite £, > u,, converge et :{2‘5 Uy = L. O
Définition 2.36. Une série Y u, de terme général u,, est dite alternée si u, X up41 < 0 pour
tout n, autrement dit si la suite réelle de terme général (—1)"u,, est de signe constant, autrement
dit si un et un41 sont de signe différent pour tout n.

Ezxemple 2.37. Pour tout n > 1, on pose u, = In (1 + #) On peut vérifier que pour tout
p € N, on a ug, = ln(l+%) = ln(1+%) > 0 tandis que ugpy1 = 1n(1+%) =
In (1 — ﬁ) < 0. > uy, est donc bien une série alternée.

En particulier, le signe du terme ug, est le méme que celui de ug tandis que le signe de ug,11
est le méme que celui de u; pour tout entier p. Et donc si ug est positif alors w, = (—1)"|uy|
tandis que si ug est négatif, on a u,, = —(—1)"|u,|, pour tout n € N. La Proposition 2.35 peut
se récrire de facon équivalente comme un critere de convergence des séries alternées :

Théoréme 2.38. Critére de Leibniz (en 1714 dans une lettre a Bernoulli) : On considére
la série alternée de terme général u,. On suppose réalisées les conditions suivantes :

— la suite réelle positive (|uy]|)y, est décroissante ;
— la limite de la suite (|uy|), est zéro.

Alors la série alternée Y u, converge.

Exemple 2.39. La série 3 % est manifestement une série alternée qui satisfait aux criteres
de Leibniz. Elle converge donc. On peut montrer par comparaison série-intégrale que sa limite
est —In(2), c’est & dire que >_,/% % = —In(2).
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Remarque 2.40. Attention ce résultat ne dit rien sur la série des valeurs absolues |u,| qui peut

totalement diverger!!! Par exemple prenons 0 < s < 1 et posons u, = % Alors |uy| = ns,
ce qui fait que la suite (Juy|), est positive, décroissante et tend vers 0. Donc le critere des séries
alternées s’applique et la série > u, = > % converge, méme si la série > |u,| = Y % diverge
(série de Riemann). Pour s = 1, la limite de la série ) % est —In(2) mais la série harmonique

> % diverge.

Ainsi, des séries qui ne sont pas absolument convergentes peuvent étre convergentes. L’hy-
potheése sur la décroissance de la suite v, est cruciale pour la preuve du théoreme, et d’ailleurs

on a un contre exemple. Pour tout n € N, posons u, = \f(+(1) Ty 5 on peut vérifier que c’est

bien une suite qui vérifie u,, X up4+1 < 0, donc la série Y u, est alternée. Cependant la suite de
terme général |u,| = m n’est pas décroissante : elle varie a cause du terme en (—1) au
dénominateur. Donc la premlere hgpothese du théoreme de Leibniz n’est pas satisfaite. On a

I’équivalent suivant : Or la série ) D" ot alternée et satisfait le Théoreme
n~>+oo Vn

2.38, donc elle est convergente.CEPENDANT on ne peut pas utiliser la proposition de com-
paraison 2.18 des séries positives, précisément car (u,), n’est pas une suite positive. En effet
posons, pour tout n € N :

(=" 1

Wy, = —Upy = ——————
" Vn " n+ (=1)"/n

C’est un nombre réel positif équivalent a % quand n tend vers l'infini car nw, — 1 quand

n tend vers l'infini. Par la proposition de comparaison 2.18 — cette fois-ci la suite (wy,), est

positive — la série des w,, diverge puisque la série harmonique diverge!! La série des u,, est donc

la différence d’une série alternée convergente > % et d’une série positive divergente > wy,

elle est donc divergente. Cet exemple présente aussi 'intérét de mettre en évidence deux séries,
I’'une convergente, I’autre divergente, dont les termes généraux sont équivalents. Il montre que
le théoreme de comparaison ne s’applique qu’a des séries a termes tous de méme signe.

Proposition 2.41. Soit > u, une série alternée convergente. Alors le reste R, = Z;SH_I Uk
est tel que : 1. Ry, est du signe de up41, et 2. |Rp| < |upt1]-

Pour finir et résumer cette section, on peut donc procéder comme suit pour analyser une
série réelle quelconque Y u,. On regarde d’abord si la suite (uy,), ne tend pas vers 0 : c’est un
critere de divergence grossiere. On regarde ensuite ’absolue convergence de la série, c’est a dire
qu’on étudie si la série > |u,| converge, et pour cela on peut utiliser les critéres de convergence
pour les séries a termes positifs. On peut alors utiliser les théorémes de comparaison (inégalité et
équivalence) par rapport aux séries de Riemann par exemple, ou bien les critéres de Cauchy et de
d’Alembert. A la fin (toujours pour la série positives Y |uy,|), on peut utiliser une comparaison
série intégrale pour les séries les plus compliquées. Si la série n’est pas absolument convergente,
c’est a dire si Y |uy| diverge, alors cela ne veut a priori rien dire sur Y u,. On peut se demander
si la série > u, est une série alternée, et on regarde si la suite (uy), satisfait les critéres de
Leibniz. Si enfin on n’est toujours pas dans ce dernier cas, il faut se débrouiller pour montrer
que la série converge ou diverge.

Nous finissons la section sur ce résultat bonus. On dénote ¢! 'espace vectoriel des suites
réelles ou complexes dont la série associée est absolument convergentes, c’est a dire :

= {u : N — K telle que Z |up| est convergente }

C’est un espace de dimension infinie indénombrable. On définit une norme sur cet espace — la
norme 1 — par :

+o0
Vuel, lully =3 |unl

44



Alors nous avons le résultat suivant :

Proposition 2.42. (¢1,|.||,) est un espace de Banach.

2.3 Séries de fonctions

Nous avons étudié les séries numériques réelles, qui permettent de coder les composantes des
séries de vecteurs dans les espaces vectoriels normés de dimension finie (qui sont nécessairement
de Banach). Maintenant nous allons étudier les séries dans les espaces de fonctions, qui sont
des archétypes d’espaces de Banach de dimension infinie (indénombrable). On va étendre la
machinerie des séries numériques réelles aux séries de fonctions. Nous avons vu que pour les
suites de fonctions, il y a deux types de convergence : la convergence simple, et la convergence
uniforme — plus robuste — qui correspond a la convergence par rapport a la norme infinie dans
un espace de fonctions.

Nous allons utiliser ces deux types de convergence, ainsi que la convergence absolue, dans
Pétude des séries de fonctions. Dans ce qui suit, (f,), est une suite de fonctions définies sur un
sous-ensemble D C R. La suite des sommes partielles de rang n € N forme une suite de fonctions
définies pour tout n € N par :

Sp,: D—— R
> fulw)
k=0

La suite des sommes partielles (S,), est dénotée > f,, et on l'appelle la série de fonctions des
fn (ou de terme général f,,). C’est une suite de fonctions, donc nous pouvons appliquer tous les
résultats vus dans la Section 1.1 & ce contexte.

xT

Définition 2.43. On dit que la série de fonctions Y f,, de terme général f,, converge simplement
sur D si la suite de fonctions (Sy)n converge simplement sur D, et on note S la fonction limite.
On dit que la série de fonctions Y f, converge uniformément vers S sur D si la suite de fonctions
(Sn)n converge uniformément vers S sur D.

Ainsi, si la série ) f,, converge simplement, la fonction limite S satisfait :

+oo
Ve eD S(z) = lim Sy(z) = Z Jr(z)
k=0

n—-+00

C’est une fonction (pas forcément continue), appelée la somme de la série > f,,. Pour chaque
n € N, on appelle le reste d’ordre n la somme infinie :

+oo
Ve e D R, (z) = Z fr(x)
k=n+1

On aura donc, pour tout n € N, S, + R, = S. Dans ce cas, la condition de convergence uniforme
de " f, peut s’écrire comme dans la Définition 1.2 :

lim sup|Sp(z) — S(z)| = lim sup|R,(z)| =0
Nn—+00 ycp n—+00 pcp

Ainsi, pour montrer la convergence uniforme d’une série de fonctions, il faut montrer que
sup|R,(z)| converge vers 0 quand n tend vers Pinfini.
xzeD
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Remarque 2.44. La plupart des résultats qu’on va voir dans cette section sont identiques a ceux
vus dans la section 1.1 puisque les suites des sommes partielles de fonctions sont des suites de
fonctions. En particulier, nous avons que si une série de fonctions converge uniformément alors
elle converge simplement (c’est la Proposition 1.17).

Ezemple 2.45. En posant f,, :]—1,1[— R,z + 2™, la série > f,, admet comme terme général la

somme partielle :
1— xn+1

Sp(x) = Z b= — =
k=0

1—=x

Comme |z| < 1, la suite des sommes partielles converge simplement sur | — 1, 1[. De plus, pour
tout x €] — 1,1[, la somme de la série est la fonction f : z — ﬁ (voir exemple 2.3 pour une

explication).

La proposition suivante est ’adaptation de la Proposition 2.7 appliquée aux espaces de
fonctions, ainsi que l'adaptation de la Contraposée 2.7 :

Proposition 2.46. Si la série de fonctions Y f,, converge simplement (resp. uniformément),
alors la suite de fonctions (fn)n converge simplement (resp. uniformément) vers la fonction
constante nulle.

Proposition 2.47. Contraposée de la Proposition 2.46. Soit (f,), une suite de fonctions.
Si la série de fonctions ) f, ne converge pas simplement vers la fonction constante nulle,
alors " fn me converge pas simplement (et donc la fonction somme n'existe pas). Si la suite de
fonctions (fn)n ne converge pas uniformément vers la fonction constante nulle, alors la série de
fonctions > f,, ne converge pas uniformément.

Remarque 2.48. On peut reformuler la premiere contraposée par 1’énoncé suivant : si il existe
x € D tel que la suite numérique (f,(x)), ne converge pas vers 0 € R, alors la série numérique
réelle Y fn(z) est divergente. Ceci implique que la fonction limite simple de la série de fonctions
> fn ne peut pas étre définie en x.

Ezemple 2.49. Revenons a ’exemple 1.2; ou f, : [0,1] — R,z — 2™ pour tout n € N. On sait
que la suite de fonctions (f,), converge simplement vers la fonction f de ’exemple 1.2, mais
pas uniformément. Pour tout z € [0, 1], la série de fonctions ) f,, converge simplement vers la
fonction S : x — ﬁ (c’est exemple 2.45). Pour x = 1, f,, = 1" = 1 donc la série numérique
> fn ne peut pas converger simplement en z = 1. Et en effet, S, (1) = Y7, 1¥ = n + 1, donc
cette suite tend vers +o0o donc la série Y f,, ne converge pas simplement en x = 1. Et comme la
suite de fonctions (f,), ne converge pas uniformément sur [0, 1], alors la série de fonctions Y f,

ne converge pas uniformément.

Pour étudier la convergence simple d’une série de fonctions, nous poussons un peu plus loin
les analogies avec les séries de nombres réels : séries a termes positif lorsque les f,, sont positives
ou nulles (la comparaison série intégrale se fait désormais avec des intégrales & parametres),
séries alternées lorsque (—1)"f,, a signe constant.

Ezxemple 2.50. Pour tout n € N* on définit la fonction f, : R — R,z +— CU Soit v € R fixé,

Va24n?’
1 . . L. 1 ..
alors (—1)" fp(x) = T > Oest de signe constant, et la suite numérique (W)n décroit

et tend vers 0. Les conditions du théoreme des séries alternées 2.38 sont satisfaites, alors la série
> fn(x) converge a ce x donné. Comme cela est vrai pour tout z € R, la série de fonctions Y f,
converge simplement, et sa somme est une fonction bien définie sur R (attention pas forcément

continue!).
Si une série de fonctions (f,), converge simplement, alors la fonction somme S = Y77 f,,

préserve les propriétés basiques communes a toutes les fonctions f, :
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1. si toutes les f, sont croissantes sur un intervalle I, alors S est croissante sur I
2. si toutes les f,, sont périodiques de période T, alors S est périodique de période T
3. si toutes les f,, sont (im)paires, alors S est (im)paire

Mais ATTENTION! les propriétés de régularité telles que continuité et dérivation ne sont pas
nécessairement préservées par la convergence simple, comme on I’a vu pour les suites de fonctions.

Ezemple 2.51. Soit (f,)n la suite de fonctions définies sur R par f, :  — x(1 — z)". Ce sont
des fonctions continues et infiniment dérivables. Si x = 0 alors f,,(z) = 0 pour tout n € N donc
la série numérique Y f,,(0) converge. Si x # 0, on peut utiliser la série géométrique pour écrire
les sommes partielles de rang n :

S n S n 1_(1_$)n+1 n+1
Sn(a:):Za:(l—:r) ::I:Z(l—a:) xmzl—(l—x)

k=0 k=0

Si z = 2, alors S,(2) = 1 — (—1)"*! donc la série numérique " f,,(2) diverge grossiérement.
D’autre part, connaissant la série géométrique de ’exemple 2.3, on déduit que la suite numérique
((1—z)™),, converge vers 0 si et seulement si |1—xz| < 1 c’est dire si et seulement si —1 < x—1 < 1
c’est a dire si et seulement si 0 < x < 2. Dans ce cas, si z €]0,2[, la suite des sommes partielles
(Sp)n converge vers la fonction constante 1. Ainsi, on peut conclure que la série de fonctions
> fn converge simplement sur [0, 2[ vers la fonction :

lsio<ae<?2
S(z) = si T
Osiz=0

La série de fonctions Y f,, diverge en dehors de [0, 2], c’est & dire sur | — 0o, 0[U[2, +-00].

La fonction limite simple n’est pas continue donc nous savons que la suite des sommes
partielles ne converge pas uniformément vers S. Nous pouvons le montrer de fagon différente en
définissant une suite de points x,, €10, 2] telle que 1. (x,,), tend vers 0 et 2. (|Sy(zy) — S(xn)|)n
ne tend pas vers 0. Dans ce cas, on aura que ||S,, — S||o est nécessairement plus grand que zéro
donc pas de convergence uniforme. Sur 1'idée d’Ash on pose z,, = %H alors on obtient :

n+1 1

Z 40

n—-4o0o e

1
n+1

Sulea) = S| = [1 = (1 =)™ —1] = ‘1

Dans ce cas, la série Y f, ne converge pas uniformément vers la fonction discontinue S.

La convergence uniforme par contre préserve tous les résultats de régularité obtenus sur
les suites de fonctions car on les applique aux suites des sommes partielles. Donc nous avons le
résultat suivant pour les séries de fonctions qui convergent uniformément, qui est une application
du Théoreme 1.18 aux suites des sommes partielles des suites de fonctions :

Proposition 2.52. Soit (f,)n une suite de fonctions de D dans R (ou C). On suppose :

1. chaque fonction f, est continue;

2. la série de fonctions Y, fn, converge uniformément sur D.

Alors la somme de la série S = Z;ﬁ‘a fr est continue.

Ezxemple 2.53. La série de fonctions de terme général f, : R - R,z — 0

T .
HTQ)” converge Slmple—
ment mais pas uniformément.

—~

—1)"
T+n

Ezemple 2.54. La série de fonctions de terme général f, :]0,+o0[— R,z —
uniformément donc la fonction somme est continue.

converge

47



Ezemple 2.55. Pour tout x € ]1, 00|, on pose f,(x) = n%‘ La série de fonctions Y f,, converge
simplement sur |1,+o0o[ (Theoreme 2.17), et sa somme est la fameuse fonction ¢ (zéta) de
Riemann :

¢:]1l,400] —— R
400 1
r — ﬁ

n=1
Elle ne converge pas uniformément sur |1, +oo[ pour la raison suivante : prenons la suite de terme
général , = 14+ 1 > 1; elle tend vers 1 par la droite, et ontrons que la différence ¢(zy) — Sn(2y)
ne tend pas vers 0 quand n tend vers l'infini, ce qui prouve que la convergence n’est pas uniforme
sur l'intervalle ouvert |1, +o00[. Nous avons 1’équivalent suivant grace a la proposition 2.21 :

+oo 1

=N n

() — Sulan) = Bulz) = S — /n+°° -

1+ n;\loo 1+ =
w1 A0 L e

n

Nous voyons que ((zy,) — Sp(xy) ~ nl=w clest a dire que lorsqu’on fait tendre n vers +oo,
n—roo

la différence ((zy) — Sn(xy,) tend aussi vers U'infini donc il n’y a pas de borne supérieure a la
différence ((x) — Sy, () : la série 3 -1 ne peut pas converger uniformément vers la fonction ¢ sur
I'intervalle ouvert |1, 400[. Par contre la série est uniformément convergente sur tout intervalle
semi-ouvert [a,4+00[. On peut le montrer par comparaison série-intégrale car :

0< sup !C(w)—&(xﬂsfoodt: L

z€la,+oo] ta a—1no!

Le terme de droite tend vers 0 car a > 1 donc par le théoréme des gendarmes on la norme infinie
/¢ — Shl| converge vers 0. La convergence uniforme d’une série de fonctions continues sur tout
segment de | — 1, 400[ nous dit que la fonction ¢ est continue.

Et maintenant étudions la permutation somme-intégrale et somme-dérivation qu’on retrou-
vait déja dans le Mémoire sur les fonctions discontinues de Darboux (1875), et qui sont juste
des applications des Propositions 1.24 et 1.27 aux suites des sommes partielles des suites de
fonctions :

Proposition 2.56. Soit a < b deux réels, et (fn)n une suite de fonctions continues (par mor-
ceauz) de [a,b] dans R. On suppose que la série de fonctions Y. f, converge uniformément, vers
une fonction continue (par morceauz) S : [a,b] — R. Alors la série numérique de terme général
f; fn(t)dt converge et sa limite est l'intégrale de S :

b b
lim / S (t) dt — / S(t) dt

c’est a dire qu’on peut permuter le signe somme et le signe intégrale :

+0o0  p p +oo
n(t)dt = o (t) dt
> [ awa= 75 50

Proposition 2.57. Soit I un intervalle non réduit a un point de R, et (f,)n une suite de
fonctions C' sur I. On suppose que :

1. la série de fonctions Y, fn converge simplement sur I, vers la fonction somme S = Ziﬁ% n s

2. la série de fonctions Y f) converge uniformément sur (tout segment de) I, vers une fonc-
tion (nécessairement continue) T : I — R.
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Alors :

1. la série de fonctions Y f, converge uniformément sur (tout segment de) I vers S, et
2. la fonction S est de classe C' sur I et ' =T, c’est a dire :
ds, dS
n—ioo dr  dx

Autrement dit, on peut permuter le signe somme et la dérivation :
“+o00 “+oo /
> 5= (2 0)
n=0 n=0

Remarque 2.58. Bien entendu, la Proposition 2.57 se généralise immédiatement aux ordres de
dérivation supérieurs en remplacant les dérivées simples par des dérivées k-iemes.

Ezemple 2.59. Pour tout n > 1, la fonction f,, :]1,+00] — R,z — n% est infiniment dérivable et

f}(lk) (z) = (ln(n))* pour tout £ € N. A T'aide de la Proposition 2.57 (généralisée aux fonctions

nﬁl)
C*), on montre que la fonction ¢ de Riemann est infiniment dérivable, et :

400
YkeN, Yz ell,4+oo]  (W(z)=Y M
n=1 L

Remarque 2.60. Il y a une différence entre une propriété locale et globale : on peut satisfaire
une propriété au voisinage de tout point mais pas sur tout I’ensemble de définition. Par exemple
la fonction f : x +— 1 est intégrable sur tout segment [a,b] inclus dans ]0,+oo[, mais pas
sur l'intervalle ouvert |0, +o0o] entier. De méme, continuité uniforme en tout point n’implique
pas continuité uniforme sur tout lintervalle de définition (méme fonction). Et on a vu plein
d’exemples de suites de fonctions qui convergent uniformément sur tout segment de I’ensemble
de définition mais pas sur ’ensemble entier. Par contre, la continuité et la dérivabilité sont des
propriétés qui, si elles sont satisfaites localement partout sur ’ensemble, alors elles sont satisfaites
globalement (c’est méme la définition d’étre continue/dérivable). e passage du local au global est
un grand probléme en mathématique et on a des technique pour savoir si certains objets ayant
une propriété locale, préservent cette propriété au global. Par exemple la Cohomologie de de
Rham en géométrie différentielle : toute forme fermée est localement exacte, mais pas forcément
globalement exacte, et la cohomologie mesure cela.

Comme pour les séries numériques, il existe des conditions de convergences plus strictes,
propres aux séries dans les espaces vectoriels normés (voir Definitions 2.12 et 2.31) :

Définition 2.61. Soit (f,,)n une suite de fonctions définies sur une partie D de R. On dit que
la série de fonctions > f, de terme général f,, converge :

1. absolument si la série de fonctions Y |fn| converge simplement ;

2. normalement si la série numérique _ || f||lco converge, c’est a dire si la série de fonctions
> fn converge en norme.

Remarque 2.62. Pour la convergence normale, toutes les fonctions f, doivent nécessairement
étre bornées pour que leur norme infinie soit bien définie. La convergence normale correspond
donc & la convergence en norme dans l’espace de Banach B(D).

Remarque 2.63. La notion de convergence absolue est une forme de convergence simple pour la
série de fonctions positives | f,,|. La convergence normale est une condition trés forte, parfois peut
étre trop forte, mais tres utile car on se raméne a une série numérique. Par contre, comme c’est
une série numérique, connaitre la convergence de cette série ne nous dit RIEN sur la fonction
limite de 3 f,. il faut donc toujours calculer la limite simple.
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Ezxemple 2.64. La série de fonctions f, : x — ﬁ—i—ﬂ est normalement convergente (par majora-
tion).

Proposition 2.65. Soit (f,)n une suite de fonctions définies sur une partie D C R. Nous avons
le losange d’implications suivantes :

> fn CVA

S, 0/ £, CVS
\fﬂ p

Démonstration. L'implication CVU = CV'S est la Proposition 1.17 appliquée a la suite des
sommes partielles de la suite de fonctions (f,)n.

L’implication CVA = CV S se montre trés simplement. Soit x € D. Comme la série de
fonctions ) f,, converge absolument dans le sens de la Définition 2.61, la série numérique Y f,,(z)
est absolument convergente dans le sens de la Definition 2.31, et donc elle est convergente. Ceci
étant vrai pour tout « € D, la suite de fonctions ) f,, est simplement convergente.

L’implication CVN = CV A est aussi trés simple. Tout d’abord, le fait que la série de
fonctions Y f,, est normalement convergente veut dire que la série numérique > || f,||oo converge
sur D. Or, pour tout = € D, on a |fy(z)| < ||fnllco- Comme le membre de droite est le terme
général d’une série convergente, on déduit que la série numérique positive > | f,(z)| converge.
Cela veut dire que la série numérique Y f,(z) est absolument convergente dans le sens de la
Definition 2.31, et donc que la série de fonctions >’ f,, est absolument convergente dans le sens
de la Definition 2.61.

Passons a la convergence CVN = CVU. Tout d’abord on pose R,, = Z;ﬁfﬁl | frlls le
reste au rang n de la série numérique positive convergente Y || fn|| - Comme Y || f»|| ., converge,
la suite (R,,) converge vers 0. D’apres le point précédent on sait que la série de functions Y f,
converge absolument donc simplement. Soit € D, et notons S, (x) = Y p_y fn(z). Soit p >

n > 0 et évaluons la norme infinie de la différence de la somme partielle S,(x) et de Sy (z) :

p p p +oo
1Sp(x) = Su(@)| = | D fu@)| < D 1@< D Ml < D fallw = Ba
k=n+1 k=n+1 k=n+1 k=n-+1

Comme on sait que Y f,, converge simplement vers la fonction somme S(z) = 3125 fu(z), on
peut faire tendre p vers 'infini dans le membre de gauche pour avoir :

Comme l'inégalité est vraie pour tout z € D et pour tout n € N, c’est vrai en particulier pour
la borne supérieure :

YneN  ||S = Sall, < Rn

Comme le membre de droite tend vers 0, le membre de gauche est aussi petit que 1’on veut, donc
la série de fonction ) f,, est uniformément convergente. O
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Ezxemple 2.66. Une série de fonctions simplement convergente mais pas absolument convergente.
Pour tout z € R et n € N* on pose f,(z) = % D’apres le critere des séries alternées, la
série de fonctions est simplement convergente. Par contre elle n’est pas absolument convergente
car |f,(z)] ~ L quand n tend vers linfini, or 2 est le terme principal de la série harmonique
qui diverge. Par la Proposition 2.15 nous en déduisons que la série Y | f,(z)| diverge pour tout
x € R. La série de fonctions > f,, ne peut donc pas étre normalement convergente et cela se voit

car
1

[ folloo = suplfn(z)| = —
z€R

n
Donc la série Y || fn|| o est la série harmonique, qui diverge.

Ezemple 2.67. Une série de fonctions absolument et uniformément convergente mais pas nor-
malement convergente. Soit f,(x) = % définie sur ]0,4oo[. Pour tout x > 0, on a que
| fn(x)| < —1= donc la série est absolument convergente sur ]0, +oo| (théoréme de comparaison)

vers la somme S(z) = 3% fn(z). Montrons que la série est uniformément convergente. Soit

x >0, on aalors |S,(z) —S(z)| = |Rp(x ‘Zk 1 k(l—i-;cm) La propriété des restes des séries
alternées nous dit que le reste est maJore par le premier terme :
(1! 1
R,(x) < <
()] = n+1)(1+(n+1z)| " n+1

On peut donc majorer ||R,||c par une suite convergeant vers 0 donc la série de fonction est
uniformément convergente.

Montrons que la série n’est pas normalement convergente sur les intervalles de type |0, +ool.
Si jamais il existait une suite de nombres positifs u,, tels que | f,,(z)| < u, pour tout = €]0, +o0],
alors en passant a la limite x — 0 dans l'inégalité, on a que | f,(x)| tend vers 1/n donc 1/n > u,
donc la série Y u,, diverge. Il n’existe pas de série convergente > u,, telle que |f,(x)| < u, pour
x > 0. Plus simplement, la norme infinie de f,, est 1/n donc ne converge pas. Par contre, la
convergence est normale sur tout intervalle semi-ouvert [a,+00]. Si > a, alors 1 + nz > na
donce |fn(z)| < nT sur l'intervalle [a, +oo[. Comme la série 1/n2a est convergente, la série de
fonctions f,, est normalement convergente sur [a, +00.
Ezemple 2.68. Une série de fonctions uniformément convergente mais pas normalement conver-
gente. Soit fn(x) = (;_T_B: définie sur [0,1]. Alors la série de fonctions > f,, est uniformément
convergente mais pas normalement convergente (car || f,||co = 1 pour tout n). Soit x € [0, 1], alors
> fn(x) est une série alternée satisfaisant le critére de Leibniz donc elle converge. La limite simple
de la série de fonction est notée S. Le reste de la série R, (z) = S(z) — Sn(x) = D5, 1 fu(x)
converge vers zero. La majoration du reste d’'une série alternée satisfaisant le critere de Leibniz
est donnée par :

i (—:U)k (_x)n+1 1
k:nHker n+l4+z| " n+1

Ceci étant vrai pour tout x, on a une majoration :

1

S_Sn oo<7
1S = Sulloo < ——

qui converge donc vers 0.

Remarque 2.69. Concretement, pour montrer une convergence normale, 1. soit on calcule direc-
tement la suite (|| fn]|,,)n €t on regarde si la série numérique Y || fn ||, converge, mais ¢a peut
étre compliqué, 2. soit on majore chaque | fy|/,, par un nombre positif a,, qui est tel que la
série numérique positive Y a,, est convergente, et ¢a on sait facilement le vérifier avec toutes les
techniques qu’on possede.
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Exemple 2.70. Application de la convergence normale. Pour tout n € N, soit f, : R - R,z — %

La série de fonctions des f, converge simplement vers la fonction suivante :

exp: R——— R
+o0 xn
r —

|
n—0 n:

I1 se trouve que cette fonction est la fonction exponentielle e : z +— €* (il faudrait le montrer)!
La série de fonctions Y f,, ne converge pas uniformément sur la droite réelle R car la suite de
fonctions (f,), ne converge pas uniformément vers 0 sur R (puisqu’aucune fonction f, n’est
bornée dés que n > 1). Par contre sur tout segment de centre 0 et de rayon R > 0, la série de
fonctions Y f,, converge normalement donc uniformément. En effet, nous avons :
Rn
Ve [_Rv R] |fn(x)| < F
De cela, nous déduisons que || fp||oo < % sur le segment [— R, R]. Le membre de droite de I'inéga-
lité est le terme général d’une série numérique positive convergente : la série > % convergeant
vers eff. Par les résultats de comparaison des séries numériques positives de la Proposition 2.15,
nous déduisons que la série numérique positive Y ||fn|lco converge, c’est a dire que la série
>~ fn converge normalement sur le segment [— R, R]. Par la proposition 2.65, elle converge donc
uniformément sur ce segment vers la fonction somme qui est la fonction exponentielle. Plus
généralement le raisonnement se vérifie sur tout segment de R, pas seulement sur ceux centrés
en l'origine.
Maintenant, soit £ € N. La dérivée complexe k-ieme de chaque fonction f, est la fonction

gzn—Fk

définie par j}gk) () = 5 pour tout n > k et 0 si 0 < n < k. Alors nous voyons que

) Rnfk

Vre|-R,R )| < ——

Z [ ? } |j% ( )|— Ol kﬂ

De cela, nous déduisons que HJ’r(zk)Hoo < 7(15:;;! sur le segment [—R, R]. Le membre de droite

5o s ez , g y s . s oL s Rn—k
de l'inégalité est le terme général d’une série numérique positive convergente : la série =)l

" . . L1 - k
convergeant vers e’. Par le méme raisonnement que ci dessus, nous déduisons que la série 3 f,(L )
converge uniformément sur le segment [—R, R]. Alors par la Proposition 2.57, nous avons que
la fonction exponentielle est de classe C*¥ sur R et :

400 n—k

Ve eR exp® (z) = Z T exp(z)
= (n—k)!

Comme ceci est vrai pour tout k£ € N, nous déduisons que la fonction exponentielle complexe
est infiniment dérivable et exp®) = exp.

Historiquement les séries de fonctions ont servi a fabriquer des fonctions continues et (presque)
nulle part dérivables (et donc non dessinables) :
— La fonction de Weierstrass (1872). On se donne a €]0,1[ et b > 1. Pour tout € R, on

pose :
“+oo
W(z) = Z a"cos (b"x)
n=0
La série de fonctions Y a™cos (b™—) converge normalement sur R donc ¢a nous assure que

la fonction somme W est continue. Hardy (1916) a montré que cette fonction W n’est
dérivable nulle part sur R.
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— L’autre fonction de Riemann (1860). Pour tout € R, on pose :

2 sin (n2x
R = 3
n=1

Riemann n’a jamais écrit cette fonction, elle vient d’éleves et de collaborateurs qui lui
attribuent. Riemann pensait que la fonction est nulle part dérivable. En 1969 Gerver — un
éleve de Lang a Columbia — a prouvé que la fonction R n’est dérivable qu’aux points du
type x = W%, avecp € Z, q € N*, pAgq =1 et p,q impairs! Par exemple R est dérivable en

7 (dur & montrer) mais n’est pas dérivable en 0 (facile & montrer).

Il se trouve que les fonctions continues nulle part dérivables forment I'immense majorité des
fonctions qui existent. Si nous avons des difficultés a exhiber certaines de ces fonctions c’est que
la plupart de ces fonctions ne sont pas écrivables. Nous comprenons que ce que nous étudions
en analyse a travers les fonctions usuelles continues dérivables, c’est une infime partie — et
I’exception — dans le monde général des fonctions.

2.4 Convergence et somme d’une série entiere

Les résultats donnés sur les suites et les séries de fonctions réelles sont aussi valables sur
les complexes (excepté les comparaisons d’ordre). En général dans R on note x la variable des
fonctions réelles, dans C on note z la variables des fonctions complexes. Les fonctions complexes
sont plus compliquées a étudier que les fonctions réelles, et seront étudiées plus tard. Par contre
un cas particulier de fonctions sur le plan complexe qui sont plus simples a analyser sont les
polynomes en z. Un mondéme complexe est une fonction de type a,z", ou a, € C, pour un
certain n € N. Un polynéme de la variable complexe est une somme finie de monoémes. C’est
toujours une fonction complexe bien définie sur tout le plan complexe. Maintenant, avec le savoir
accumulé sur les séries de fonctions on aimerait étendre la notion de polynémes — sommes finies
de mondémes — a des sommes infinies de monémes — des séries de fonctions monomiales. On va
donc étudier dans la droite réelle et le plan complexe les suites de fonctions (f,), du type (ici
D est un domaine — c’est a dire sous-ensemble — du plan complexe) :

fo: DcC— C

z ———— ap2"

et leurs séries de fonctions associées, c’est a dire de la forme
—+00 —+00
n
S(z) = Z fu(z) = Z anz
n=0 n=0

ou la variable z est un nombre complexe, et ou (ay,), est une suite de nombres complexes qu’on
appelle "coefficients". Pour le cas réel, D est un sous-ensemble de R, (a,), est une suite de
nombres réels, et le monéme est du type a,z". Ces séries de fonctions sont particulierement
adaptées a la notion de convergence normale.

Définition 2.71. On appelle série entiere toute série de fonctions du type Y a,z"™ (resp. > anz™),
ot (ap)n est une suite complexe (resp. réelle).

Remarque 2.72. Une série entiére ne converge simplement pas nécessairement partout. Du fait
que les séries entieres sont des suites de fonctions polynomiales, nous verrons plus bas que la
convergence se fait sur un disque de convergence centré en l'origine du plan complexe.
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Les fonctions f,, : z — a,2"™ sont des cas particuliers de fonctions, ce sont des monomes.

Une question évidente qui vient a esprit est donc a quelle condition (sur la suite (an)n) la
série de fonctions Y anz™ converge-t-elle ¢ (absolument, uniformément, normalement ?) vers
une fonction somme :{S{J anz™ 7 Inversement, on peut se poser la question quelles sont les
fonctions sur C "développables en série entiere”’, c’est a dire qui peuvent s’écrire comme une
somme Z:ﬁ% anz"™ pour une suite (ap)n, a déterminer ¢ Une reformulation de ces questions se

trouve en observant les sommes partielles des séries entieres :

So(2) = ag, Si(z) =ag+ a1z, S»(z) =ap+ a1z +agz?, ete.

Sp(z) =ap+ a1z + a2’ + ...+ apn_12"" + a,z"

Ce sont des polynomes. Cela pose donc la question suivante : quelles sont les fonctions continues
qu’on peut approcher (uniformément) avec des polynéomes ?

Ezemple 2.73. La série géométrique Y z™ est une série entiere, ou tous les coefficients a,, valent
1. On suppose que z # 1 car pour z = 1 la série diverge grossierement vers I'infini. Pour z # 1,
la fonction somme partielle de rang n de cette série est :
n 1 —zntl
Sn(z) = Z =142+ 243+ =
prrd 1-=2

La suite des sommes partielles (S, (%)), ne convergent que si la suite (2"),, converge vers 0. Cela
n’est possible que si |z] < 1, c’est & dire si z est sur le disque ouvert de rayon 1. Si tel est le
cas, la limite de la suite (Sy(2))n est flz Autrement dit on approche la fonction flz par des
polynomes de degré de plus en plus élevé. Si |z| > 1, la suite des sommes partielles tend vers
I'infini, tandis que si |z| = 1, elle diverge (oscille) mais nous verrons plus tard (dans l’exemple

2.82) ce qu'il se passe en détail.

Ezemple 2.74. Un autre exemple de série entiere qui est égale a une fonction dans un domaine

donné est la fonction exponentielle complexe. Pour tout n € N posons a, = %, alors la série
-\ n . . :

entiere ) Zr converge vers la fonction exponentielle complexe :

exp: C— C

oo
+ o

Z — —

|
7—0 n.

Elle coincide avec la fonction exponentielle traditionnelle lorsqu’on se restreint a ’axe des réels.
La définition avec la série entiere est une fagon d’étendre la fonction exponentielle traditionnelle
au plan complexe. Sans cela, c¢’est compliqué de trouver une définition.

Soit (a, ), une suite complexe et soit Y a,z™ la série entiére associée. Rappelons que la série
entiere > a,2"™ est absolument convergente sur un domaine D C C donné si et seulement si la
série numérique positive Y |a,||z|" converge pour tout z € D. Pour déterminer ce domaine de
convergence D, nous nous reposons sur le résultat suivant :

Proposition 2.75. Lemme d’Abel. S’il existe r > 0 tel que la suite réelle positive (\an\r”)n
est bornée, alors la série entiére > anz™ est absolument convergente sur le disque ouvert de
centre lorigine et de rayon r, c’est & dire si |z| < r.

Démonstration. Soit r > 0 satisfaisant la condition du Lemme d’Abel. Soit donc M > 0 tel que
0 < |ap|r™ < M pour tout n € N. Si z € B(0,7), c’est a dire tel que |z| < r. Alors on a :

n n
anz"] = lan|r™ ] SM(W

TTL
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Le terme - est strictement inférieur a 1, donc la série géométrique positive ) (|7|) converge.
Par le théoréme de comparaison 2.15, la série numérique positive _ |a,2"| converge. O

Définition 2.76. Soit I ’ensemble des nombres réels v > 0 (positifs ou nuls) tels que la suite
réelle positive (|an\r")n est bornée. Si l’ensemble I est majoré, il admet une borne supérieure,
appelée rayon de convergence de la série Y anz™ et notée R, autrement dit :

R = sup{r > 0 tel que la suite (lan|r"™) est bornée}

Si l’ensemble I n’est pas majoré, alors on dit que le rayon de convergence de la série est infini,
et on note R = +o00.

Remarque 2.77. Notons tout d’abord que ’ensemble I contient 0 € R. D’autre part, s’il n’est
pas réduit & 0, cet ensemble est en réalité un intervalle (il est convexe). En effet : soit r € I
strictement positif, alors pour tout ¢ tel que 0 < ¢ < r,on a 0 < |a,[t" < |ay|r™. Comme la suite
(lan|r™),, est bornée, de méme en est-il pour la suite (Ja,|t") . Donc t € I. Ceci étant vrai pour
tout 0 <t <r, nous en déduisons que [0,7] C I.

Ezxemple 2.78. — La série de fonctions ) %n, est une série entiere. Elle ne converge absolu-
ment que si |z| < 1 car la convergence de la suite géométrique (|z|™),, vers 0 est plus rapide

que la divergence de la suite (%) vers +o0o. Le rayon de convergence est donc R = 1.
n

7’ . n 7’ . -\ . .
— Lasérie 3~ Z; est une série entiere absolument convergente partout, et sa limite est exp(z).
Le rayon de convergence est donc R = +o0.

— Un example qui lui est opposé est la série entiere > nlz™. Elle ne converge que pour z = 0,
car si z # 0, In(n!z") = nln(z) + In(n!) qui tend vers 400 quel que soit z donc la série
entiere diverge grossiérement. Dans ce cas le rayon de convergence est R = 0.

Ezxemple 2.79. Caractérisons un peu plus les séries entieres qui ont rayon de convergence infini.
Soit > a,z™ une série entiére ayant pour rayon de convergence R = 4o00. Alors, pour tout r» > 0,
on que la suite (Ja,|r™), _ est bornée c’est & dire qu'il existe M, tel que |a,| < M- pour tout
n € N. En particulier, les coefficient |a,| tendent vers 0 tres rapidement (plus vite que n’importe

quelle exponentielle).

Proposition 2.80. Soit (a,), une suite complexe, soit > anz" la série entiére associée et soit
R son rayon de convergence qu’on suppose non-nul.Alors :

1. la série de fonctions Y anz" est absolument convergente sur la boule ouverte B(0, R) ;
2. la série compleze Y anz" est grossiérement divergente pour tout z € C tel que |z| > R.

Démonstration. Pour le premier point, soit z € B(0, R) (la boule ouverte de rayon R). Comme
la boule est ouverte, il existe 7 > 0 tel que |z| <7 < R. Comme (|a,|r"™), est bornée, le Lemme
d’Abel nous dit que la série numérique positive Y |a,2™| converge. Pour le deuxiéme point, si
jamais z € C est tel que |z| > R, alors il existe r > 0 tel que R < r < |z|. On a donc :

2"

jan|r™ 2 > |

n|: Tin—

|anz
Par définition du rayon de convergence, la suite (]an|7"”)n n’est pas bornée, donc la suite
(|anz"] )n ne tend pas vers 0 donc la série complexe Y a, 2" diverge grossierement. O

On a donc un moyen de calculer un rayon de convergence : si on a trouvé un nombre réel
strictement positif B > 0 tel que la suite (|an|r")n est bornée pour tout 0 < r < R, et diverge
pour tout r > R, alors R est le rayon de convergence de la série entiere > a,2". Les deux cas
extrémes R = 0 et R = +o0 sont atteint lorsque :
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— pour R =0 : si la suite (\an]r”)n n’est jamais bornée des que r > 0, et
— pour R = 400 : si la suite (Ja,|r")  est toujours bornée quel que soit 7 > 0.

Le choix du nom "rayon de convergence' n’est pas anodin, comme le justifie la Définition sui-
)
vante :

Définition 2.81. Soit Y a,2™ une série entiére et R son rayon de convergence qu’on suppose
non-nul. La boule ouverte B(0, R) de centre 0 et de rayon R est appelée disque de convergence
de la série. Le cercle frontiére OB(0, R) (qui n’existe que lorsque R est fini) est appelé cercle
d’incertitude.

Nous ne le préciserons pas a chaque fois, mais tous les résultats sur le disque de convergence
d’un rayon de convergence fini non-nul s’appliquent aussi au cas du rayon de convergence infini
(qui est aussi non-nul) car la boule ouverte de centre 0 et de rayon infini est le plan complexe
tout entier. Pour un rayon de convergence fini, la série entiére converge absolument sur le disque
de convergence et diverge grossierement & ’extérieur. Sur le cercle d’incertitude, ¢’est au cas par
cas : selon la série entiere, on peut avoir convergence absolue, convergence simple ou divergence.

Ezxemple 2.82. Dans I'exemple 2.73 nous avons vu que la série entiere > 2™ ne converge absolu-
ment que pour |z| < 1. Elle admet donc comme rayon de convergence R = 1. Sur le cercle unité,
la série Y 2" diverge grossiérement en z = 1, et est une série alternée qui diverge en z = —1. En
tout autre point z = €’ pour o € ]0,1] on a pour somme partielle :

n _— 1 _»eiﬁr+1)a2w
Sn:z:ezo”r:—l_em27r =1-r)q"+r
k=0

C’est une suite arithmético-géométrique, de parametres r = 1% et ¢ = "% Donc on voit
—e
que lorsque n augmente, 'exponentielle complexe n — €*?™ tourne, donc la somme partielle

n’a pas de limite.

On peut méme étre plus précis : si o € Q alors I'exponentielle complexe est périodique e?*@27
et la suite des sommes partielles est une suite périodique (et ne peut pas converger). Par contre
si a € R\Q est irrationnel, alors la suite des sommes partielles n’es pas périodique mais oscille,

au point d’étre dense dans le cercle de centre r = —2-— et de rayon |1 — 7| = |r|.
l—e

Pour cet exemple le rayon de convergence est R = 1, mais plus généralement, soit a € C*,

alors la série entiere > a2 admet pour rayon de convergence R = ﬁ

Les criteres de convergence de Cauchy et de d’Alembert s’appliquent aux séries entieres et
de grande utilité :

Proposition 2.83. Soit > a,z" une série entiere. Nous avons deux résultats :

1. d’Alembert Si pour tout n assez grand, on a a, € C*, et si :

an+1
Qp

— — LeR, U{+oo}

n—-+o0o

alors le rayon de convergence de la série entiere Y a,2"™ est R = % (o, par convention,
1 _ 1
2. Cauchy Si la suite (\”/ \an|) admet une limite L € Ry U{4o00}, alors le rayon de conver-
n

;. 1
gence de la série ) an2" est R = 1.

Remarque 2.84. Si le critere de d’Alembert fonctionne, alors celui de Cauchy aussi, avec la méme
limite, donc le méme rayon de convergence (ce qui est rassurant). Le critére de Cauchy est donc
plus général mais celui de d’Alembert souvent plus utile.
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Exemple 2.85. La série entiere ) =; " converge vers la fonction exponentielle complexe sur tout le
plan complexe. On peut voir facﬂement que son rayon de convergence est infini car “+ = nil,
qui tend vers 0 quand n tend vers l'infini.

Ezemple 2.86. Calculons le rayon de convergence de la série entiere Z 2lon Appliquons le critére
de d’Alembert, avec la suite positive (ay), de terme général a,, = 2. On a donc :

anp1  (n+ 1) "

_oan _(1 1 >” 1
an,  (n+1)Hal  (n+1)n n+1 n—+too €

Par d’Alembert, comme la limite de la suite (‘ZZ—“) est L = l le rayon de convergence de
n n

la série entiere > L 2" est R = e. Attention, la série entiére ne converge pas sur tout le cercle
| |
d’incertitude. En z = e par exemple, nous avons que ape" = ;e = eln(nh)+n—nin(n)

connait ’équivalent de In(n!) en +oo :

Or on

In(n!) = nln(n) —n + %ln(n) +0(1)

1 . . - !
Donc ane™ = e2™M+00) /i donc la suite (ane™), n'est pas bornée, donc la série 3 el

diverge grossiérement.
Exemple 2.87. La série entiere ( ")z" admet comme rayon de convergence 4

Remarque 2.88. Attention, on peut bien entendu admettre un rayon de convergence tout en

ne satisfaisant pas le critere de d’Alembert ou Cauchy. Par exemple la série entiere Y sin(n)z"

sin(n+1)
sin(n)

admet pour rayon de convergence 1 mais

’ n’admet pas de limite.

Proposition 2.89. Soit > a,z" et > b,z" deux séries entiéres de rayons de convergence R, et
Ry, respectivement.

— Si pour tout n assez grand, on a |ay| < |by|, alors on a Ry < R ;
— Silap| ~ |bn|, alors Ry = Ry.
n—-+o0o

Démonstration. C’est un corollaire de la Proposition 2.15. Soit 0 < r < Ry, alors on a que la
suite (bnr”)neN est bornée. Par la majoration |a,| < |by], la suite (anr”)neN est aussi bornée,
et donc r < R,. On a donc la phrase logique suivante : VO <7 < Ry, r < R,. On en déduit que
Ry, < R,. Pour le deuxiéme point, c’est une application directe du dernier point de la Proposition
2.15. O

Exemple 2.90. Soit la série entiere > % Le critéere de d’Alembert nous donne L = 1 donc le
rayon de convergence est R = 1. En effet, pour tout z de module |z| < 1, la puissance ’emporte
sur le dénominateur et la série converge absolument. Pour tout z de module |z| > 1, la série
diverge grossierement donc le rayon de convergence est 1. Etudions ce qu’il se passe sur le cercle
d’incertitude. Pour z = 1 la série entiére est la série harmonique > % qui diverge. Pour z = —1,

1H™

la série entiére est la série alternée GT qui satisfait le critére de Leibniz 2.38 donc converge.

T . . 7. o s
Aussi pour z = e'2 = { car on peut scinder la série en deux séries alternées :

:k:_123456789 4n
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Les deux séries sur la droite sont alternées qui satisfont le critére de Leibniz 2.38 donc convergent,
ce qui fait que la série entiére Y % converge en z = 1.

Pour z =5 = ei%w, nous avons j2 = eTiF ot 43 = 1; on dit que j est une racine troisiéme
de l'unité. Dans ce cas la somme partielle au rang 3n vaut :

n -k . ] . -2 . )
VAR R S S B L S R 1
o e e i
kgl k1 2 3 4 5 6 7 8 9 3n
n n n

. 1 9 1 1

Y Y g

o 3p—2 f 3p—1 bt 3p

Or nous savons que 7 3p =3 Zp 1 p N 11n(n). Cet équivalent s’applique aussi aux
n—

autres sommes ci-dessus (par comparaison série 1ntégrale) Donc on a l'intuition que la somme
partielle de rang 3n se comporte comme un produit 2 +2 Jrlln( ). Le numérateur de la fraction
est nul (propriété des racines 3-émes de 'unité, qu’on peut voir sur un dessin du plan complexe)
mais le logarithme tend vers +o0o donc nous avons une forme indéterminée D’autre part les

. ‘k

sommes partielles de rang 3n + 1 et 3n + 2 valent 3n+1 + 53 ? et 3n+1 + 3n+2 + 30 R
respectivement. Donc si la somme partielle de rang 3n converge quand n tend vers 'infini, les
autres sommes partielles convergent. La proposition suivante nous dit que c’est le cas.

Theoréme de Picard. Soit > a,z" une série entiére de rayon de convergence R > 0 fini.
Si la suite (an)n est positive, décroissante et converge vers 0, alors la série entiére converge
simplement sur tout le cercle d’incertitude, a ’exception éventuellement du point z = R.

Démonstration. Nous pouvons prendre le cas ou R = 1 car le cas général se ramene a ce cas
particulier. Nous ne donnerons pas de preuve formelle du résultat mais 'idée intuitive de la
preuve c’est que des que z est sur le cercle d’incertitude, mais différent du point z = 1, on
a que z = et pour un certain 6 €]0,27[. Les puissances successives sont donc z" = e et
elles tournent sur le cercle d’incertitude. Pour cette raison la série entiere > z™ ne converge pas
(oscille) deés que z # 1, tandis qu’elle tend vers +oo si z = 1. Maintenant, si on a une suite réelle
(an)n positive décroissante convergeant vers 0, on peut comprendre que la série Y a,2" oscille
mais avec de moins en moins d’amplitude contrairement & la suite ) z" qui oscille sans perdre
en amplitude. O

Remarque 2.91. Soit Y a, 2™ une série entiere (dont les coefficients ne satisfont pas forcément les
hypotheéses du Théoréeme de Picard). Notons % I’ensemble des points z du cercle d’incertitude
tels que la série entiére > a,2"™ converge simplement. On peut montrer que % est nécessairement
une intersection dénombrable d’unions dénombrables de fermés, ce qu’on appelle un ensemble
de type Fys. Inversement, étant donné un sous-ensemble & de type F,5 du cercle d’incertitude,
peut-on trouver une série entiere qui converge simplement exactement sur 4 7 On a pu le montrer
si € est un nombre fini mais dans toute sa généralité cette question reste encore ouverte.

Les séries entiéres sont avant tout des séries de fonctions. Nous nous intéressons donc a si
leur fonction somme est continue, dérivable ou intégrable. Ces propriétés sont induites par la
convergence uniforme de séries de fonctions. Il faut donc s’intéresser a ce genre de convergence
pour les séries entieres. Etant donnée une série entiere > a, 2" de rayon de convergence R, nous
savons qu’elle converge absolument sur son disque de convergence, et diverge grossierement en
dehors. La fonction somme n’est donc définie a priori que sur le disque de convergence :

S: B(O,R) —— C
+oo

zZ — Z anz
n=0

n
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La question est donc de savoir si la fonction somme S est-elle continue, dérivable, intégrable 7 7

Nous avons un probleme, car si jamais la série entiere > a, 2" convergeait uniformément sur
la boule ouverte de rayon R, alors elle convergerait sur la boule fermée de rayon R (cela se
montre en étudiant la suite des sommes partielles). Mais cela voudrait dire qu’elle convergerait
simplement en tout point du cercle d’incertitude. Or ce n’est certainement pas toujours le cas,
puisque la convergence de la série entiere sur le cercle d’incertitude se fait en les points de
I’ensemble %, qui est trés souvent un sous-ensemble strict du cercle d’incertitude. De ce fait,
nous voyons donc qu’en général la série entiere ne peut pas converger uniformément sur le disque
de convergence en entier. Par contre, comme pour les suites de fonctions réelles qui peuvent ne
pas converger uniformément sur des intervalles ouverts, mais peuvent le faire sur tout segment
inclus, nous allons voir que les séries entieres peuvent converger uniformément sur certains
domaines du disque de convergence qui généralisent la notion de segment dans le plan complexe
(et plus généralement les ensembles finis en topologie).

Définition 2.92. Un sous-ensemble D de R ou C est dit :

— fermé si tout suite convergente d’éléments de D converge dans D, i.e. sa limite est dans D,
— ouvert si son complémentaire D¢ est fermé,
— borné sl existe M > 0 tel que Vz € D, on a |z| < M,

— compact si D est fermé borné.

Remarque 2.93. Attention, la définition des compacts comme les ensembles fermés bornés n’est
valable que dans les espaces vectoriels de dimension finie. La définition générale d’un ensemble
compact est une définition topologique plus compliquée qu’on verra en troisiéme année. On peut
montrer qu’un ensemble compact (dans le sens topologique) est fermé borné, et en dimension
finie, tout ensemble fermé borné est compact, mais ce dernier résultat n’est pas forcément vrai
en dimension infinie.

Ezxemple 2.94. Dans R, les points, les unions finies de points, les segments et les unions finies
de segments sont des fermés, et donc des compacts car tous ces ensembles sont bornés (car les
unions sont finies). Une union infinie (dénombrable) de points ou de segments n’est pas forcément
fermée : par exemple Q ou [J,en+[0,1— 2] = [0, 1]. L’ensemble A = {%, n e N*} n’est pas fermé
mais si on rajoute 'origine 0, "adhérence A = AU {0} est fermée.

Ezemple 2.95. Dans C, la boule ouverte B(0,R) = {z € C||z| < R} est ouverte et la boule
fermée B(0,R) = {z € C||z| < R} est fermée. Les segments du plan complexe sont aussi fermé,
car ils sont caractérisés par leur convexité et fermés aux extrémités comme dans R :

[20,21] = {z € C|3t € [0,1] tel que z =tz + (1 — )20}

Ezxemple 2.96. Soit f : R — R une fonction. Son graphe est le sous-ensemble de R? ~ C défini
par :

Gr(f) ={z =z +if(z), v € R}
Alors on a la résultat suivant : f est continue sur R si et seulement si Gr(f) est fermé.

Remarque 2.97. La notion de compacité est en réalité sous-jacente a beaucoup de résultats
profonds qu’on a déja vus. On dit qu’un sous-ensemble A d’un espace vectoriel normé est sé-
quentiellement compact si il possede la propriété que toute suite d’éléments de A possede une
valeur (en fait vecteur) d’adhérence. Grace a cela on peut reformuler de fagon concise le théoreme
de Bolzano-Weierstrass en le généralisant aux espaces vectoriels normés de dimension finie :

Théoréme de Bolzano- Weierstrass dans R". Dans un espace vectoriel de dimension finie,
tout compact est séquentiellement compact.
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De la nous déroulons les résultats sur la convergence uniforme en commencant avec le résultat
suivant qui traduit I'idée qu'une suite de fonctions peut ne pas converger uniformément sur un
intervalle ouvert I C R, tout en convergeant uniformément sur tout segment [ :

Proposition 2.98. Soit Y a,2™ une série entiére et R son rayon de convergence qu’on suppose
non-nul. La série entiére Y a,z™ converge normalement sur tout compact inclus dans le disque
de convergence, c’est a dire (de fagon équivalente) dans tout disque fermé B(0,7), ou 0 <r < R.

Démonstration. Pour tout n € N, on pose f,(z) = a,z". La série entiére ) a,z" est donc vue
comme une série de fonctions 3 f,. Converger normalement ici veut dire que la série numérique
> ||fnlloo des normes infinies des fonctions f, converge. Montrons que cela est vrai sur toute
boule fermée B(0,7) de centre 0 et de rayon 0 < r < R, car tout compact du disque de
convergence — étant fermé — est inclus dans une boule fermée. Soit donc 0 < r < R, alors par
définition la série Y |a,|r™ converge. Donc pour tout z € B(0,r), on a |a,2"| < |a,|r", donc c’est
encore vrai pour la borne supérieure, c’est a dire qu'on a || fn||oo < |an|r". Comme le membre de
droite est celui d’une série convergente, celui de gauche est aussi celui d’une série convergente,
par le théoreme de comparaison 2.15.. ]

La proposition ci-dessus nous permet d’appliquer directement les résultats de continuité,
dérivation et intégration vus sur les séries de fonctions qui convergent uniformément. Pour la
dérivation et I'intégration des séries entieres, on ne connait pas la dérivation et I'intégration sur
la variable complexe en toute généralité, mais la dérivation et I'intégration des polynomes se fait
de la méme fagon que dans le cas réel, c’est a dire en diminuant ’exposant ou en I’augmentant.
On a donc les résultats suivants qui sont immédiats :

Corollaire 2.99. Soit > a,z" une série entiere et R son rayon de convergence qu’on suppose
non-nul. On note S(z) = % an2" la fonction somme. Alors nous avons les trois résultats
sutvants sur le disque de convergence :

— S est continue;
— S est dérivable et S'(2) = 20 (n + 1)an112" ;

— S est intégrable et la primitive de S s’annulant en zéro est T(z) = 120 4n

n=0 n+1

Zn—i—l'
Démonstration. La série entiere > a,2" converge normalement sur tout disque fermé B(0,7)
pour tout 0 < r < R, donc elle converge uniformément sur ce compact. De 1a, étant donné
que toutes les fonctions f, : z — a,z"™ sont continues et de dérivées continues, nous pouvons
appliquer tous les théorémes vus pour les séries de fonctions, comme les Propositions 2.52, 2.56
et 2.57, ce qui conclut la preuve. ]

Définition 2.100. On appelle >~ (n+ 1)ay+12" la série dérivée et Y %ﬁz”“ la série primitive
de la série entiére Y an,z2".

Proposition 2.101. Les séries dérivées et séries primitives ont méme rayon de convergence
que la série entiére > a,z2".

Démonstration. Soit R le rayon de convergence de la série entiere > a,, 2", qu’on suppose non-nul
(c’est a dire fini supérieur & zéro ou infini). Soit Ry le rayon de convergence de la série dérivée et
R, le rayon de convergence de la série primitive. Soit z € B(0, R), c’est a dire |z| < R. Soit donc
r > 0 tel que |z| < r < R. La série numérique de terme général a,r" est absolument convergente

etona: o
nfl‘ — ﬁ|z|n |an|rn
r

’nanz e
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n ‘Z|'n—1
ropn—l
inférieure & 1, a partir d’un certain rang. Il existe donc N € N tel que pour tout n > N, on a

’encadrement :

Mais comme 0 < % < 1 on a que la suite ( converge vers 0, c’est a dire qu’elle est

0< ‘nanznfl‘ < lap|r"

Par le théoréeme de comparaison des séries de termes positifs, on en déduit que la série en-
tiere 3" na, 2" ! converge absolument, c’est a dire la série entiere > (n + 1)a,; 12" converge
absolument. Comme ce raisonnement est valide pour tout z € B(0, R), on déduit que R < Ry.

Inversement, soit z € B(0, Ry), alors on a pour tout n € N :
lanz"| <n ‘anz"_l‘ |z

La série numérique de terme général na, 2" ! étant absolument convergente sur B(0, Ry), alors
on déduit que la série numérique de terme général a,,z" est absolument convergente. Comme ce
raisonnement est valide pour tout z € B(0, Ry), on déduit que Ry < R. Donc R = Ry.

Pour finir, la série > a,2" étant la série dérivée de > %z”, on déduit que R, = R. O

Remarque 2.102. Grace au Corollaire 2.99 et a la Proposition 2.101 nous avons que toute série
entiere Y a, 2" est dérivable & tout ordre sur le disque de convergence. Le coefficient a,, au rang
n peut étre obtenu en dérivant n fois la fonction somme S : z +— EZE’) aiz* et en évaluant S
en zéro. Plus précisément, pour tout n € N, nous avons :

e k!

SM(z)=3%"

k=n

(n+2)!

k B .an+222+...

m@kz " =n! an + (n + 1)' Ap41%2 +

Nous voyons qu’en z = 0, nous avons S(™(0) = n! a,,, autrement dit nous arrivons & la conclusion
que les coefficients de la série entiere > a,2™ sont reliés aux dérivées successives de la fonction
somme S comme :

VnéeN ap =

Cette regle est a la base des séries de Taylor, et va étre étudiée en profondeur dans la section
suivante.

: - , —1)n
Ezxemple 2.103. Dans ’Exemple 2.39 nous avons dit que la série alternée > % converge vers
—In(2) grace & une comparaison série-intégrale. Nous pouvons arriver a ce résultat plus facilement
en voyant la série % comme la série primitive de la série entiere > 2", évaluée en z = —1.

La série entiere ) 2™ admet pour rayon de convergence R = 1 et donc comme primitive sur le

disque de convergence :
+o0 ontl

+OOZn
T(Z):Zn—l-lzz_:l;

n=0
’ . . o . ’ . CEN 7 . CEN n .
La série primitive de la série entiere ) 2" est donc la série entiere ) Z-. Mais nous savons

d’autre part par 'Exemple 2.73 que la série entiere > 2" est la série géométrique, qui converge
normalement vers la fonction somme S(z) = i sur le disque de convergence. Par la Proposition

2.56, nous nous attendons donc a avoir lune égalité du type :

z
T(z) = / s (2.3)
0
Malheureusement nous ne savons pas intégrer sur le plan complexe encore. Pour étre rigoureux,

restreignons nous a intégrer le long de segment du type [0, 2], ou z € B(0, R) (voir la définition
d’un segment complexe dans 'Exemple 2.95). Nous utilisons le Lemme suivant :

61



Lemme 2.104. Si une série entiére > anz™ converge en un point zg du cercle d’incertitude
alors la convergence est uniforme sur le segment [0, zo]. En particulier, la fonction :

o:[0,1]] —— C
+oo
[ Z an(tzo)"
n=0
est une fonction continue, dérivable et intégrable sur le segment [0, 1].

+o0o

Remarque 2.105. Une autre facon de le dire, c’est que la fonction somme S : z — > "%

qui est continue sur le disque de convergence, satisfait la limite suivante :

n
anz",

+oo
}E& S(tzo) = Z an(z0)"
t<1 n=0

Autrement dit, la fonction somme est continue au point zy, mais uniquement selon le rayon.

Exemple 2.106. Reprenons les données de 'Exemple 2.103. La série primitive % de la série
entiere Y 2" converge (par le Théoreme de Picard) sur tous les points du cercle d’incertitude
sauf au point z = 1. Soit donc z # 1 un point du cercle d’incertitude. Ce nombre complexe peut
s’écrire z = € pour un certain 6 €10, 27[. D’apreés le Lemme 2.104, nous avons que la fonction :

op: [0,1]] —— C

400 ein&

t "
>
n=1

est une fonction continue et dérivable sur le segment [0, 1]. Nous observons que pour tout ¢ €
[0,1[, og(t) = T(te?). Comme T est la primitive s’annulant en 0 de la fonction somme S : z
la fonction gy est donc la primitive de la fonction :

1—27

Sg: [0,]] ——— C
1

t -
1 — tet?

Pour tout ¢ € [0, 1], on pourrait intégrer la fonction Sy et faire sens rigoureux de 1'égalité (2.3) :
t )
Vie0,1]  op(t) = / Sp(s)ds = —In(1 — te®) (2.4)
0

Malheureusement nous n’avons pas encore défini le logarithme complexe donc cette formule,
bien que juste, ne nous aide pas.

Dans la suite, on pose § = 7, c’est a dire z = /™ = —1. Dans ce cas, la fonction primitive
est donnée par :
+00 n
—t
Uﬂ—(t) — Z ( )
n=1 n

L’égalité (2.4) a maintenant un sens que ’on connait :

Vtel0,1] or(t) = /0lt Sr(s)ds = —In(1 +t) (2.5)

D’aprés le Lemme 2.104, la fonction o, est continue en ¢ = 1. D’autre part la fonction ¢ +—
—In(1+1t) est aussi continue en ¢t = 1, ’égalité (2.5) est donc aussi valide en ¢ = 1, et nous avons
donc :

ox(1) = = —In(2)



Ceci est le bon résultat. Pour résumer, nous avons :
+oo xn
Vo e [-1,1] — = —In(1 —2)

C’est un exemple de développement en série entiere que nous allons approfondir dans la section
suivante.

Nous finissons cette section avec quelques informations utiles basées sur le Lemme 2.104.

Définition 2.107. Soit (ap)nen une suite réelle. On dit que la série numérique y_ a, est Abel-
convergente si la limite suivante existe et est finie :

o0
lim ant”
lim > an
t<1 =0

Le Lemme 2.104 prouve qu’une série numérique convergente dans le sens usuel est Abel-
convergente. Par contre il existe des séries Abel-convergentes qui ne sont pas convergentes dans
le sens usuel. Par exemple la série Y (—1)" est Abel-convergente mais pas convergente dans
le sens usuel. En effet, la série entiere Y (—1)"¢t" de rayon de convergence R = 1 est la série
géométrique de parametre —t, qui admet donc comme fonction somme S(t) = pour tout
t €] —1,1[. On a la limite suivante :

1
I+t

+o0 1 1
. Z e s _ 1
t<1 n=0 t<1

La série ) (—1)" est donc bien Abel-convergente, avec limite %, mais elle n’est pas convergente
au sens usuel. Le convergence usuelle est donc une condition plus forte que 1’Abel-convergence.

2.5 Développement d’une fonction en séries entiéres

Dans cette section, nous allons étudier les séries entiéres réelles, c’est a dire les séries de
fonctions du type > a,z™ ou la suite (ay)nen est une suite réelle. Ce qui suit s’applique aussi
aux séries complexes mais on étudie le cas réel car on sait dériver une fonction réelle mais pas
une fonction complexe. Dans le cas réel, les disques de convergence sont des intervalles ouvert
centrés en 0, et les compacts sont des ensembles fermés bornés, donc en particulier tout segment
est compact.

Prenons une série entiere réelle centrée en zéro et de rayon de convergence R > 0. La fonction
somme est donc une fonction définie sur Uintervalle ouvert | — R, R] :

S:]—R,R[ R
+o0o

L — Z anx"
n=0

Cette fonction est continue car la série entiere converge normalement (donc uniformément) sur
tout segment de l'intervalle de convergence. Le reste de série au rang n est donné par :

+oo
Ve e]l—-R,R], Ryti(x) = S(x) — Sp(x) = Z ap”
k=n-+1
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C’est une fonction continue car elle est la différence de deux fonctions continues, et elle tend
vers 0 lorsque z tend vers 0. De ce fait, observons qu’on a pour tout n € N :

S(x) = ag+ a1z + agx® + ... + apz" + o (z")

x—0

ol oo(x”) = Ry+1(x). Cela veut dire que la fonction S admet un développement limité a tout
€Tr—
ordre sur l'intervalle de convergence | — R, R[. En particulier, en évaluant S en 2 = 0 on obtient

ap = S(0), en dérivant une fois et en évaluant en 0 on a a; = S’(0), et en dérivant k fois et en
évaluant en 0 on a klay, = S*)(0). En résumé :

S*)(0)

ao=S5(0), a3 =5(0) etpourtout k€N, a;= x

En particulier S est de classe C* sur | — R, R[. La fonction S a une forme particuliere, car c’est la
limite d’une suite de polynémes. La question mathématique qu’on se demande si réciproquement,
étant donnée une fonction f sur R, il existe une série entiere »_ a,z" telle que sa somme coincide
avec la fonction f sur un intervalle autour de 0 7 Nous avons besoin de vocabulaire mathématique
pour rendre les choses plus précises.

Remarque 2.108. Soit a € R. On rappelle que tout sous-ensemble A de R qui contient un
intervalle ouvert de la forme |a — €,a + €[, pour au moins un certain € > 0 petit, est appelé
voisinage de a.

Définition 2.109. Soit f : D — R une fonction définie sur un voisinage de 0. On dit que f est
développable en série entiere en zéro (ou analytique en zéro) s’il existe une série entiére Y anz™
a coefficients réels de rayon de convergence positif R > 0 ou infini, et 0 <r < R tel que :

+0o0
Vee]l—rr[ND, f(x):Zanx”
n=0

Remarque 2.110. En général, on pourra prendre r = R.

Les développements en séries entieres généralisent par des séries ce que les développements
limités procurent par des polynémes. Premiere observation : une fonction développable en sé-
rie entieére en zéro est de classe C* sur lintervalle | — r,7[, et méme mieux! Elle admet un
développement limité a tout ordre, et le développement limité de f a 'ordre n en 0 est :

f@)=ao+amz+az®+.. . +aa" + o (2")

z—0
; £od ny _ _ y+oo k . _ [0
olt on a comme précédemment o(z") = Ry y1(v) = >[5 | agz”, et ot a, = “—;— pour tout
entier n € N. Les coefficients a,, étant déterminés de fagon unique, et donc le développement en
série entiere de f est uniquement déterminé : la série entiere Y a,z™ est unique. On verra en
réalité que si f est développable en série entiere en zéro, alors la série qui est utilisée est la série

(n)
de Taylor de f (celle dont les coefficients sont précisément a,, = fT,(O))

Ezemple 2.111. Regardons un exemple que ’on connait bien. Soit o € R*, et on pose :
f: R\{a} —— R
1

o —x

T

Pour tout z € R\{a}, on a f(z) = 1 L+. On reconnait & droite la fonction somme de la série

géométrique Y- (£)", qui ne converge que pour —1 < |£] < 1, c’est a dire pour —|a| < |z] < |a].
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Le rayon de convergence de la série géométrique > (%)n est donc R = |a|. La fonction f est
donc développable en série entiere sur Uintervalle | — |a], |a|[ et :

Vz €] —lal,|al], f(x):lio <$>"

« n—0 «

Etre développable en série entiere est une propriété locale car la fonction f est définie sur un
domaine bien plus grand que |—|«/|, ||[. Nous verrons plus tard qu’elle est en réalité développable
en série entiére au voisinage de tout point de son domaine de définition.

Notons que pour étre développable en série entiere en zéro, une condition nécessaire sur la

fonction f est d’étre lisse (de classe C*) sur un voisinage de zéro car si f(z) = Y2129 ana™ alors

. . - . . . (n)
on peut obtenir le coefficient a,, en dérivant n fois la fonction f puisqu’on a a, = ! n'(o). Par

contre cette condition n’est pas suffisante comme nous allons le voir plus bas. La série > a,z"
induite par la fonction f, de par son importance dans ce contexte, a un nom particulier.

Définition 2.112. Soit f : D — R une fonction lisse (de classe C*°) dans un voisinage de zéro.
On pose a, = %, et on appelle série de Taylor de f en zéro la série entiére . apx™.

Comme toute série entiere, la série de Taylor de f en 0 peut ou non converger, et si elle
converge, elle peut ou non converger vers f. Plus précisément, la série de Taylor de f en 0 existe
toujours deés que f est de classe C*° dans un voisinage de 0. Si f est développable en une série
entiere > a,2" au voisinage de 0, dans ce cas on a montré que les coefficients a,, de cette série
sont nécessairement ceux de la série de Taylor de f en 0. Et donc pour que f soit développable en
série entiére, une condition nécessaire est que la série de Taylor de f en 0 converge simplement
vers la fonction f dans un voisinage de 0. Par contre, la condition suffisante demande un peu
plus d’explications. En effet, supposons qu’on ne sait pas si f (de classe C*) est développable
en série entiere en (. Sa série de Taylor de f en 0 existe bien siir, mais nous avons les trois cas
suivants :

— soit la série de Taylor de la fonction f converge simplement vers f dans un voisinage de
0. Dans ce cas f est développable en série entiere en 0 et sa série entiére est sa série de
Taylor (voir Proposition 2.113);

— soit la série de Taylor de f converge simplement, mais vers une fonction différente de f.
Dans ce cas f n’est pas développable en série entieére en 0 (voir Example 2.114) ;

— soit la série de Taylor de f diverge pour tout « # 0. Dans ce cas, f n’est pas développable
en série entiere (voir Exemple 2.115).

Proposition 2.113. Soit f : D — R une fonction de classe C*° dans un voisinage de 0. Alors
f est développable en série entiére en zéro si et seulement la série de Taylor de f converge
simplement vers f dans un voisinage de 0.

Ezemple 2.114. Voici un exemple d’une fonction de classe C* qui n’est pas développable en série
entiere en zéro (Cauchy 1823) :

f: R—— R

0 siz=0 : 4

r - xTr) = /
f=) e 32 six #0 |
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La fonction est continue, et infiniment dérivable sur R*. Calculons sa dérivée en 0 grace a la
définition avec la limite du taux d’accroissement :

1
flx) =) _ . e’
!/ _ — —
POr=m = = =0
x#0 x#0

La limite est une forme indéterminée % mais est en réalité nulle car I'’exponentielle tend plus vite

vers 0 que x. Pour la dérivée second en zéro nous avons le méme résultat pour la méme raison
qu’au dessus :

/ 2 ——3
" o flx) = f(0) L gse ®
f «D xg% xz—0 xg% X O
x#0 x#0
Plus généralement, on peut montrer que cette fonction est telle que f(”) (0) = 0 pour tout
n € N. Et donc nous avons que a,, = ! (2!(0) = 0 pour tout n € N. Donc la série de Taylor de la

fonction f est la série nulle! La série de Taylor de la fonction f converge donc vers la fonction
constante nulle partout. Pourtant la fonction f n’est pas nulle en dehors de 0. Elle n’est donc
pas développable en série entiere.

Ezxemple 2.115. Un exemple du type de fonctions dont la série de Taylor diverge en tout point
est la série de fonctions suivante :

+o0 2
Vze R, f(w)_zcos;zaz)
n=0

s . . (n)
Cette série de fonctions converge normalement sur R et de classe C*°. Les coefficients a,, = ! n!(o)

de sa série de Taylor sont donnés par :
n n
(3)

La série entiére > a,x™ est une série divergente dés que x # 0. Donc la série de Taylor de f est
divergente donc f n’est pas développable en série entiére au voisinage de 0.

)n

VneN,  a,=(-1)"G

n

n!
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Liste des DSE(0) usuels

Rayon de la Ensemble
Formule série entiere | de validité
+0oo "
(31 = i o R
= n!
chz = Z (Qn 00 R
n=0
oo pont
shx = o 00 R
|
— (2n+1)!
1 L% 2n
cosr = Z = o0 R
+oo n.2n+1
o (=)"x
simmxr = nz:;) W o0 R
Ao — 1
(1+¢)a—1+za(o‘ '(O‘ ntl) 1 - 1,1]
n!
(osiaeN) | (RsiaeN)
+oo
Bye 1 -1
v n=0
1 +o0
=> a" 1 ] —1,1]
—x
n=0
“+o0
-1 n+1 )
In(l+z) = Z%L” 1 ] —1,1]
n=1
—In(1 —z) = Z— 1 [~1,1]
n=1
1
arctan r = Z 2(n +) T g2t 1 [—1,1]
+oo  on+41
1. 14 T
LML i 1 - 1,1
2 11—z = 2n+1
1- 3 o (2n —1) 22+
arcsinz = x + Z @) il 1 [—1,1]
= 1-3-...-(2n—1) 2?7t
1 1 2) = -H" 1 -1,1
net+Vita?)=a+) ( 2.4-...-(2n) 2n+1 [=1.1]

n=1

E

A\ Attention: Il faut connaitre par coeur au moins les dix premiers DSE(0) de ce tableau! Certain:
sont tres faciles a retrouver, comme par exemple arctan, par primitivation...

s}

Les expressions de DSE(0) ci-dessus redonnent bien entendu les développements limités de fonctions usuels

a tout ordre vus dans le cours d’analyse de premiere année.
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quelconque, il existe toujours une fonction lisse f : R — R telle que a,, =
existe toujours une fonction f: R — R dont la série > a,z" est la série de Taylor de fen 0.1l
n’y a bien slir aucune raison pour que la série de Taylor Y a,x™ converge, et en particulier, il
n’y a aucune raison pour que f soit développable en série entiere, mais elle au moins le mérite
d’exister.

(0)

Remarque 2.116. Peano (1884) et Borel (1895) ont montré que si on prend une suite réelle (ap ),

, c’est a dire qu’il

Ainsi, toutes les fonctions lisses (de classe C*°) ne sont pas forcément la somme de leur série
de Taylor en 0. Cependant nous pouvons approcher toute fonction f lisse dans un voisinage de



0 par la somme partielle de sa série de Taylor en 0 a tout ordre, plus un terme négligeable :

" (3) (n)
/ 2(0) 2+ fg‘(o)x?’ +...+ fn'(o)x" +en(x)

= Sh(x)

fx) = f(0) + f(0)x +

ou €, est une fonction négligeable devant z™ définie dans un voisinage de 0. Laplace a donné
une formule explicite pour la fonction reste :

z f(n+1)
en(x):/o fn!(t)(x—t)"dt

Cet énoncé se démontre par récurrence, a 'aide d’une intégration par parties. On appelle la
formule suivante formule de Taylor avec reste intégral de Laplace :

" 3) (n) x (n+1)

qui conduit a I’inégalité de Taylor-Lagrange :

f(x) = f(0)+ £(0)

" 3) (n) n+1
/ f'0) 5, fP(0) 5 f70) | o M|zl
— - < —
@)= 10+ PO+ Lot 4 LBty o) < BetEl
ott M1 = ||f™ V||« est la borne supérieure de |f™+1)] sur le segment [0,z]. On prend la

limite lorsque n tend vers +oo. Si le majorant tend vers 0, alors la série de Taylor de f en 0
convergera vers f sur [0, z].

Ezemple 2.117. Dans 'Exemple 2.114, la dérivée n+ 1-éme de f évaluée en x (fixé suffisamment
petit) vaut :

+1 _ e =
Vo #0,  frt(z) = (=1)"2(n)) 5
Donc le majorant M, 1 = ||f"*D]||s ne tend pas vers 0 quand n tend vers l'infini car d’une

part la factorielle tend vers l'infini, mais aussi le facteur x"% pour z (fixé suffisamment petit).
Donc la série de Taylor de f en 0 ne converge pas vers f, comme on ’a déja vu.

Remarque 2.118. Contrairement a la formule de Taylor-Lagrange, les théorémes de Taylor-Young
et de Taylor-Laplace sont vrais pour des fonctions f a valeurs complexes ou dans un espace
vectoriel normé.

Définition 2.119. On dit qu’une fonction f : D — R est développable en série entiére en a € D
st la fonction fo : x — f(x—a) est développable en série entiére en 0. Si une fonction f: D — R
est développable en série entiere en tout point de son domaine de définition D, on dit qu’elle est
analytique.

Remarque 2.120. Nous pouvons en conclure que dans les fonctions lisses, il existe des fonctions
qui n’admettent pas de développement en série entiere en certains des points de leur domaine de
définition et d’autres qui sont développables en série entiere en tout point — les fonctions analy-
tiques. Les fonctions analytiques sont des fonctions beaucoup plus contraintes que les fonctions
lisses.

Exemple 2.121. Soit a@ € R* et soit a # «. On reprend la fonction de I'exemple 2.111, c’est a

dire f : 2+ —1-. Soit 2 € R\{a} et on pose h = © —a <= 2 = a + h. Dans ce cas on a

P
_ 1

f@) = s=am

I’'exemple 2.111, la

Vhe]—la—alla—adll, fa(h) = ! f( " )n

a—an:O a—a

8

%a(ll)h. Pour tout h € R\{a — a}, on pose f,(h) = W Comme dans
onction f, est développable en série entiere en 0 et :
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ce qui se récrit par rapport a la variable x = a + h comme :

vreloto-datlaal, 0= 5 (220)°

a—a=\a—a
Maintenant étudions plusieurs applications du développement en séries entieres, comme ’ex-
. N . s PEN 3 n
ponentielle complexe et I’exponentielle de matrices. La série entiere réelle ) 7+ est absolument
convergente donc le rayon de convergence est infini. D’autre part la somme totale est la fonction

exponentielle réelle :
+o00 :I:n
Vo eR, e’ = Z

nl
= n!

7’ . LN Zn .
La série entiere ) Z7 est aussi absolument convergente pour tout z € C.

Définition 2.122. La fonction suivante étend ’exponentielle réelle au plan compleze :

exp: C— C

oo
+ N

Z —

|
n—0 n.

On Uappelle exponentielle complexe et on la note indifféremment exp ou e.

Proposition 2.123. Pour tout nombres complexes z,z' € C on a exp(z+2") = exp(z) +exp(Z’).
Autrement dit, l’exponentielle complexe est un morphisme surjectif du groupe abélien (C,+) sur
le groupe abélien (C*, x).

Remarque 2.124. Attention ce n’est pas un morphisme bijectif car il n’est pas injectif, puisque
par exemple ™ = e = 1. Par conséquent, le logarithme n’a pas de définition évidente dans les
nombres complexes puisqu’il n’y a pas de fonction réciproque évidente.

Proposition 2.125. Pour tout nombre réel x € R, on a exp(ix) = cos(z) + isin(x).

Démonstration. On remplace z par ix dans la formule de ’exponentielle. On a donc :

+o0 (ZJC)” +00 i2p$2p +o00o Z’2p+1x2p+1 +o00 (_1)p$2p +oo (_1)px2p+1

= + = +iy ~————— = cos(x) + isin(x)
r;) nt = e = (2p+ )] };0 (2p)! ;) (2p+1)!
O
On en déduit que '™ = —1, €'z = i, etc... ainsi que la relation suivante :

Va,y € R, exp™™¥ = e (cos(y) + isin(y))

Ceci nous permet de décomposer I’exponentielle de tout nombre complexe z = x + iy en parties
réelle et imaginaire :

Re(e®) = e®cos(y) et Jm(e®) = e”sin(y)
De ces discussions nous déduisons les relations suivante pour ’exponentielle complexe :

eZ = % et ‘€Z| — e{)%(z)

69



Tout comme on a défini I’exponentielle complexe a partir des séries entieres, on peut définir
un cosinus et un sinus complexes en étendant le développement en série entiere du cosinus et du

sinus réels :
2 (c1ppe

cos(z) = Z NN

p=0
Le rayon de convergence de ces deux séries est infini, comme ’exponentielle. On voit que ces
deux séries entieres se récrivent :

400 (_1)p22p+1

et sin(z) = NCTFEE

p=0

+00 (- \2p +00 (; \2p+1
(iz) et isin(z) = Lz
= (2p+ 1)!

@)
O
w0
—~
N
~—
I

p=0

Comme la somme de la séries entieres de cos(z) et celle de isin(z) donne la série entiere de
exp(iz), on retrouve les identités bien connues :
elZ + e*lZ elZ _ 67742

cos(z) = — et sin(z) =

Ce qui fait que pour tout t € Ron a :

. e T 4 e” o e~ _ et
cos(ix) = — = ch(x) et sin(ix) = — = —sh(x)
Les cosinus et sinus hyperboliques d’un réel x sont donc les cosinus et sinus du nombre purement
imaginaire ix.
On peut aller un peu plus loin dans l’abstraction. Supposons qu’on ne connaisse pas le
nombre transcendant m, et essayons de lui donner une définition algébrique. Comme pour tout
z € R, || = cos?(z) + sin?(z) = 1 on a le résultat suivant :

Proposition 2.126. L’application 0 : x — €' est un morphisme continu surjectif du groupe
(R, +) surle groupe (U, x) (le cercle unité complexe muni du produit). Il existe un unique nombre
réel positif o > 0 tel que Ker(0) = oZ = {ak, pour k € Z}.

Démonstration. Tout noyau d’un morphisme de groupe est un sous-groupe du groupe de départ.
De ce fait, Ker(6) est un sous-groupe de (R, +). Or les sous-groupes de (R, +) sont soit du type
aZ pour a > 0 ou soit denses dans R. Le noyau de la fonction 6 est nécessairement du premier
type car si il était dense, la fonction 6 serait constant égale a 1 (par continuité). O

Définition 2.127. Le nombre % est noté .

Tournons nous maintenant vers la définition de ’exponentielle de matrices. Soit (E, N) et
(E',N') deux espaces vectoriels normés de dimension finie. Une application f : E — E’ est
linéaire si pour tout A € R, f(Az +y) = A\f(z) + f(y). On dénote L(E, E’) ensemble des
applications linéaires entre E et E'. Si E = E’, L(E) est ’ensemble des endomorphismes de E.
Si on note n = dim(FE) et m = dim(E’), alors les éléments de L(E, E’') ~ M,,«n(R), 'espace
vectoriel des matrices rectangulaires de taille m x n. Il est de dimension finie nm et nous avons
déja défini des normes sur cet espaces, par exemple :

VAE Mupen(®), Al = max [Ag] et 4], = Y |4y
1;?<—” 1<i<m
== 1<j<n

Rappelons qu’en dimension finie, toutes les normes sont équivalentes. Certaines sont juste plus
pratiques que d’autres selon la situation. Nous allons définir une nouvelle norme sur L(E, E') ~

Mixn(R).
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Proposition 2.128. Soit (E,N) et (E', N') deux espaces vectoriels normés de dimension finie.
L’espace vectoriel L(E,E") ~ My, xn(R) des applications linéaires (ou matrices) entre E et E’
admet la norme suivante, et définie par :

N'(A(x))

VAe L(E,E")  ||Alllpp =sup ——57 = sup N'(A(s))
e N(z) seSn(0,1)
x#0

ot Sn(0,1) est la sphére unité de E par rapport & la norme N. De plus, si (E"”,N") est un
espace vectoriel normé de dimension finie, alors

VAe L(EE"), VB e LEE),  |[|[AoBlllpe < |[Allleg - I|Blllge (2.6)

N'(A(z))
N(z)

Démonstration. Nous prouverons dans le cours du semestre prochain pourquoi le quotient

est majoré, et donc admet une borne supérieure, pour tout A € L(E, E").

Soit A € L(E,E") ~ Mpyxn(R) et soit x # 0p un élément de E. Alors on a que 1’3((”;)) =

est un élément de la

NG

sphére unité de E (par rapport a la norme N). L’égalité des deux bornes supérieures est donc
établie. Maintenant, il est simple de montrer que I’application a valeurs positives A — |||Al||g g
définit une norme sur L(E, E’) (caractére défini, homogénéité et inégalité triangulaire).

A (ﬁ) car A est une application linéaire. Or il est évident que

Pour prouver, 'Equation (2.6), il suffit de remarquer que pour tout élément = # Og de E,

on a par définition de la borne supérieure N;ﬁf?g» < |||B|||g.g’» et que pour tout x’ # Ops de

E’, on a de méme w < |l|All|z7,g». En écrivant 2’ = B(x), cela implique les inégalités

suivantes :

N"(Ao B(x)) < |lAlllz g - N'(B(x)) < [[|Alllpr,pr - || Blll g - N(x)

Ce qui implique directement que W < WAllg", - || B|||g,rr- L'inégalité étant vraie
pour tout z # 0p, on obtient I'Equation (2.6). O

Définition 2.129. Soit (E,N) et (E',N') deux espaces vectoriels normés de dimension finie.
La norme |||.|||g,gr sur L(E, E") est appelée norme subordonnée a N et N'.

Définition 2.130. Une algebre de Banach est une K-algébre (A,+, xX) munie d’une norme
.|| : A x A— Ry telle que ||.|| est une norme d’algebre, c’est a dire que :

Va,be A, laxbf < lall -]
et telle que (A, |.||) est un espace de Banach.

Ezemple 2.131. Soit (E, N) un espace vectoriel normé de dimension finie. Alors 'espace des
endomorphismes £(FE) muni de la norme subordonnée est un espace de Banach, et I’équation
(2.6) fait de (L(E), o, [[|[l|z) = (Mn(R),,|].|/[rn) une algebre de Banach.

Proposition 2.132. Soit R™ muni de la norme ||.||,, et soit (Mpu(R),|||.|||[rm) Ualgébre de
Banach des matrices carrées réelles de taille m x m. Alors la série entiére > % converge en

norme et admet pour rayon de convergence R = +oo.

Démonstration. Soit A une telle matrice. La norme subordonnée a la norme infinie de R™ nous
donne que
[Al[lrm = sup [JA(s)

s€S~ (0,1
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Or rappelons nous que la sphére unité de la norme infinie dans R est (hyper)cubique! C’est a
dire que s € S5 (0, 1) si et seulement si il existe au moins une composante du vecteur s qui vaut
+1. Prenons une ligne de la matrice A, par exemple la ligne i. Les termes de cette ligne peuvent
étre négatifs ou positifs. Mais on peut toujours prendre un vecteur s; = (s}, ..., s™) € Sxo(0,1)
tel que le signe de sg est le signe de A;;, pour tout 1 < j < m. Dans ce cas, la i-eme composante
du vecteur A(s;) est exactement la somme |A;1| + |Ai2| + ... + |Aim|. La norme subordonnée a
la norme infinie de R™ nous donne ainsi le résultat suivant :

m
1Al = max | 32 14 ) < m 4l

du dessus, et en notant M = m||A||,, (c’est une constante), cela nous donne que |||A"|||gm <
(m]|A]l.)". Et en divisant par n! nous avons I'encadrement suivant :

A |z _ M7

Par I'Equation (2.6), on montre par récurrence que |||A”|||gm < (||| A|||rm)". Avec I'inégalité

0<

n! n!

Le membre de droite est le terme général d’une série positive convergente partout (la série expo-

. . . . A
nentielle), donc par la Proposition (2.15), nous avons que la série positive S A E™ converge
) ) n! )

N . 7’ . n . 7’ . : .
c’est a dire que la série > ’2—, converge en norme. Ceci étant vraie pour toute matrice A, nous
en déduisons que le rayon de convergence est infini. O

Définition 2.133. On définit la fonction suivante sur les matrices réelles carrées m x m :

exp: Mp(R) — M, (R)
+00 A™
Ar— nz:% -

On lappelle exponentielle de matrices et on la note indifféremment exp ou e.

Remarque 2.134. Comme ’exponentielle complexe étend I’exponentielle réelle au plan complexe,
il existe une exponentielle de matrices carrées complexes

Proposition 2.135. Pour tout A € M,,(R), on a det(e?) = "4,

A partir de cette formule, on apprend que la fonction exponentielle prend valeurs dans les
matrices inversibles (de déterminant non nul). C’est une propriété partagée avec la fonction
exponentielle sur R ou C, qui est aussi a valeurs dans les inversibles R* et C*, respectivement.
D’autre part, on sait que dans ces deux derniers cas, l’exponentielle est un morphisme de groupe
car la multiplication est commutative : e*t = e%e? = e*'e?. Or pour les matrices ce n’est pas le
cas, et de trés simples exemples le montrent simplement. Par exemple considérons les matrices
A= (93) et B=(90). Alors on a que eB £ edeB eAtB o£ eBed ot que edeP # eBel.
C’est a dire que non seulement I’exponentielle de matrices n’est pas un morphisme d’algebres,
mais que ce n’est méme pas un morphisme de groupes entre (M., (R), +) et (GL,,(R), x) (bien
qu’elle soit surjective sur ce dernier). Cela vient du fait que les matrices ne sont pas commuta-
tives par rapport a la mutiplication. Au contraire, ’écart a la commutativité est mesurée par
le commutateur (crochet de Lie) de deux matrices [A,B] = A x B — B x A. Ce commuta-
teur apparaitra trés justement dans la formule qui relie A58 et edeB, & travers la formule de
Baker—Campbell-Hausdorff-Dynkin donnée par :

AYB _ A B ,—3[AB] ,5QIBABI+AIABI) ,—g1([([A B,ALA+3[[[A,B],A]lB]+3[[[A,B],B],5])

Plus généralement, ’exponentielle est une forme d’intégration entre algebres de Lie et groupes
de Lie, et souvent difficile & mener, tandis que 'opération inverse est la différentiation et est
plus simple.
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