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1 Suites et convergence dans les espaces vectoriels normés

1.1 Suites de fonctions et convergence

Dans ce chapitre on va regarder les suites et séries de fonctions fn : D ! R sur un domaine
D ⊂ R (la généralization à C se fait sans trop de problèmes). On appelle suite de fonctions une
famille de fonctions fn : D ! R indexées sur l’ensemble N des entiers naturels. Pour chaque
n ∈ N, fn est une fonction de D dans R. L’ensemble de définition D est le même pour toutes les
fonctions de la famille. Comme on peut s’y attendre, on s’interroge sur la convergence ou non
(et à quel sens) de cette suite de fonctions. Commençons par souligner que si on fixe un élément
x ∈ D, alors fn(x) ∈ R pour tout n ∈ N, et donc la famille (fn(x))n est une suite de nombres
réels.
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Définition 1.1. Soit f : D ! R une fonction (dont on ne suppose rien du tout). Soit (fn)n une
suite de fonctions fn : D ! R. On dit que la suite (fn)n converge simplement vers f si, pour
tout x ∈ D, la suite réelle (fn(x))n converge et admet comme limite f(x) :

lim
n!+∞

|fn(x) − f(x)| = 0

On appelle f : D ! R la limite simple de la suite de fonctions (fn)n.

La condition ci dessus peut s’écrire sous forme de proposition logique :

∀ x ∈ D, ∀ ϵ > 0, ∃ N ∈ N tel que ∀ n ≥ N |fn(x) − f(x)| < ϵ (1.1)

Attention dans cette proposition logique, N dépend de x et de ϵ !
Exemple 1.2. Regardons convergence simple de la suite de fonctions (fn)n définies par fn :
[0, 1] ! R, x 7! xn. Si x ∈ [0, 1[, fn(x) tend vers 0 quand n tend vers l’infini car c’est la
définition d’une suite géométrique (xn)n pour |x| < 1. Par contre, si x = 1, pour tout n ≥ 0,
fn(1) = 1 et la suite réelle (fn(1))n est la suite constante égale à 1, qui donc converge vers 1.
Définissons la fonction f : [0, 1] ! R par :

f(x) =
{

0 si 0 ≤ x < 1
1 si x = 1

Alors la suite de fonctions (fn)n converge simplement vers la fonction f (discontinue en 1).
On peut représenter graphiquement le processus
par le dessin de droite. Les graphes des fonc-
tions fn deviennent de plus en plus "carrés" avec
l’angle en bas à droite. Si on fixe x ∈ [0, 1[, à un
moment donné (pour n assez grand), le point
fn(x) se rapprochera aussi près que l’on veut de
l’axe horizontal. Par contre le point fn(1) = 1
reste inchangé pour toutes les fonctions. Toutes
les fonctions fn sont continues, mais à la li-
mite donc, on obtient une fonction f discontinue
(en 1). Nous avons donc :

lim
n!+∞

lim
x!1

fn(x) ̸= lim
x!1

lim
n!+∞

fn(x)

Exemple 1.3. La suite de fonctions (fn)n définies par fn : R ! R, x 7! sin(nx)
n converge simple-

ment vers f la fonction nulle. En effet, nous savons que |sin(u)| ≤ 1 pour tout u ∈ R. Soit x ∈ R,
nous avons donc pour tout n ≥ 1 :

0 ≤
∣∣∣ sin(nx)

n − 0
∣∣∣ ≤ 1

n

Le membre de droite tend vers 0 quand n tend vers l’infini, donc le membre de gauche aussi (et
ce pour tout x), et nous avons bien la convergence simple de la suite (fn)n vers la fonction nulle.
On peut écrire les premières fonctions fn grâce aux identités trigonométriques :

f1(x) = sin(x), f2(x) = sin(2x)
2 = sin(x)cos(x),

f3(x) = sin(3x)
3 = sin(2x)cos(x)

3 + cos(2x)sin(x)
3 = sin(x)cos2(x)

3 + (cos2(x) − sin2(x))sin(x)
3

= 2 sin(x)cos2(x) − sin3(x)
3 = sin(x)cos2(x) − sin(x)

3
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On peut "voir" que les fonctions deviennent de plus en plus petites en amplitude maximale (la
suite (fn)n tend bien vers la fonction nulle).

Exemple 1.4. La suite de fonctions (fn)n définies par fn : R ! R, x 7!
√

x2 + 1
n converge

simplement vers la fonction valeur absolue f : R ! R, x 7!
√

x2 = |x|. On voit que toutes les
fonctions fn sont dérivables sur R puisque f ′

n(x) = x√
x2+ 1

n

, mais f ne l’est pas en 0 ! Donc on

voit que la convergence simple peut aussi perdre certaines propriétés (ici on a perdu la dérivation
en zéro). Donc dans cet exemple on ne peut pas intervertir dérivation et limite :

d

dx

(
lim

n!+∞
fn(x)

)
̸= lim

n!+∞

dfn

dx
(x)

C’était en réalité aussi le cas dans l’exemple précédent.
Exemple 1.5. La suite de fonctions fn : [0, +∞[! R, x 7! x

x+n converge simplement vers la
fonction f identiquement nulle sur [0, +∞[. L’intégrale de f sur cet intervalle est nulle, mais
pour tout n ≥ 1, on a :

∫ M

0
fn(x)dx =

∫ M

0
1 − n

n + x
dx =

∫ M

0
1 −

∫ M

0

1
1 + x

n

dx = M − nln(1 + M
n )

L’intégrale impropre
∫+∞

0 fn(x)dx est obtenue en faisant tendre M vers +∞. Mais dans ce cas
le membre de droite tend alors vers l’infini car le logarithme M 7! ln(1 + M

n ) augmente moins
vite que la fonction linéaire M 7! M , donc l’intégrale impropre

∫+∞
0 fn(x)dx est divergente

(vaut +∞). Donc on voit que dans cet exemple que :
∫ +∞

0

(
lim

n!+∞
fn(x)

)
dx ̸= lim

n!+∞

∫ +∞

0
fn(x) dx

En résumé, avoir que toutes les fonctions fn : D ! R sont continues n’implique PAS que la
fonction limite simple f : D ! R est continue ; que toutes les fn sont bornées n’implique PAS
que f est bornée (cf + bas) ; que toutes les fn sont intégrables (resp. dérivables) n’impliquent
PAS que f est intégrable (resp. dérivable)... La notion de convergence simple est donc très fragile
car aucune des propriétés des fonctions ne sont préservées à la limite. Il faut d’autre notion de
convergence, avec un autre choix de norme sur l’espace des fonctions.

Définition 1.6. Soit (fn)n une suite de fonctions fn : D ! R et soit f : D ! R une fonction.
On dit que la suite (fn)n converge uniformément vers f si pour tout n assez grand la fonction
fn − f est bornée, et que

lim
n!+∞

sup
x∈D

|fn(x) − f(x)| = 0 (1.2)

On appelle f : D ! R la limite uniforme de la suite de fonctions (fn)n.

La condition incongrue "pour tout n assez grand la fonction fn − f est bornée" est là pour
justifier que pour n assez grand, la borne supérieure sup

x∈D
|fn(x) − f(x)| – le plus petit majorant

de l’ensemble An =
{∣∣fn(x) − f(x)

∣∣, où x ∈ D
}
– est bien définie. Dans ce cas, prendre la limite

n ! +∞ est possible. La condition (1.2) peut se réécrire avec des quantificateurs comme :

∀ ϵ > 0, ∃ N ∈ N tel que ∀ n ≥ N, ∀x ∈ D |fn(x) − f(x)| < ϵ (1.3)

Attention la position du quantificateur ∀ x ∈ D n’est pas la même que dans le phrase lo-
gique (1.1). Dans la convergence uniforme, N ne dépend que de ϵ mais PAS de x !
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La convergence uniforme est plus forte que
la convergence simple. Elle peut s’interpréter
ainsi : fixons ϵ > 0 ; alors il existe N ∈ N tel
que tout n ≥ N , la distance entre le graphe de
la fonction fn et le graphe de la fonction f ne
dépasse jamais ϵ. Cela se traduit par le fait que
pour tout x ∈ D, |fn(x) − f(x)| < ϵ pour tout
n ≥ N . Cette idée est illustrée sur l’image à
droite, où on a pris n, n′ ≥ N . Le ruban entre
pointillés rouges est appelé voisinage tubulaire
du graphe de f de rayon ϵ.

On peut comparer la convergence simple et la convergence uniforme de façon intuitive en
terme de vitesse de convergence. Si une suite de fonctions (fn)n converge simplement vers une
fonction f , la vitesse de convergence dépend du point x ; c’est à dire que pour certains x, la
suite (fn(x))n tend plus vite vers f(x) que pour certains autres x. Penser par exemple à la suite
de fonctions fn : [0, 1] ! R, x 7! xn qui converge simplement vers la fonction f de l’exemple
1.2, et comparer la vitesse de convergence de la suite en x = 0, 001 et x = 0, 999 : on converge
beaucoup plus vite vers 0 en x = 0, 001 qu’en x = 0, 999.

Par contre, si la suite de fonctions (fn)n converge uniformément vers une fonction f , la
vitesse de convergence ne dépend pas de l’endroit où on se place sur l’axe horizontal. Comme le
mot l’indique, la vitesse de convergence se fait uniformément sur tout le domaine de définition.
On peut le voir dans l’exemple 1.10 ci dessous, où la convergence vers f est contrôlée par la
suite

(
1
n

)
n
. Dans la suite pour distinguer la convergence simple et uniforme, on notera :

convergence simple fn

CV S
−−−−!
n!+∞

f

convergence uniforme fn

CV U
−−−−!
n!+∞

f

Remarque 1.7. Soit D un domaine de K (où K = R ou C) et f : D ! K une fonction bornée.
On définit alors la notation suivante :

||f ||∞ = sup
x∈D

|f(x)|

Lorsque f n’est pas bornée, la borne supérieure n’est pas définie (n’existe pas), et donc ça n’a
pas de sens mathématique d’écrire ||f ||∞. L’opération f 7! ||f ||∞ définit une norme sur l’espace
des fonctions définies sur l’ensemble D (nous verrons plus bas ce qu’est une norme). On l’appelle
la norme infinie. Noter alors que la condition (1.2) dans la définition de la convergence uniforme
peut s’écrire :

lim
n!+∞

||fn − f ||∞ = 0 (1.4)

Cette formule est importante ! On retrouve l’idée qu’une suite converge vers une limite.
Exemple 1.8. Soit (fn)n la suite de fonctions fn : R ! R définies par :

fn(x) =
(

1 + x

n

)n

Pour tout x ∈ R on a lim
n!+∞

(
1 + x

n

)n = ex, donc la suite de fonctions (fn)n converge simplement
vers la fonction exponentielle : f(x) = ex. Par contre, elle ne converge pas uniformément, car
pour tout n ≥ 1, la fonction x 7! |fn(x) − f(x)| n’est pas bornée (il suffit de faire tendre x vers
+∞). Donc la borne supérieure sup

x∈D
|fn(x) − f(x)| n’est pas définie, et la condition (1.2) ne peut

pas être satisfaite.
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Exemple 1.9. Soit (fn)n la suite de fonctions fn : R ! R définies par fn : x 7! 1
1+|x−n| . Soit

x ∈ R, alors fn(x) tend vers 0 quand n vers l’infini. La fonction limite simple est donc la fonction
constante f ≡ 0. Pour tout n ∈ N, la fonction fn est positive est majorée par 1 (valeur atteinte
en x = n). La différence |fn(x)−f(x)| = fn(x) est donc bornée MAIS la condition (1.2) n’est pas
satisfaite car sup

x∈R
|fn(x) − f(x)| = sup

x∈R
fn(x) = 1 pour tout n ∈ N, et donc ne peut pas converger

vers 0. La suite de fonctions (fn)n ne converge donc pas uniformément vers f .
Exemple 1.10. Soit (fn)n la suite de fonctions fn : R ! R définies par :

fn(x) =
{ 1

n si x = 0
1
xsin

(
x
n

)
si x ̸= 0

Ces fonctions sont continues en zéro (elles généralisent la fonction sin(x)
x ). A x fixé, si on fait

tendre n vers l’infini, on obtient que fn(x) tend vers 0, quel que soit x. La limite simple f : R ! R
de la suite de fonctions (fn)n est donc la fonction constante nulle, ce qu’on dénote f ≡ 0.

En ce qui concerne la convergence uniforme, on observe que pour tout u nombre réel, on a
|sin(u)| ≤ |u|. Nous avons alors que

∣∣sin
(

x
n

)∣∣ ≤ |x|
n et donc

∣∣∣∣
sin( x

n)
x

∣∣∣∣ ≤ 1
n . On a donc la majoration

suivante, pour tout x ∈ R fixé :

0 ≤ |fn(x) − f(x)| =
∣∣∣∣∣
sin
(

x
n

)

x
− 0

∣∣∣∣∣ ≤ 1
n

Cette majoration étant vraie indépendamment du point x, nous en déduisons que :

0 ≤ sup
x∈D

|fn(x) − f(x)| ≤ 1
n

En prenant la limite quand n tend vers l’infini, nous obtenons donc, par le théorème des enca-
drements :

lim
n!+∞

|fn(x) − f(x)| = 0

Ceci prouve que la suite de fonctions (fn)n converge uniformément vers la fonction nulle.
Exemple 1.11. Regardons la suite de fonctions (fn)n définies par fn : R ! R, x 7! n

n+ex . Soit
x ∈ R ; la limite de la suite réelle (fn(x))n quand n tend vers l’infini est donnée par l’équivalent :

n

n + ex
∼

n!∞
n

n
= 1

Ceci étant vrai quelle que soit la valeur de x, la suite de fonctions (fn)n converge simplement
vers la fonction constante f ≡ 1. Maintenant évaluons la différence suivante :

|fn(x) − f(x)| =
∣∣∣∣

n

n + ex
− 1

∣∣∣∣ = ex

n + ex
= 1

1 + ne−x

Si on évalue cette fonction de x au point x = ln(n), on a alors |fn(xn) − f(xn)| = 1
2 . Autrement

dit, on a une minoration de la borne supérieure sup
x∈D

|fn(x) − f(x)|, ce qu’on peut écrire :

1
2 ≤ ||fn − f ||∞

Cette minoration est vraie pour tout n ∈ N, puisqu’en définissant la suite réelle (xn)n par
xn = ln(n), nous observons que la suite réelle

(|fn(xn) − f(xn)|)
n

est la suite constante dont
tous les termes sont égaux à 1

2 . Chaque terme de cette suite minimise la borne supérieure
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||fn −f ||∞, donc la minoration 1
2 ≤ ||fn −f ||∞ est vraie pour tout n ∈ N. Autrement dit la suite

réelle positive de normes infinies
(||fn − f ||∞

)
n

est minorée par 1/2, donc la suite
(||fn − f ||∞

)
n

ne peut pas converger vers 0 quand n tend vers l’infini. De ce fait, on voit que nous ne pouvons
pas avoir la condition de convergence uniforme.

Dans les deux exemples précédents, nous avons vu deux cas différents : une suite de fonctions
uniformément convergente, et une suite de fonction non-uniformément convergente. Discutons
un peu de quelles sont les stratégies à mettre en oeuvre pour montrer l’un ou l’autre cas. Pour
montrer une convergence uniforme, il faut vérifier la condition suivante (1.2). On peut récrire
cette formule en définissant le sous-ensemble de R+ suivant :

An =
{∣∣fn(x) − f(x)

∣∣, où x ∈ D
}

Cela permet de récrire la condition (1.2) de convergence uniforme comme :

lim
n!+∞

sup
(
An
)

= 0

où ici la borne supérieure est bien la borne supérieure ensembliste des sous-ensembles de R (qui
n’est bien définie que lorsque An est majoré donc). Calculer la borne supérieure sup

x∈D
|fn(x) − f(x)| =

sup
(
An
)

pour tout n peut être compliqué. A la place on peut chercher à majorer les sous-
ensembles An par une suite réelle positive (un)n qui converge vers 0, c’est à dire :

∀ n ∈ N 0 ≤ An ≤ un et lim
n!+∞

un = 0

En effet, si on a une suite (un)n telle que, pour tout n, on a ∀ u ∈ An, 0 ≤ u ≤ un, alors
nécessairement pour tout n on a l’encadrement 0 ≤ sup

x∈D
|fn(x) − f(x)| ≤ un ; si d’autre part

cette suite (un)n converge vers 0, alors on a bien que lim
n!+∞

sup
x∈D

|fn(x) − f(x)| = 0.

Maintenant, dans le cas contraire, si une suite de fonctions (fn)n ne converge PAS unifor-
mément vers une fonction f , alors la proposition logique (1.3) n’est pas vraie, c’est sa négation
qui est vraie :

∃ ϵ > 0 tel que ∀ N ∈ N, ∃ n ≥ N, ∃ x ∈ D tels que |fn(x) − f(x)| ≥ ϵ

On peut la récrire de façon équivalente comme :

∃ ϵ > 0 tel que ∀ N ∈ N, ∃ n ≥ N, ∃ xn ∈ D tels que |fn(xn) − f(xn)| ≥ ϵ

Autrement dit, lorsque (fn)n ne converge PAS uniformément vers une fonction f , il existe une
suite (xn)n de points de D telle que la suite réelle positive (an)n de terme général an = |fn(xn)−
f(xn)| ne converge PAS vers 0 (c’est la signification du début de la phrase logique ci dessus). On
a donc une méthode pour démontrer qu’une suite de fonctions ne converge pas uniformément.
Procédure générale à suivre : dans le cas général où on s’intéresse à une suite de fonctions,
on cherche d’abord la limite simple des fn : D ! R – qu’on dénote f : D ! R – puis, une fois
trouvée, on essaie

1. soit de majorer l’ensemble An = {|fn(x) − f(x)|, x ∈ D} par une suite positive (un)n qui
converge vers 0. Si les fonctions fn sont positives, en général on peut calculer la dérivée
de fn − f par rapport à x et on prend la valeur un = fn(x) − f(x) en le point x où cette
dérivée s’annule (là où fn −f atteint un max). Si la suite (un)n tend vers 0, la convergence
uniforme est ainsi montrée ;
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2. ou bien, de trouver une suite (xn)n d’élément de D, telle que la suite (an)n de terme général
an|fn(xn) − f(xn)| ne converge pas vers 0. Par exemple en choisissant une suite (xn)n telle
que (an)n converge vers une limite non-nulle, cela convient. En général, en regardant la
forme des fonctions fn, on essaie de faire disparaitre n en choisissant astucieusement xn, ou
bien dans le pire des cas à contrôler la variable n. Avec une telle suite (xn)n, cela démontre
que la suite de fonctions ne converge pas uniformément.

Exemple 1.12. La suite de fonctions de l’exemple 1.2, où fn : x 7! xn, ne converge pas uniformé-
ment car si on pose xn = 1− 1

n < 1, on a que f(xn) = 0 donc an = |fn(xn)−f(xn)| =
(
1 − 1

n

)n
.

On a que
(
1 − 1

n

)n
−!

n!+∞
1
e donc la suite (an)n converge vers 1

e ̸= 0. A partir d’un certain rang
N , les éléments an sont donc au dessus de ϵ = 1

2e . Donc la borne supérieure de l’ensemble An,
étant plus grande que an, est donc elle aussi nécessairement au dessus ϵ = 1

2e . On en déduit
que la suite

(
sup(An)

)
n

ne peut pas tendre vers 0 car minorée à partir d’un certain rang par
une constante strictement positive. Cela montre que la suite de fonctions de l’example 1.2 ne
converge pas uniformément.
Exemple 1.13. Soit (fn)n la suite de fonctions fn : [1, b] ! R définies par fn : x 7! 2nx2−1

nx+x2 . A x
fixé, on a l’équivalent suivant lorsque n tend vers l’infini :

2nx2 − 1
nx + x2 ∼

n!+∞

2nx2

nx
= 2x

donc la suite de fonctions tend simplement vers la fonction f : [1, b] ! R, x 7! 2x. Maintenant,
à x fixé, la différence |fn(x) − f(x)| est :

∣∣∣∣∣
2nx2 − 1
nx + x2 − 2x

∣∣∣∣∣ = 2x3 + 1
nx + x2

On aimerait majorer le membre de droite par une suite un qui tend vers 0. Pour cela, il suffit
de majorer le numérateur, et de minorer le dénominateur. Or nous avons 1 ≤ x ≤ b donc
2x3 + 1 ≤ 2b3 + 1 et n + 1 ≤ nx + x2, ce qui donne que pour tout x ∈ [1, b] on a :

0 ≤
∣∣∣∣∣
2nx2 − 1
nx + x2 − 2x

∣∣∣∣∣ = 2x3 + 1
nx + x2 ≤ 2b3 + 1

n + 1

On pose un = 2b3+1
n+1 et donc d’après l’inégalité ci dessus vraie pour tout x ∈ [1, b], on a que

0 ≤ sup(An) ≤ un. En observant que la suite (un)n converge vers 0, d’après la discussion ci-
dessus, cela nous dit que la suite de fonctions fn converge uniformément vers f . Attention, la
convergence uniforme se fait sur le segment [1, b], ça ne converge plus uniformément sur [1, +∞[,
car la majoration par b ne marche plus.

Proposition 1.14. Soit (fn)n une suite de fonctions fn : D ! R qui converge uniformément
vers une fonction f : D ! R. Alors la suite de fonctions converge uniformément vers f sur tout
segment [a, b] ⊂ D.

Démonstration. Cela vient de la majoration simple 0 ≤ sup
x∈[a,b]

|fn(x) − f(x)| ≤ sup
x∈D

|fn(x) − f(x)|.

Attention, la réciproque est fausse : une suite de fonctions (fn)n définies sur un domaine de
définition D peut converger uniformément vers une fonction f sur tout segment [a, b] ⊂ D, mais
pas sur D tout entier. Cela s’explique car un segment est fermé borné (on appelle ça un compact
en topologie), tandis que D peut être ouvert à un des bords, où les fonctions fn − f peuvent ne
pas être bornées.
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Exemple 1.15. Reprenons l’exemple 1.13 mais cette fois ci les fonctions fn : x 7! 2nx2−1
nx+x2 sont

définies sur [1 + ∞[. Cette suite de fonctions admet pour limite simple f(x) = 2x comme
précédemment. Maintenant observons que la différence |fn(x)−f(x)| admet l’équivalent suivant
lorsque x tend vers +∞ :

|fn(x) − f(x)| = 2x3 + 1
nx + x2 ∼

n!+∞
2x

Ainsi la fonction |fn(x) − f(x)| n’est pas majorée sur [1, +∞[, car le membre de droite (l’équi-
valent) tend vers +∞ quand x ! +∞, donc la borne supérieure sup

x∈D
|fn(x) − f(x)| n’est pas

définie, donc la convergence de la suite (fn)n n’est PAS uniforme sur [1, +∞[. Par contre, sur
tout segment (fermé borné) de type [1, b] avec b > 1 fixé, on a vu dans l’exemple 1.13 qu’il y
avait convergence uniforme.
Exemple 1.16. Dans l’exemple 1.9, nous avons vu que la suite de fonctions fn : R ! R, x 7!

1
1+|x−n| ne converge pas uniformément vers la fonction constante f ≡ 0. Maintenant soit b > 0,
sur le segment [0, b] nous avons la majoration suivante :

∀ n ≥ b, ∀ x ∈ [0, b] |fn(x) − f(x)| = fn(x) ≤ fn(b)

Cela vient du fait que la fonction fn est croissante sur ] − ∞, n], intervalle contenant [0, b] dès
que n ≥ b. La majoration étant vraie pour tout x ∈ [0, b], la borne supérieure est donc aussi
majorée :

∀ n ≥ b sup
x∈[0,b]

|fn(x) − f(x)| ≤ fn(b) = 1
1 + n − b

Le membre de droite tend vers 0 quand n tend vers +∞ ce qui veut dire que la condition (1.2)
est satisfaite sur le segment [0, b], et la suite de fonctions (fn)n converge uniformément vers la
fonction nulle sur le segment [0, b] (et plus généralement, sur tout segment de R).

Proposition 1.17. Si une suite de fonctions converge uniformément sur D, alors elle converge
simplement sur D.

Démonstration. Fait en exercice.

La notion de convergence uniforme a été introduite par Cauchy au début du XIXème siècle
pour répondre à la question : si on a une suite de fonctions (fn)n continues en un point a ∈ D
convergeant vers une fonction f , comment savoir si la fonction limite f est continue en a ?
Autrement dit on se demande si on peut intervertir les deux limites suivantes, et pour quelle
notion de convergence :

lim
n!+∞

lim
x!a

fn(x) ?= lim
x!a

lim
n!+∞

fn(x)

On a déjà vu dans l’exemple (1.2) que la convergence simple n’est pas suffisamment forte pour
permettre l’échange des limites.

Théorème 1.18. Soit (fn)n une suite de fonctions fn : D ! R, et a ∈ D. On suppose que :
1. chaque fonction fn : D ! R est continue en a ;
2. la suite (fn)n converge uniformément sur D.

Alors la fonction limite uniforme f : D ! R est continue en a et f(a) = lim
n!∞

fn(a).

Remarque 1.19. En réalité il suffit d’avoir que la suite (fn)n converge uniformément sur un
voisinage de a dans D.
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Démonstration. Soit ϵ > 0. Ecrivons l’uniforme convergence des fn :

∃ N ∈ N, ∀ n ≥ N, ∀ x ∈ D |fn(x) − f(x)| <
ϵ

3
Prenons un tel N , qui ne bougera pas jusqu’à la fin de la preuve. On a alors par l’inégalité
triangulaire :

|f(x) − f(a)| ≤ |f(x) − fN (x)| + |fN (x) − fN (a)| + |fN (a) − f(a)|

Le premier et le dernier terme du membre de droite sont majorés par ||fN − f ||∞, lui même
majoré par ϵ

3 . Nous avons donc :

|f(x) − f(a)| ≤ 2 ϵ

3 + |fN (x) − fN (a)|

Ecrivons ce que ça veut dire d’être continue en a pour la fonction fN , une fois fixé ϵ :

∃ δ > 0, ∀ x tel que |x − a| < δ |fN (x) − fN (a)| <
ϵ

3
Choisissons x tel que |x − a| < δ. On a alors par l’inégalité triangulaire :

|f(x) − f(a)| <
2 ϵ

3 + ϵ

3 = ϵ

Autrement, dit on a prouvé que si on fixe ϵ > 0, il existe δ > 0 tel que pour tout x ∈ ]a−δ, a+δ[,
on a |f(x) − f(a)| < ϵ. C’est vrai pour tout ϵ, donc la fonction f est continue en a (c’est la
définition).

Est-ce qu’il y a une réciproque ? C’est à dire si la suite de fonctions (fn)n continues en a
converge simplement vers la fonction f continue en a, a-t-on que la suite converge uniformément
vers f ? Non, par exemple la suite de fonctions fn : [0, 1] ! R, x 7! nxn(1 − x) sont continues et
converge simplement vers la fonction constante f ≡ 0, continue elle aussi. Cependant si on pose
xn = 1 − 1

n , on a

fn(xn) = n

(
1 − 1

n

)n (
1 −

(
1 − 1

n

))
=
(

1 − 1
n

)n

et donc |fn(xn) − f(xn)| = fn(xn) −!
n!+∞

1
e , donc la convergence n’est pas uniforme. Cependant,

si aux deux hypothèses que les fonctions fn et la fonction limite simple f sont continues, on
rajoute l’hypothèse que fn ≤ fn+1 pour tout n assez grand, alors la convergence de la suite (fn)n

est uniforme : c’est le Théorème de Dini.

Corollaire 1.20. Soit (fn)n une suite de fonctions de fn : D ! R. On suppose que :
1. chaque fonction fn est continue sur D ;
2. la suite (fn)n converge uniformément sur D.

Alors la fonction limite uniforme f : D ! R est continue sur D.

La condition d’uniforme convergence est une condition suffisante, pas nécessaire, car il est
tout à fait possible qu’on ait une suite de fonctions convergeant simplement vers une fonction
continue mais pas convergence uniforme (plein d’exemples vus jusqu’ici le montrent). Notons
aussi que comme la notion de continuité est locale, on n’a besoin que de la convergence uniforme
locale (sur tout segment de D). Le fait qu’une suite de fonctions ne converge pas uniformément
sur R, mais converge uniformément sur tout segment de R est une situation qu’on rencontre
par ailleurs fréquemment (voir par exemple les Exemples 1.15 et 1.16). On peut reformuler le
corollaire 1.20 en terme de convergence locale uniforme :
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Corollaire 1.21. Soit (fn)n une suite de fonctions fn : D ! R. On suppose que :
1. chaque fonction fn est continue sur D ;
2. pour tout x ∈ D, il existe un segment I ⊂ D contenant x sur lequel la suite (fn)n converge

uniformément.
Alors la fonction limite uniforme f : D ! R est continue.

Pour finir sur ce sujet, notons que la contraposée du corollaire 1.20 est l’énoncé suivant (très
important à retenir !) :

Corollaire 1.22. Soit (fn)n une suite de fonctions de fn : D ! R. On suppose que chaque
fonction fn est continue sur D. Si la fonction limite simple f : D ! R n’est pas continue sur D,
la suite (fn)n ne converge pas uniformément sur D.

Remarque 1.23. On dit qu’une suite de fonctions (fn)n est uniformément bornée si

∃ M > 0, ∀ n ∈ N, ∀ x ∈ D |fn(x)| ≤ M

autrement dit ||fn||∞ ≤ M pour tout n. Dans ce cas la fonction limite (par convergence simple)
est bornée par M , car par l’inégalité triangulaire on a pour tout x ∈ D :

|f(x)| ≤ |fn(x) − f(x)| + |fn(x)| ≤ ||fn − f ||∞ + M

et comme lim
n!+∞

||fn − f ||∞ = 0 par convergence uniforme (voir discussion autour de la formule
(1.4)), on a en passant à la limite que |f(x)| ≤ M .

Comme pour l’interversion des deux limites lim
n!+∞

et lim
x!a

permise par la convergence uni-
forme, nous pouvons intervertir lim

n!+∞
et l’intégration sur un segment [a, b] (c’est important !).

Attention sur un intervalle quelconque – c’est à dire pour les intégrales généralisées – la conver-
gence uniforme ne suffit pas et il faut d’autres hypothèses additionnelles. Dans tous les cas, la
condition de convergence uniforme est suffisante pour intervertir limite et intégrale, mais n’est
pas nécessaire.

Proposition 1.24. Soit a < b deux réels, et (fn)n une suite de fonctions continues fn : [a, b] !
R. On suppose que la suite converge uniformément vers une fonction (nécessairement continue)
f : [a, b] ! R. Alors la suite numérique de terme général

∫ b
a fn(x)dx converge et sa limite est

l’intégrale de f (autrement dit on peut permuter limite et intégrale) :

lim
n!+∞

∫ b

a
fn(x) dx =

∫ b

a
lim

n!+∞
fn(x)

︸ ︷︷ ︸
= f(x)

dx

Démonstration. Pour tout n ≥ 0, on a

0 ≤
∣∣∣∣∣

∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|fn − f | ≤ (b − a)||fn − f ||∞

Et le membre de droite tend vers 0 quand n tend vers l’in-
fini (définition de la convergence uniforme, voir la condi-
tion (1.4)).
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Exemple 1.25. Attention l’hypothèse que la convergence uniforme se fait sur un segment [a, b]
est importante ! Si c’est un intervalle ouvert, la limite ne commute pas forcément avec l’intégrale.
Par exemple, regardons la suite de fonctions fn : [0, +∞[! R définies par :

fn(x) =





x
n2 si 0 ≤ x ≤ n

− x
n2 + 2

n si n ≤ x ≤ 2n

0 si x ≥ 2n

Soit n ≥ 1. Le graphe de la fonction fn est un tri-
angle. La hauteur du triangle est le maximum de
la fonction, atteint en x = n et valant fn(n) = 1

n .
La borne supérieure de la fonction fn vaut donc
||fn||∞ = 1

n . Quand n augment, le triangle s’ap-
platit. La suite de fonctions (fn)n converge sim-
plement vers la fonction constante nulle. Comme
||fn − f ||∞ = ||fn||∞ = 1

n , la condition (1.4) est
satisfaite et il y a convergence uniforme de la
suite de fonctions (fn)n.
L’intégrale de la fonction limite f ≡ 0 est nulle. L’intégrale de la fonction fn est l’aire du triangle
de base 2

n et de hauteur 1
n , donc :
∫ +∞

0
fn(x) dx = base × hauteur

2 =
2n × 1

n

2 = 1

et ce pour tout n ≥ 1. On observe donc que lim
n!+∞

∫+∞
0 fn(x)dx ̸= ∫+∞

0 f(x)dx (parce que
l’intégration n’est pas sur un segment et le théorème ne s’applique pas).

La proposition 1.24 permet de retrouver des résultats bien connus sur l’intégrale de Riemann.
Rappelons comment l’intégrale est définie. Soit [a, b] un segment de R. On définit l’intégrale de
f : [a, b] ! R par la méthode de Riemann. On dit qu’une fonction f : [a, b] ! R est étagée – ou
en escalier – si :

1. il existe n ∈ N∗ et n + 1 points du segment [a, b], tels que :

a = x0 < x1 < x2 < . . . < xn−1 < xn = b

2. et f est constante sur tous les intervalles ouverts du type ]xi−1, xi[.
Si f est étagée, alors pour tout 1 ≤ i ≤ n, il existe mi ∈ R tel que f(x) = mi pour tout
x ∈ ]xi1 , xi[. Toute fonction étagée f : [a, b] ! R admet une intégrale, définie par :

∫ b

a
f(x) dx =

n∑

i=1
mi(xi − xi−1)

Les fonctions étagées nous permettent de définir les in-
tégrales pour des fonctions plus générales Une fonction
f : [a, b] ! R est intégrable (au sens de Riemann) si, pour
tout ϵ > 0, il existe deux fonctions étagées u : [a, b] ! R
et U : [a, b] ! R telles que :

u ≤ f ≤ U and
∫ b

a
(U − u)(x) dx ≤ ϵ

Scanned by CamScanner
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Nous pouvons maintenant définir la valeur de l’intégrale d’une fonction intégrable. Soit f :
[a, b] ! R une fonction intégrable. Alors il existe, pour tout ϵ > 0, au moins une fonction étagée
u ≤ f et une fonction étagée U ≥ f . Les intégrales des fonctions étagées sur [a, b] sont bien
définies donc on peut définir les deux sous-ensembles de R suivants :

A =
{∫ b

a
u(x) dx avec u : [a, b] ! R fonction étagée telle que u ≤ f

}

B =
{∫ b

a
U(x) dx avec U : [a, b] ! R fonction étagée telle que U ≥ f

}

Pour tout α ∈ A, il existe une fonction étagée u : [a, b] ! R telle que α =
∫ b

a u, et pour tout
β ∈ B, il existe une fonction étagée U : [a, b] ! R telle que β =

∫ b
a U . Comme par définition

u ≤ f ≤ U , on a donc u ≤ U et donc en intégrant on a que α ≤ β. On en déduit que tous les
éléments de A sont inférieurs ou égaux aux éléments de B. En passant à la borne supérieure
et inférieure, on en déduit que sup(A) ≤ inf(B). Il se trouve que pour une fonction intégrable
f , on a l’égalité sup(A) = inf(B) (la preuve se fait avec les ϵ de la définition d’une fonction
intégrable). Ce nombre unique s’appelle l’intégrale de f , et on le note :

∫ b

a
f(x) dx = sup(A) = inf(B)

L’intégrale de f : [a, b] ! R correspond à l’aire sous la courbe du graphe de f entre les bornes
a et b. Il est à noter que les fonctions d’une variable continues (par morceaux) sur le segment
[a, b] sont intégrables au sens de Riemann.

Comme toute borne supérieure (resp. inférieure) d’un ensemble réel peut être approchée par
une suite d’éléments de l’ensemble, nous déduisons que si f est intégrable, il existe une suite de
fonctions étagées (un)n (resp. (Un)n) telles que

1. un ≤ f (resp. Un ≥ f) pour tout n, et
2. lim

n!+∞

∫ b
a un = sup(A) =

∫ b
a f(x) dx (resp. lim

n!+∞

∫ b
a Un = inf(B) =

∫ b
a f(x) dx).

Nous voyons donc que l’intégrale de Riemann de la fonction f peut être obtenue comme la limite
d’une suite d’intégrales de fonctions étagées. Maintenant, étudions comment la proposition 1.24
nous permet de retrouver ce résultat sur l’intégrale de Riemann lorsque f est une fonction
continue par morceaux sur le segment [a, b]. Nous ne prouverons pas les deux résultats suivants,
nous les accepteront :

1. toute fonction continue par morceaux f sur [a, b] peut être approchée uniformément par
une suite de fonctions étagées (fn)n sur [a, b]. Autrement dit, la suite de fonctions étagées
(fn)n converge uniformément vers f ;

2. la proposition 1.24 est encore valide sous l’hypothèse où les fonctions fn sont continues
par morceaux, à condition qu’on suppose que la limite uniforme f soit aussi continue par
morceaux.

Avec ces deux énoncés dont on accepte la véracité, on déduit que 1. si f est une fonction
continue par morceaux sur [a, b] (donc intégrable), il existe une suite de fonctions continues par
morceaux (fn)n qui converge uniformément vers f , et que 2. sous ces hypothèses, la proposition
1.24 (appliquée aux fonctions continues par morceaux) nous donne le résultat que l’intégrale
de Riemann de la fonction continue par morceaux f est obtenue comme la limite d’une suite
d’intégrales de fonctions en escaliers fn :

lim
n!+∞

∫ b

a
fn =

∫ b

a
f
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Remarque 1.26. La proposition 1.24 se généralise aux primitives. En effet, si pour tout n on
définit hn(x) =

∫ x
a fn(t)dt la primitive de la fonction fn qui s’annule en a, alors sous les hypo-

thèses de la proposition, la suite de fonctions (hn)n converge uniformément vers une fonction
h : [a, b] ! R qui est la primitive de la fonction f s’annulant en a.

Proposition 1.27. Soit I un intervalle de R, et (fn)n une suite de fonctions C1 sur I. On
suppose que :

1. la suite de fonctions (fn)n converge simplement sur I, vers une fonction f : I ! R ;
2. la suite de fonctions (f ′

n)n converge uniformément sur (tout segment de) I, vers une fonc-
tion (nécessairement continue) g : I ! R.

Alors :
1. la suite de fonctions (fn)n converge uniformément sur (tout segment de) I vers f , et
2. la fonction f est de classe C1 sur I et f ′ = g, autrement dit on peut permuter limite et

dérivation :

lim
n!+∞

dfn

dx
= d

dx

(
lim

n!+∞
fn

)
c’est à dire lim

n!+∞
f ′

n = f ′

Exemple 1.28. On peut utiliser la contraposée de la proposition pour montrer qu’une suite de
fonctions ne converge par uniformément. La suite de fonctions (fn)n de classe C1 sur R définies
par fn(x) =

√
x2 + 1

n converge simplement vers la fonction valeur absolue f : x 7! |x|, qui n’est
pas dérivable en zéro, mais dont la dérivée est bien définie sur R∗ par :

f(x) =
{

+1 si x > 0
−1 si x < 0

Pour tout n ≥ 1, la dérivée de la fonction fn est donnée par gn : R ! R; x 7! x√
x2+ 1

n

. La suite

de fonctions continues (gn)n converge simplement vers la fonction g : R ! R définie par :

g(x) =





+1 si x > 0
0 si x = 0
−1 si x < 0

Cette fonction n’est pas continue, donc par le corollaire 1.22 la convergence de la suite (gn)n

n’est pas uniforme. Donc la proposition 1.27 n’est pas applicable ici. La convergence uniforme
est une condition suffisante dans cette proposition, donc si elle n’est pas satisfaite, on ne peut
rien en déduire sur la conclusion, mais dans le cas présent, f ′ ̸= g car g est définie sur R entier
tandis que f n’est définie que sur R∗.

Nous finissons ce chapitre par quelques résultats intéressants que nous donnons à titre indi-
catif, pour la culture général. Les idées apparaissant dans ces théorèmes sont très profondes, et
ont joué un rôle important dans le développement de l’analyse mathématique au XIXème siècle.

Théorème de Weierstrass. Toute fonction continue sur un segment est la limite uniforme
d’une suite de polynômes.

Théorème de Féjer. Toute fonction continue 2π-périodique sur R est la limite uniforme d’une
suite de polynômes trigonométriques.
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1.2 Espaces vectoriels normés

L’étude des suites de fonctions et leur convergence simple/uniforme est un cas particulier de
l’étude des suites de vecteurs dans les espaces vectoriels normés. La convergence simple et la
convergence uniforme sont des convergence de suites, par rapport à deux topologies différentes.
Une suite dans un ensemble E donné est une application u : N ! E, et on la note habituellement
(un)n∈N. A partir de maintenant on prendra E un espace vectoriel de dimension finie (sauf si
on précise autrement). Une suite d’éléments de E est donc une suite de vecteurs. Pour définir la
convergence d’une suite dans E, il faut une notion de distance qui existe naturellement dans R
(la valeur absolue) ou C (le module), et qu’on peut vouloir généraliser à tout espace vectoriel de
dimension n ou infinie éventuellement. Dans la suite on travaillera sur des R-espaces vectoriels (le
plus souvent de dimension finie), mais tout se généralise sans problèmes aux C-espaces vectoriels.
On notera K pour le corps R ou C.

Un espace vectoriel E est un groupe abélien (E, +) muni d’une multiplication externe ·
– ce qui le différencie d’un anneau dont la multiplication est interne – avec les propriétés de
compatibilité entre · avec la loi de groupe + qui ressemblent à celles d’un anneau (c’est à dire
qui sont naturelles) :

— ∀ λ ∈ K, ∀ x, y ∈ E, λ · (x + y) = λ · x + λ · y

— ∀ λ, µ ∈ K, ∀x ∈ E, (λ + µ) · x = λ · x + µ · x

— ∀ λ, µ ∈ K, ∀x ∈ E, λ · (µ · x) = (λµ) · x

— ∀ x ∈ E, 1K · x = x

Exemple 1.29. Nous avons les exemples d’espaces vectoriels suivants :
— de dimension finie : R, C ≃ R2, Rn, Mn(R) l’espace vectoriel des matrices
— de dimension infinie dénombrable : l’anneau R[X] l’espace vectoriel des polynômes sur R,

l’ensemble des suites réelles (un)n qui ont un nombre fini d’éléments non nuls
— le corps des fonction rationnelles R(X) c’est à dire les fractions sur les polynômes (on inclut

les inverses tous les éléments de l’anneau R[X], comme Q est le corps des fractions sur
l’anneau Z), l’ensemble de toutes les suites réelles qu’on note RN, l’ensemble des fonctions
continues sur R ou sur n’importe quel segment [a, b]

La dimension d’un espace vectoriel est définie à partir du cardinal de ses bases. Une base
d’un espace vectoriel E est une famille de vecteurs B = {eα}α∈A de E – α est un indice qui prend
valeur dans un ensemble A qui est soit fini {1, 2, . . . , n−1, n}, soit infinie dénombrable isomorphe
à N soit infinie indénombrable isomorphe à R – qui est libre et génératrice. Une famille libre
veut dire que pour toute sous-ensemble fini de cette famille – disons {eα1 , eα2 , . . . , eαn} ⊂ B –
on a la condition suivante :

∀ λ1, λ2, . . . , λn ∈ K
n∑

i=1
λiei = 0E =⇒ λi = 0 pour tout 1 ≤ i ≤ n

Une famille génératrice veut dire que pour tout vecteur x ∈ E de l’espace vectoriel, on peut
choisir une famille finie de vecteurs {eα1 , eα2 , . . . , eαm} ⊂ B pour un entier m ∈ N, et de scalaires
λ1, λ2, . . . , λm tels que x = ∑m

i=1 λiei. Par la première propriété, cette décomposition est unique.
Si l’ensemble B ayant ces propriétés est fini on dit que la dimension de l’espace vectoriel est
finie, sinon, elle est infinie (dénombrable ou indénombrable, selon le cardinal de A). On parle
souvent de base de Hamel ou base algébrique dans le cas infini.
Convention 1.30. ATTENTION la notation λi ne veut PAS dire que λ ∈ K est à la puissance i. λi

est un nombre scalaire (réel ou complexe). C’est la notation d’Einstein. L’index en bas dénote les
vecteurs de l’espace vectoriel, l’index en haut (puissance) dénote un nombre scalaire. Einstein
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a utilisé cette notation pour pouvoir supprimer les symboles somme σ de ses équations. Le
convention d’Einstein c’est que s’il y a un indice en haut identique à un indice en bas, alors il y
a une somme sur ces indices. Par exemple ∑n

i=1 λiei s’écrit chez Einstein λiei. Par anticipation
des applications des cours, on adopte dès maintenant la notation d’Einstein : les vecteurs de
base de E on un indice en bas, les scalaires (coefficients) on un indice en haut.

Proposition 1.31. Les bases d’un espace vectoriel E ne sont pas uniques mais toutes les bases
de E ont le même cardinal (fini, infini dénombrable ou infini indénombrable).

Définition 1.32. La dimension d’un espace vectoriel E est le cardinal de n’importe laquelle de
ses bases.

Exemple 1.33. Nous avons les exemples d’espaces vectoriels suivants :
— base de R = le vecteur 1 (dim = 1), une base de C ≃ R2 est {1, i} (dim = 2), une base de

Rn = R×R× . . . ×R est faite des vecteurs (1, 0, . . . , 0), (0, 1, 0, . . . , 0), ... , (0, 0, . . . , 0, 1),
une base de Mn(R) est l’ensemble des matrices Ei,j avec des 0 partout excepté à la ligne
i et à la colonne j où on a 1

— une base de R[X] est {1, X, X2, X3, . . . , Xn, . . .} c’est à dire une famille infinie dénombrable
de vecteurs de base, une base de l’ensemble des suites réelles (un)n qui ont un nombre fini
d’éléments non nuls est l’ensemble formé des suites e0 = (1, 0, . . .), e1 = (0, 1, 0, . . .), ....,
en = (0, . . . , 0, 1, 0, . . .) (le 1 est au rang n + 1)

— pour tous les espaces de dimension infinie non dénombrable, en général la base est formée
de tous les éléments générant les droites vectorielles

Exemple 1.34. Expliquons en quoi l’ensemble RN des suites réelles est de dimension infinie
indénombrable. On a une famille naturellement candidate pour une base de RN : les suites
e0 = (1, 0, . . .), e1 = (0, 1, 0, . . .), ...., en = (0, . . . , 0, 1, 0, . . .) (le 1 est au rang n + 1) (il y en a un
nombre infini dénombrable). Dans ce cas toute suite réelle (un)n peut s’écrire comme la somme in-
finie ∑n∈N unen mais cette somme n’est pas finie, donc la famille de suites {e0, e1, e2, . . . , en, . . .}
ne satisfait pas les critères d’une base de Hamel. L’espace RN est donc de dimension finie indé-
nombrable.

A partir de maintenant on prend K = R ou C, et on considère un espace vectoriel E de
dimension finie n ∈ N∗ (on dira si c’est de dimension infinie), c’est à dire que E ≃ Rn. Il y a
donc une base {e1, e2, . . . , en} de E. Tout élément x ∈ E se décompose donc de façon unique
sur cette base : il existe x1, x2, . . . , xn ∈ R (les exposants ne sont pas des puissances mais des
indices, pour autoriser la convention de sommation d’Einstein) tels que x = ∑n

i=1 xiei – en
notation d’Einstein on écrit xiei. Pour tout x = ∑n

i=1 xiei ∈ E, on définit la norme 2 – ou
norme Euclidienne – de x comme étant le nombre réel positif suivant :

||x||2 =
√

(x1)2 + (x2)2 + . . . + (xn)2

Les propriétés de ∥.∥2 sont les mêmes que celles de la valeur absolue et du module sur R et
C respectivement. En effet le module des complexes satisfait les propriétés suivantes :

1. ∀ z ∈ C, |z| ≥ 0 (positivité)
2. ∀ z ∈ C, |z| = 0 ⇐⇒ z = 0 (caractère défini),
3. ∀ λ ∈ R, ∀ z ∈ C, |λz| = |λ| × |z| (homogénéité) ;
4. ∀ z, z′ ∈ C, |z + z′| ≤ |z| + |z′| (inégalité triangulaire).

On observe que la norme 2 a les mêmes propriétés sur l’espace vectoriel E. Ce qui nous permet
de définir la notion de norme ;
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Définition 1.35. Soit E un espace vectoriel (dimension finie ou infinie). On appelle norme sur
l’espace vectoriel E toute application N : E ! R+ (positivité) telle que :

1. ∀ x ∈ E, N(x) = 0 ⇐⇒ x = 0 (caractère défini),
2. ∀ λ ∈ K, ∀ x ∈ E, N(λx) = |λ|N(x) (homogénéité) ;
3. ∀ x, y ∈ E, N(x + y) ≤ N(x) + N(y) (inégalité triangulaire).

On appelle espace vectoriel normé (en abrégé evn) tout K-espace vectoriel E muni d’une norme.

Exemple 1.36. La valeur absolue sur R, le module sur C, et la norme 2 sur tout espace vectoriel
de dimension finie E, sont des normes.
Exemple 1.37. Soit D une partie de R et soit B(D) l’ensemble des fonctions bornées sur D. C’est
un espace vectoriel que nous pouvons équiper de la norme infinie qu’on définit comme suit :

||f ||∞ = supx∈D|f(x)|

En effet, si une fonction f n’est pas bornée, la borne supérieure n’est pas définie (n’existe pas)
donc la norme infinie de f (non bornée) n’existe pas. La norme infinie ∥.∥∞ est une norme
sur B(D) au sens ci dessus.
Exemple 1.38. Soit C0([a, b]) l’ensemble des fonctions continues sur [a, b] (donc en particulier
bornées). En plus de la norme infinie, la famille d’applications suivantes sont des normes, pour
tout p ∈ N∗ :

||f ||p = p

√∫ b

a
|f(t)|pdt

qu’on appelle norme p sur l’espace des fonctions. L’inégalité triangulaire correspond à ce qu’on
appelle l’inégalité de Minkowski.
Remarque 1.39. Notons que la norme 1 n’est pas une norme sur l’espace B([0, 1]

)
des fonctions

bornées sur [0, 1]. Cela vient du fait que la fonction f : [0, 1] ! R définie par :

f(x) =
{

0 si 0 ≤ x < 1
1 si x = 1

satisfait ||f ||1 = 0 mais n’est pas la fonction nulle. L’application norme 1 ∥.∥1 : B([0, 1]
)
! R+

satisfait le caractère défini sur le sous-ensebme C0([a, b]) mais pas sur B([0, 1]
)

entier. Ce dernier
est donc un espace vectoriel normé pour la norme infinie, mais pas pour la norme 1.
Exemple 1.40. On peut équiper l’espace des polynômes à coefficients réels R[X] d’une "norme
infinie", c’est à dire que pour tout P ∈ R[X] s’écrivant P = ∑n

i=0 aiX
i, on a ||P ||∞ =

max(a0, a1, . . . , an). Il existe aussi une norme 1 définie comme la somme des valeurs absolues
des coefficients, c’est à dire ||P ||1 = ∑n

i=0 |ai|.

Comme pour les fonctions, il existe d’autres normes sur E ≃ Rn, pour tout p ≥ 1 :

||x||p = p

√
|x1|p + |x2|p + . . . + |xn|p

On les appelle normes p ou normes de Hölder. Ce qui donne en particulier ||x||1 = ∑n
i=1 |xi|,

qu’on appelle distance de Manhattan. On a en outre la norme infinie – ou distance de Tchebychev
– sur E définie par :

||x||∞ = max{|x1|, |x2|, . . . , |xn|}
Nous montrerons en exercice que si x ∈ Rn, alors la suite

(||x||p
)

p
est une suite positive décrois-

sante – donc minorée donc convergente – et que lim
p!∞

||x||p = ||x||∞. La notation est donc bien
trouvée ! Il existe d’autres normes sur Rn mais elles sont moins utilisées.
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La distance de x à l’origine dépend de la norme choisie ! Par exemple on peut voir que :

||x||∞ = max{|x1|, |x2|, . . . , |xn|} ≤ |x1| + |x2| + . . . + |xn| = ||x||1

En particulier la notion de sphère unité n’a de sens que par rapport à une norme donnée. La
sphère unité dans Rn par rapport à la norme p ∈ N∗ ∪ {∞} est définie par :

S∥.∥p
(0, 1) = {x ∈ Rn tel que ||x||p = 1}

Voici plusieurs exemples de sphères unité dans R3, selon les trois normes les plus utilisées :

S∥.∥∞
(0, 1) =

{
(x, y, z) ∈ R3 tel que max(|x|, |y|, |z|) = 1

}
cube centré en zéro

S∥.∥2
(0, 1) =

{
(x, y, z) ∈ R3 tel que x2 + y2 + z2 = 1

}
sphère de rayon 1 inscrite dans le cube

S∥.∥1
(0, 1) =

{
(x, y, z) ∈ R3 tel que |x| + |y| + |z| = 1

}
octaèdre régulier inscrit dans la sphère

Selon la norme que l’on prend, on aura donc des sphères (donc des boules) unité différentes.
Cela pose problème pour ce qu’on veut faire – définir la convergence pour les suites – car elle
implique la notion de voisinage, qui elle même repose sur la notion de boule et donc de sphère.
On définit les boules ouvertes et fermées de rayon R dans Rn à partir de l’intérieur des sphères
de rayon R.

Définition 1.41. Soit E un espace vectoriel normé (de dimension finie ou infinie), et de norme
N : E ! R+. Soit x ∈ E et soit R > 0 un nombre réel positif. On définit la boule ouverte de
centre x et de rayon R (par rapport à la norme N) comme étant l’ensemble :

BN (x, R) =
{

y ∈ R3 tel que N(y − x) < R
}

et la boule fermée de centre x et de rayon R (par rapport à la norme N) comme étant l’ensemble :

BN (x, R) =
{

y ∈ R3 tel que N(y − x) ≤ R
}

Remarque 1.42. On voit donc que la boule fermée de centre x et de rayon R contient la sphère
de centre x et de rayon R, et plus précisément :

BN (x, R) = BN (x, R) ∪ SN (x, R)

Remarque — Pour tout sous-ensemble B de E et pour tout a ∈ E on note a+B := {a+x| x ∈ B}.
Alors on a B(a, r) = a+B(0, r) et B(a, r) = a+B(0, r). De plus on a toujours B(a, r) ⊂ B(a, r).

Exemples de boules : (i) dans R, on a :

B(a, r) =]a − r, a + r[ et B(a, r) = [a − r, a + r].

(ii) Dans Rn, comme ||x||∞ ≤ ||x||2 ≤ ||x||1 ≤ n||x||∞, on a :

B∞
(
a,

r

n

)
⊂ B1(a, r) ⊂ B2(a, r) ⊂ B∞(a, r)

(et les inclusions similaire pour les boules fermées), voir la figure.

11/2

1/2

1

Fig. 1 – Les boules B∞
(
0, 1

2

)
⊂ B1(0, 1) ⊂ B2(0, 1) ⊂ B∞(0, 1) dans R2

1.3 Limites

On se place dans un EVN (E,N).

Définition 5 Soit (uk)k∈N une suite dans E et ! ∈ E. On dit que la suite uk converge vers
! pour la norme N ssi

lim
k→+∞

N(uk − !) = 0.

Proposition 4 Soit (uk)k∈N et (u′
k)k∈N deux suites de E qui convergent respectivement vers !

et !′ pour la norme N , alors, pour tout λ, µ ∈ R, la suite λuk + µu′
k converge vers λ!+ µ!′.

Démonstration : Exercice.

Exemples a) Dans (Rn, || · ||2) une suite uk = (uk,1, · · · , uk,n) converge vers ! = (!1, · · · , !n) ssi

lim
k→+∞

√
(uk,1 − !1)2 + · · · + (uk,n − !n)2 = 0.

b) (Exemple important pour la suite !) Dans (Rn, || · ||∞) une suite uk = (uk,1, · · · , uk,n) converge
vers ! = (!1, · · · , !n) ssi

limk→+∞ sup1≤i≤n |uk,i − !i| = 0
⇐⇒ ∀ε > 0,∃N > 0,∀k ∈ N, k ≥ N =⇒ sup1≤i≤n |uk,i − !i| < ε
⇐⇒ ∀ε > 0,∃N > 0,∀k ∈ N, k ≥ N =⇒ ∀i ∈ [[1, n]], |uk,i − !i| < ε
⇐⇒ ∀ε > 0,∃N > 0,∀i ∈ [[1, n]],∀k ∈ N, k ≥ N =⇒ |uk,i − !i| < ε

3
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Pour E = R3 et pour p = 1, 2 et p = ∞, en nous appuyant sur les expressions des sphères
unités ci dessus, nous avons les inclusions suivantes :

B∥.∥∞

(
0, 1

2

)
⊂ B∥.∥1

(0, 1) ⊂ B∥.∥2
(0, 1) ⊂ B∥.∥∞

(0, 1)

La chaine d’inclusion est aussi valide pour les boules fermées. Nous voyons que les boules de
rayon 1 associées aux normes 1 et 2 sont prises en sandwich entre deux boules associées à la
norme infinie : celle de rayon 1

2 (ou tout nombre strictement positif inférieur) et celle de rayon
1 (ou tout nombre strictement positif supérieur). Plus généralement dans E ≃ Rn, on a que la
boule (fermée ou ouverte) de centre 0 et de rayon R pour la norme p est incluse dans :

— la boule (fermée ou ouverte) de rayon R pour la norme q, pour n’importe quel p ≤ q et
même q = ∞,

— la boule (fermée ou ouverte) de rayon nR pour la norme m, pour n’importe quel m ≤ p.
C’est à dire, en termes mathématiques, pour tout couple d’entiers r ≤ s :

B∥.∥r
(0, R) ⊂ B∥.∥s

(0, R) ⊂ B∥.∥r
(0, nR) (1.5)

Autrement dit toute boule pour une norme p ∈ N∗ ∪ {∞} donnée est incluse dans une boule
pour n’importe quelle autre norme q ∈ N∗ ∪ {∞}, pour un rayon éventuellement différent. Ce
résultat très profond est caractéristique de la dimension finie, comme nous allons le voir bientôt.

Définition 1.43. Soit E un espace vectoriel normé (de dimension finie ou infinie) de norme
N : E ! R+. Soit x ∈ E ; on appelle voisinage de x par rapport à la norme N tout sous-ensemble
V ⊂ E qui contient une boule ouverte centrée en x, c’est à dire tel qu’il existe ϵ > 0 tel que
BN (x, ϵ) ⊂ V .

Proposition 1.44. Si E un espace vectoriel de dimension finie (donc E ≃ Rn) ; soit p, q ∈
N∗ ∪ {∞} et soit x ∈ E, alors un sous-ensemble V ⊂ E est un voisinage de x par rapport à la
norme p si et seulement si c’est un voisinage de x par rapport à la norme q. Autrement dit, en
dimension finie, la notion de voisinage est indépendante de la norme p ∈ N∗ ∪ {∞} choisie.

Démonstration. Soit x ∈ E ≃ Rn. Nous utilisons la succession d’inclusions (1.5) des boules
ouvertes, que l’on récrit pour tout s ≤ r ∈ N∗ ∪{∞} avec pour centre x ∈ Rn et de rayon ϵ > 0 :

B∥.∥s
(x, ϵ) ⊂ B∥.∥r

(x, ϵ) ⊂ B∥.∥s
(x, nϵ)

Soit V ⊂ E un voisinage de x par rapport à la norme p. Il existe donc ϵ > 0 tel que B∥.∥p
(0, ϵ) ⊂

V . Si p ≤ q, d’après la série d’inclusions ci-dessus pour r = p et s = q, il existe une boule ouverte
B∥.∥q

(x, ϵ) incluse dans B∥.∥p
(0, ϵ) donc dans V , donc V est un voisinage de x par rapport à la

norme q. Si q ≤ p, alors pour r = q et s = p on a que

B∥.∥q

(
x, ϵ

n

) ⊂ B∥.∥p
(x, ϵ) ⊂ V

On a donc que V est un voisinage de x par rapport à la norme q (dans tous les cas).
Inversement, la preuve pour montrer qu’un voisinage de x par rapport à la norme q est un

voisinage de x par rapport à la norme p se fait de façon similaire.

La proposition 1.44 est un cas particulier, démontrée avec les outils qu’on connait, d’un
résultat plus général et plus profond propre à la dimension finie : que la notion de voisinage ne
dépend pas de la norme choisie sur l’espace. Pour expliquer ce résultat plus général – énoncé
dans le Corollaire 1.53 – nous devons introduire la notion de topologie.
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Définition 1.45. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
N : E ! R+. Un sous-ensemble U ⊂ E est dit ouvert (par rapport à la norme N) si c’est un
voisinage de chacun de ses points. Autrement dit, si :

∀ x ∈ U, ∃ ϵ > 0 tel que BN (x, ϵ) ⊂ U

Un sous-ensemble F ⊂ E est fermé si son complémentaire F c = E\F est ouvert.

Exemple 1.46. Dans R, les segments sont des fermés, les intervalles ouverts sont des ouverts.
Dans n’importe quel espace vectoriel normé, les boules ouvertes sont ouvertes et les boules
fermées sont fermées. Il existe des sous-ensembles qui ne sont ni ouverts ni fermés, par exemple
dans (R, |.|), le sous-ensemble {0}∪ ]1, 2[ est ni ouvert ni fermé.
Définition 1.47. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
N : E ! R+. L’ensemble de tous les sous-ensembles ouverts de E (par rapport à la norme
N) est appelé la topologie métrique de E par rapport à N , et noté T (E, N). On prend comme
convention que l’ensemble vide ∅ est ouvert.

Remarque 1.48. Comme l’ensemble vide ∅ est ouvert, son complémentaire – qui est l’espace
vectoriel E complet – est un ensemble fermé. Or E est ouvert car tout point de E est le centre
d’une boule de rayon 1 incluse dans E. Donc E est un ouvert fermé. L’ensemble vide est aussi
fermé car c’est le complémentaire de E, un ouvert. L’espace total E et l’ensemble vide ∅ sont les
deux seuls ensembles ouverts et fermés à la fois dans la topologie métrique d’un espace vectoriel
normé. La topologie de E vis à vis de la norme N est un sous-ensemble de l’ensemble des partie
de E, qu’on note P(E).

Tous ces résultats en dimension finie sur l’inclusion des boules ouvertes/fermées viennent
d’une observation assez profonde qui veut que les différentes normes sur Rn (espace vectoriel de
dimension finie donc) sont équivalentes entre elles, dans le sens suivant :
Définition 1.49. Soit E un espace vectoriel (de dimension finie ou infinie). On dit que deux
normes N : E ! R+ et N ′ : E ! R+ sont équivalentes si il existe 0 < α ≤ β tels que pour tout
x ∈ E on a :

αN(x) ≤ N ′(x) ≤ βN(x)
Cela définit une relation d’équivalence sur l’espace des normes sur E.

Remarque 1.50. Objectivement, si on a αN(x) ≤ N ′(x) ≤ βN(x) alors on a 1
β N ′(x) ≤ N(x) ≤

1
αN ′(x) donc c’est bien une relation d’équivalence.
Proposition 1.51. Equivalence de toutes les normes en dimension finie. Toutes les
normes sur un espace vectoriel de dimension finie sont équivalentes. D’autre part, en ce qui
concerne les normes p dans Rn, pour p ∈ N∗ ∪ {∞}, on a les inégalités suivantes pour tout
x ∈ Rn :

||x||∞ ≤ . . . ≤ ||x||p+1 ≤ ||x||p ≤ . . . ≤ ||x||2 ≤ ||x||1 ≤ n||x||∞

Démonstration. La preuve dans le cas général (pour n’importe quelle norme en dimension finie)
est compliquée donc nous ne la faisons pas. Par contre nous allons montrer l’équivalence des
normes p ∈ N∗ ∪ {∞} dans Rn. La preuve se fait par récurrence : soit x ∈ Rn ; alors on voit
d’après la définition que :

||x||∞ ≤ ||x||1 ≤ n||x||∞
donc la norme 1 et la norme ∞ sont équivalentes. Pour la norme 2 – la norme Euclidienne usuelle
– nous avons le résultat direct ||x||∞ ≤ ||x||2 tandis que de l’autre côté :

(||x||2
)2 =

n∑

i=1
(xi)2 ≤

n∑

i=1
(xi)2 +

n∑

j,k=1
|xj ||xk| =

(||x||1
)2
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Donc ||x||2 ≤ ||x||1 ≤ n||x||∞. Ceci montre que les normes 1,2 et ∞ sont toutes les trois
équivalentes. En réalité on peut montrer que ||x||2 ≤ √

n||x||∞, et plus généralement, nous
déduisons de l’inégalité de Hölder que :

||x||∞ ≤ ||x||1 ≤ n
1
p ||x||∞

Ceci prouve l’équivalence des normes p ∈ N∗ ∪ {∞} dans Rn.

Remarque 1.52. L’inégalité de Hölder nous dit que pour tout u1, u2, . . . , un, v1, v2, . . . , vn ∈ C,
et pour tout p ∈ R∗

+, on a :

n∑

k=1
|ukvk| ≤

(
n∑

k=1
|uk|p

) 1
p
(

n∑

k=1
|vk|p

)1− 1
p

Nous verrons que cette inégalité est encore valide quand n tend vers +∞.

Corollaire 1.53. Soit E un espace vectoriel normé de dimension finie. La topologie métrique
de E ne dépend pas de la norme choisie, c’est à dire que pour n’importe quel choix de normes
N1 : E ! R+ et N2 : E ! R+ sur E, on a :

T (E, N1) = T (E, N2)

Remarque 1.54. C’est en particulier vrai pour les normes p ∈ N∗ ∪{∞}, donc les boules ouvertes
par rapport à une norme p restent ouvertes par rapport à une norme q ̸= p. C’est le sens des
inclusions 1.5.

Démonstration. Nous savons par la proposition 1.51 qu’en dimension finie que toutes les normes
sont équivalentes. La notion de voisinage ne dépend ainsi pas de la norme choisie (on peut
toujours inclure un voisinage d’une norme dans le voisinage de n’importe quelle autre norme).
On en conclut que la notion d’ouvert ne dépend pas de la norme choisie non plus. Et donc la
topologie métrique ne dépend pas de la norme choisie.

En dimension finie donc, comme les normes sont toutes équivalentes, la topologie métrique
ne dépend pas de la norme choisie : un ouvert par rapport à une norme reste ouvert par rap-
port à n’importe quelle norme. En dimension infinie dénombrable – voir Exemple 1.40 – et
indénombrable – voir Exemple 1.38 – les normes ne sont pas forcément équivalentes. Et donc
la topologie de l’espace ambiant dépend de la norme choisie. Cela pose problème car c’est la
topologie (les voisinages) qui gouvernent la convergence des suites : deux topologies différentes
selon deux normes différentes peuvent donner des suites convergentes différentes. Regardons cela
plus en détail. Nous souhaitons reproduire la notion de convergence pour les suites (et plus tard
les fonctions) dans les espaces vectoriels normés, en utilisant les normes en dimension finie ou
infinie. Comme pour les suites réelles ou complexes, une suite à valeurs dans un espace vectoriel
normé E est une application u : N ! E, qu’on note habituellement (un)n. Pour tout n ∈ N, un

est donc un élément de E. Pour la même raison, une limite est un vecteur de E.

Définition 1.55. Soit E un espace vectoriel normé (de dimension finie ou infinie) de norme
∥.∥ : E ! R+. On dit qu’une suite (un)n de E converge vers une limite ℓ ∈ E si la suite à
termes positifs

(||un − ℓ||)
n

converge vers 0, c’est à dire si :

∀ ϵ > 0, ∃ N ∈ N tel que ∀ n ≥ N, ||un − ℓ|| < ϵ

Remarque 1.56. Autrement dit, la suite de vecteurs (un)n converge vers ℓ ∈ E si u : N ! E
envoie tout voisinage de +∞ (dans N) dans un voisinage de ℓ dans E.
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Exemple 1.57. Prenons E = B([0, 1]
)

l’ensemble des fonctions bornées sur le segment intervalle
[0, 1] ⊂ R, et la norme sur E est la norme infinie ∥.∥∞. Un vecteur de E est une fonction
bornée sur [0, 1]. Alors la notion de convergence pour les suites donnée ci-dessus correspond à
la convergence uniforme des suites de fonctions.
Exemple 1.58. Prenons E = M2(R) l’espace des matrices réelles carrées 2 × 2. La choix de la
norme n’a pas d’importance car elles sont toutes équivalentes en dimension finie, mais prenons
la norme 1 car c’est la plus simple. C’est à dire que :

∀ A =
(

a11 a12
a21 a22

)
∈ M2(R) ||A||1 = |a11| + |a12| + |a21| + |a22|

Soit (un)n la suite de matrices de terme général :

∀ n ∈ N∗, un =



(
1 + 1

n

)n
0

0
(
1 − 1

n

)n




La suite de matrices converge vers la matrice ℓ =
(

e 0
0 1

e

)
car pour tout n ∈ N∗ :

||un − ℓ||1 =

∣∣∣∣∣∣

∣∣∣∣∣∣



(
1 + 1

n

)n
0

0
(
1 − 1

n

)n


−

(
e 0
0 1

e

)∣∣∣∣∣∣

∣∣∣∣∣∣
1

=

∣∣∣∣∣∣

∣∣∣∣∣∣



(
1 + 1

n

)n
− e 0

0
(
1 − 1

n

)n
− 1

e



∣∣∣∣∣∣

∣∣∣∣∣∣
1

=
∣∣∣∣
(

1 + 1
n

)n

− e

∣∣∣∣+ 0 + 0 +
∣∣∣∣
(

1 − 1
n

)n

− 1
e

∣∣∣∣

Les deux termes convergent vers 0 quand n tend vers l’infini, donc ||un − ℓ||1 tend vers 0 aussi
ce qui prouve la convergence de la suite (un)n vers la matrice limite ℓ.

Avec cette définition, la convergence des suites de vecteurs dans les espaces vectoriels normés
de dimension finie ne dépend pas de la norme choisie (voir Proposition 1.51), car toutes les normes
sont équivalentes, comme le montre la proposition suivante :

Proposition 1.59. Soit E un espace vectoriel (de dimension finie ou infinie) et soit deux
normes ∥.∥ et ∥.∥′ sur E. Les deux normes ∥.∥ et ∥.∥′ sont équivalentes si et seulement si toute
suite convergente pour ∥.∥ est convergente pour ∥.∥′ et inversement.

Démonstration. Nous allons montrer le sens : "normes équivalentes" =⇒ "les suites convergentes
par rapport à une norme sont convergentes par rapport à l’autre, et inversement". L’idée de la
preuve vient de Eylül.

Soit ∥.∥ et ∥.∥′ deux normes équivalentes sur l’espace vectoriel E. Alors il existe 0 < α ≤ β
tels que pour tout x ∈ E, α||x|| ≤ ||x||′ ≤ β||x||. Soit (un)n une suite de E qui converge par
rapport à la norme ∥.∥ vers une limite ℓ ∈ E. D’après l’équivalence des normes, on a donc pour
tout n ∈ N, les inégalités suivantes :

α||un − ℓ|| ≤ ||un − ℓ||′ ≤ β||un − ℓ||

Les termes de gauche et de droite tendent vers 0 quand n tend vers l’infini. Par le théorème des
gendarmes (encadrements), on déduit que la suite réelle positive

(||un − ℓ||′)
n

tend vers 0 quand
n tend vers l’infini, donc la suite (un)n converge vers ℓ par rapport à la norme ∥.∥′.

21



Montrons aussi que toute suite convergeant par rapport à la seconde norme, converge aussi
par rapport à la première norme. Comme on a, pour tout x ∈ E, que α||x|| ≤ ||x||′ ≤ β||x||,
cela est équivalent à écrire 1

β ||x||′ ≤ ||x|| ≤ 1
α ||x||′. Soit (vn)n une suite de E qui converge par

rapport à la norme ∥.∥′ vers une limite ℓ′ ∈ E. D’après l’équivalence des normes, on a donc pour
tout n ∈ N, les inégalités suivantes :

1
β

||vn − ℓ′||′ ≤ ||vn − ℓ′||′ ≤ 1
α

||vn − ℓ′||′

Les termes de gauche et de droite tendent vers 0 quand n tend vers l’infini. Par le théorème des
gendarmes (encadrements), on déduit que la suite réelle positive

(||vn − ℓ′||)
n

tend vers 0 quand
n tend vers l’infini, donc la suite (vn)n converge vers ℓ′ par rapport à la norme ∥.∥.

Du fait de l’équivalence des normes en dimension finie, une suite de vecteurs est convergente
quelle que soit la norme choisie. Attention, ceci n’est pas le cas en dimension infinie où toutes
les normes ne sont pas équivalentes et donc certaines suites sont convergentes par rapport à
certaines normes mais pas par rapport à d’autres.
Exemple 1.60. Soit E = C0([0, 1]) l’espace des fonction continues sur [0, 1] (donc bornées car
toute fonction continue sur un segment est bornée). Il existe plusieurs normes sur cet espace,
comme la norme infinie et les normes p définies dans l’exemple 1.38. Selon la norme choisie,
les suites convergentes ne sont pas les mêmes, car la convergence des suites en norme 1 sur les
fonctions continues ne donne pas les mémes suites convergentes qu’en norme infinie. En effet, la
suite de fonctions (fn)n de terme général fn : [0, 1] ! R, x 7! xn converge en norme 1 vers la
fonction constante nulle f ≡ 0 sur [0, 1], car

||fn − f ||1 = ||fn||1 =
∫ 1

0
|xn| dx =

∫ 1

0
xndx = 1

n + 1 −−−−!
n!+∞

0

Cependant cette suite de fonctions ne converge pas en norme infinie vers la fonction nulle car la
suite (fn)n n’est pas uniformément convergente sur [0, 1] (et la limite simple de la suite (fn)n est
discontinue donc en dehors de C0([0, 1]

)
). Le choix de la norme sur E – lorsqu’il est de dimension

infinie – a donc des conséquences majeures sur quelles suites sont convergentes ou non.

Voici une autre caractérisation utile de la convergence d’une suite dans une espace vec-
toriel normé de dimension finie. Soit E ≃ Rm un espace vectoriel de dimension finie, et soit
{e1, . . . , em} une base de E. Soit (un)n une suite de vecteurs de E. Pour tout n ∈ N, on peut
décomposer chaque vecteur un ∈ E sur la base, de façon à ce qu’on ait m suites de scalaires
réels

(
λ1

n

)
n
, . . . ,

(
λm

n

)
n

telles que un = ∑m
i=1 λi

nei, pour tout n ∈ N.

Proposition 1.61. Soit E un espace vectoriel de dimension finie, c’est à dire E ≃ Rm. Soit
(un)n une suite de vecteurs de E et soit ℓ ∈ E. La suite (un)n converge vers ℓ ∈ E si et
seulement si chacune des suites numériques (λi

n)n (pour tout 1 ≤ i ≤ m) converge (au sens des
suites réelles classiques) vers ℓi, la i-ème composante du vecteur ℓ. C’est à dire que :

un −−−−!
n!+∞

ℓ si et seulement si λi
n −−−−!

n!+∞
ℓi pour tout 1 ≤ i ≤ m.

Démonstration. Soit (vn)n la suite de vecteurs de E de terme général vn = un − ℓ. On a que
(un)n converge vers ℓ ssi (vn)n converge vers 0 (par rapport à n’importe quelle norme). La i-ème
composante de vn = ∑

i=1m vi
nei est vi

n = λi
n − ℓi. En dimension finie, comme toutes les normes

sont équivalentes, on peut prendre la norme 1, c’est à dire que ||vn||1 = ∑m
i=1 |λi

n − ℓi|. Dans ce
cas, le fait que (vn)n converge vers 0 veut dire que chaque terme |λi

n − ℓi| tend vers 0 quand n
tend vers l’infini. Cela montre que la suite réelle

(
λi

n

)
n

tend vers ℓi. Dans le sens inverse, si la
i-ème composante de un tend vers ℓi cela signifie que la suite (un)n tend vers ℓ quand n tend
vers l’infini.
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Remarque 1.62. Attention, ici comme avant, l’exposant i de ℓi n’est pas une puissance mais la
i-ème composante du vecteur ℓ ∈ E.
Exemple 1.63. Prenons E = M2(R) l’espace vectoriel des matrices 2×2. Comme on est dimension
finie, toutes les normes sont équivalentes, donc on peut en choisir une qui nous arrange, par
exemple la norme 1, c’est à dire celle définie par :

∀ A =
(

a11 a12
a21 a22

)
, ||A||1 = |a11| + |a12| + |a21| + |a22|

Soit a, b ∈ R ; prenons comme suite de matrices la suite suivante :

∀ n ∈ N, un =
n∑

k=0

1
k!

(
a 0
0 b

)k

avec la convention que
(

a 0
0 b

)0 = ( 1 0
0 1 ) la matrice identité de 2 × 2, qu’on note habituellement I2.

Donc en particulier :

u0 = I2, u1 = I2 +
(

a 0
0 b

)
, u2 = I2 +

(
a 0
0 b

)
+ 1

2

(
a 0
0 b

)2

, etc.

Il faut voir qu’on a, pour tout n ∈ N :

un =
(∑n

k=0
ak

k! 0
0 ∑n

k=0
bk

k!

)

Les vecteurs de base de E = M2(R) sont E11 = ( 1 0
0 0 ), E12 = ( 0 1

0 0 ), E21 = ( 0 0
1 0 ), E22 = ( 0 0

0 1 ).
Nous avons donc :

∀ n ∈ N, un =
(

n∑

k=0

ak

k!

)
E11 + 0 E12 + 0 E21 +

(
n∑

k=0

bk

k!

)
E22

Or nous savons (ou pas) que ∑n
k=0

xk

k! tend vers ex quand n tend vers l’infini. On obtient donc
que la suite de terme général

∣∣∣
∑n

k=0
xk

k! − ex
∣∣∣ tend vers 0 quand n tend vers l’infini. Posons

ℓ =
(

ea 0
0 eb

)
. On a donc d’après la Proposition 1.61 :

∀ n ∈ N, ||un − ℓ||1 =
∣∣∣∣∣

n∑

k=0

ak

k! − ea

∣∣∣∣∣+
∣∣∣∣∣

n∑

k=0

bk

k! − eb

∣∣∣∣∣

Les deux termes du membre de droite tendent vers 0 quand n tend vers l’infini. Donc le membre
de gauche tend vers 0 aussi, c’est à dire que la suite (un)n tend vers ℓ. Autrement dit nous avons
montré que

e
(

a 0
0 b

)
=
(

ea 0
0 eb

)

Les suites convergentes nous permettent de donner une deuxième caractérisation des en-
sembles fermés, dont le slogan est "un fermé est une partie stable par passage à la limite" :

Proposition 1.64. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
∥.∥ : E ! R+. Soit A un sous-ensemble de E. Alors A est fermé si et seulement si pour toute
suite convergente u : N ! A de points de A, la limite lim

n!+∞
un appartient à A.
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Démonstration. Supposons que A est fermé. Alors son complémentaire Ac est ouvert dans E.
Soit (un)n une suite de points de A convergeant vers une limite ℓ ∈ E. Montrons que ℓ ∈ A.
Par l’absurde, si jamais ℓ /∈ A, cela veut dire que la limite appartient au complémentaire Ac, qui
est ouvert rappelons le. Mais alors la caractérisation des ensembles ouverts nous dit qu’il existe
ϵ > 0 tel que B∥.∥(ℓ, ϵ) ⊂ Ac. Comme la suite est convergente, il existe N ∈ N tel que ||un−ℓ|| < ϵ
pour tout n ≥ N . Autrement dit, nous avons que un ∈ B∥.∥(ℓ, ϵ) pour tout n ≥ N . Mais alors
tous ces vecteurs sont dans le complémentaire Ac, ce qui n’est pas possible par hypothèse sur la
suite (un)n. C’est absurde.

Réciproquement, supposons que la limite de toute suite convergente d’éléments de A ap-
partient à A. Montrons que A est fermé, c’est à dire que le complémentaire Ac est ouvert. Par
l’absurde encore. Supposons que Ac n’est pas ouvert. Alors il existe ℓ ∈ Ac tel que pour tout
ϵ > 0, la boule ouverte B(ℓ, ϵ) n’est pas complètement incluse dans l’ensemble Ac. Autrement
dit, pour tout ϵ > 0, nous avons que B(ℓ, ϵ) ∩ A ̸= ∅. En particulier, pour n ≥ 1, il existe un
élément un ∈ B

(
ℓ, 1

n

)
∩ A. De ce fait, la suite (un)n ainsi créée converge vers ℓ. Mais alors, par

hypothèse, ℓ appartient à A. Ceci est une contradiction !

Exemple 1.65. Nous posons A =
{

1
n , n ∈ N∗

}
. Alors A n’est pas fermé car le point d’accumula-

tion 0 n’est pas dans A, mais l’ensemble B = {0} ∪ A est fermé car le complémentaire (union
infinie d’intervalles ouverts) est ouvert.
Exemple 1.66. Soit Mn(R) l’espace vectoriel des matrices réelles carrées n × n. On dit qu’une
matrice M ∈ Mn(R) est nilpotente si Mn = 0. Maintenant concentrons nous sur la dimension
n = 2. Soit donc M2(R) l’espace vectoriel des matrices réelles carrées 2 × 2, muni de la norme
∥.∥1 (voir Exemple 1.63). Soit N2 le sous-ensemble des matrices nilpotentes 2 × 2. Attention,
ce n’est pas un sous-espace vectoriel ! Soit (Mp)p une suite de matrices 2 × 2 nilpotentes qui
converge vers une matrice M en norme 1. Alors on a que pour tout p ≥ 0, (Mp)2 = 0. Cette
identité (égalité) passe à la limite donc M2 = 0 aussi. Donc les limites des suites de matrices
nilpotentes sont dans N2 donc N2 est un fermé.

Définition 1.67. Soit E un espace vectoriel normé (de dimension finie ou infinie), et soit A un
sous-ensemble quelconque de E. On définit les notions suivantes (relatives à la norme sur E) :

— l’intérieur de A – noté 8A – est le plus grand ouvert contenu dans A ;
— l’adhérence de A – notée A – est le plus petit fermé contenant A ;
— la frontière de A est l’ensemble des points d’adhérence qui ne sont pas intérieurs :

∂A = A\ 8A

.
Autrement dit nous avons que 8A ⊂ A ⊂ A. Nous disons que A est dense dans E si A = E.

Exemple 1.68. Sur R, l’intérieur de l’ensemble [0, 1[∪{2} est l’intervalle ouvert 8A =]0, 1[. L’in-
térieur de l’ensemble A =

{
1
n , n ∈ N∗

}
est vide car cet ensemble est discret (discontinu), son

adhérence est A = {0} ∪ A. On a bien que 8A ⊂ A ⊂ A. Dans n’importe que espace vectoriel
normé, l’intérieur de la boule fermée de centre x et de rayon R est la boule ouverte de centre x
et de rayon R. L’adhérence de la boule ouverte de centre x et de rayon R est la boule fermée de
centre x et de rayon R.

Proposition 1.69. Soit E un espace vectoriel normé (de dimension finie ou infinie), et soit A
un sous-ensemble quelconque de E. Alors

—
(

8A
)c

= Ac et 8(Ac) = A ;
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— A est ouvert si et seulement si A = 8A ;
— A est fermé si et seulement si A = A ;
— la frontière ∂A est fermée ;
— A est dense dans E si et seulement si tout point de E est atteignable comme limite d’une

suite de points de A.

Démonstration. Les trois premiers points découlent de la définition. La frontière est l’intersection
de deux ensembles fermés A et Ac, donc c’est un fermé. Nous ne démontrerons pas le dernier
point. Cela revient à montrer qu’un point x appartient à l’adhérence de A si et seulement si il
existe une suite de points de A qui converge vers x.

Remarque 1.70. La notion d’ouvert, de fermé, et donc d’intérieur et d’adhérence dépend de
la norme choisie en dimension infinie. Mais en dimension finie comme toutes les normes sont
équivalentes, ces notions sont stables même si on change de norme. La densité d’un ensemble en
dimension finie est donc indépendante de la norme choisie.
Exemple 1.71. Nous savons les rationnels sont denses dans les réels, dans le sens où tout intervalle
ouvert de R contient un (en fait une infinité) de rationnels. Cette définition coincide avec celle
de la densité que nous venons de voir, c’est à dire que Q = R. En effet, tout nombre réel peut
être atteint comme limite d’une suite de rationnels, donc R est le plus petit fermé contenant Q.
Exemple 1.72. Il se trouve que GLn(R) – l’ensemble de toutes les matrices inversibles (de déter-
minant non-nul) – est un ouvert dense de Mn(R). Nous pouvons le voir facilement en dimension
2. L’espace M2(R) est l’union de trois sous-ensemble (pas des espaces vectoriels) : l’ensemble
GL2+(R) des matrices inversibles de déterminant positif, l’ensemble GL2−(R) des matrices in-
versibles de déterminant négatif, et l’ensemble M2,det=0(R) des matrices non-inversibles (de
déterminant nul). Chaque ensemble GL2±(R) est ouvert. En effet, le déterminant d’une matrice
M =

(
a b
c d

)
est det(M) = ad − bc. Si on se déplace un peu autour de M , c’est à dire si on change

un peu les coefficients a, b, c et d, alors le déterminant change continument (c’est une fonction
continue sur M2(R)). Mais alors dans ce cas, si on prend M une matrice inversible de détermi-
nant det(M) > 0 strictement positif, on peut définir une petite boule de centre M et de rayon
ϵ > 0 assez petit, tel que toutes les matrices dans cette boules ont un déterminant strictement
positif. Cela montre que GL2+(R), on fait de même avec GL2−(R). Par complémentarité de
l’union GL2+(R) ∪ GL2−(R) dans l’espace ambiant, on en déduit que M2,det=0(R) est fermé.

Pour la densité de GLn(R) on procède comme suit : soit A une matrice de Mn(R). Alors
posons pour tout p ∈ N∗, Ap = A− 1

pI2 où I2 = ( 1 0
0 1 ) est la matrice identité. Comme le spectre de

A est fini (il contient au maximum 2 valeurs propres), on est sûr que la matrice Ap est inversible
pour tous les p ∈ N∗, sauf 2 au maximum (si jamais une des valeurs propres de A est 1

n par
exemple pour un certain entier n non nul). On a donc une suite de matrices inversible (Ap)p qui
converge vers la matrice A (vis à vis de n’importe quelle norme car nous sommes en dimension
finie). Ceci montre que l’adhérence de GLn(R) est bien tout l’espace Mn(R).

Comme avec les suites numériques, la notion de suite de Cauchy et les résultats que l’on
connait déjà sont toujours valides si on adapte la définition aux espaces vectoriels :

Définition 1.73. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
∥.∥ : E ! R+. On dit qu’une suite de vecteurs (un)n est une suite de Cauchy si elle possède la
propriété suivante :

∀ ϵ > 0, ∃ N ∈ N tel que ∀ p, q ≥ N, ||up − uq|| < ϵ

25



On a la propriété (toujours vraie dans un espace vectoriel normé de dimension finie ou infinie)
que toute suite convergente est une suite de Cauchy (cela se montre facilement). Par contre la
réciproque – si une suite est de Cauchy, alors elle est convergente – n’est vraie que dans certains
espaces, dont Rn et Cn. Comme cette propriété est importante, ces espaces méritent un nom :

Définition 1.74. Soit E un espace vectoriel normé (de dimension finie ou infinie), de norme
∥.∥ : E ! R+. On dit qu’une partie A de E est complète (vis à vis de la norme ∥.∥) si toute
suite de Cauchy d’éléments de A converge dans A. Un espace vectoriel normé complet – c’est à
dire que toute suite de Cauchy de E converge – est appelé espace de Banach.

Remarque 1.75. Attention notons bien que la complétude est une propriété relative à un choix de
norme ! Stefan Banach (1892-1945) est un mathématicien polonais. Ses travaux ont surtout porté
sur l’analyse fonctionnelle dont il est l’un des fondateurs, avec l’école Polonaise de mathématiques
du début XXème siècle.
Exemple 1.76. R et C sont des espaces de Banach. Z est une partie complète de R car toute suite
de Cauchy entière est constante à partir d’un certain rang. Sinon, Q est un sous-ensemble de R
qui n’est pas complet, car des suites de rationnelles peuvent être convergente (donc de Cauchy)
vers un irrationnel (en dehors de Q). R est le plus petit complété de Q : on lui a juste rajouté
les limites des suites de Cauchy.
Exemple 1.77. Une partie non complète de l’espace vectoriel R est A =]0, 1] car la suite réelle
de terme général un = 1

n est de Cauchy, mais elle ne converge pas dans ]0, 1], car elle converge
vers 0 qui se trouve à l’extérieur. Par contre nous voyons que A = [0, 1] est complet. Etre fermé
et être complet a donc un lien fort.

Proposition 1.78. Soit E un espace vectoriel normé, de norme ∥.∥ : E ! R. Toute partie de
E qui est complète (vis à vis de la norme ∥.∥) est fermée (vis à vis de la norme ∥.∥), et tout
sous-ensemble fermé d’une partie complète est complet. De ce fait, dans un espace de Banach,
un sous-ensemble est complet si et seulement si il est fermé.

Démonstration. Soit A une partie complète de E, c’est à dire un sous-ensemble pour lequel toute
suite de Cauchy d’éléments de A converge dans A. Prenons une suite convergente d’éléments
de A, alors c’est une suite de Cauchy, donc elle converge dans A par complétude. Donc par la
Proposition 1.64, A est fermé.

Maintenant, soit B ⊂ A une sous-ensemble fermé de A. Prenons une suite de Cauchy d’élé-
ments de B. Comme B ⊂ A, et que A est complet, alors la suite de Cauchy choisie converge
dans A (au moins). Mais comme B est fermé, la limite de cette suite est nécessairement dans
B, par Proposition 1.64. Donc la suite de Cauchy converge dans B donc B est complet.

Proposition 1.79. Tout espace vectoriel normé de dimension finie est de Banach (c’est à dire
complet), vis à vis de n’importe quelle norme.
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Démonstration. L’idée c’est de se ramener à travailler avec des suites de Cauchy réelles, dont
on sait qu’elles convergent. Soit E un espace vectoriel normé de dimension finie, disons m ∈ N∗.
Comme toutes les normes sont équivalentes en dimension finie, choisissons d’utiliser la norme 1.
Prenons une suite de Cauchy (un)n et montrons qu’elle est convergente dans E. Ecrivons ce que
cela veut dire être de Cauchy dans ce contexte :

∀ ϵ > 0, ∃ N ∈ N tel que ∀ p, q ≥ N, ∥up − uq∥1 < ϵ

On peut décomposer chaque terme un en composantes sur une base (e1, . . . , em) de E, c’est à
dire un = ∑m

k=1 λk
nek, de façon à ce qu’on ait m suites réelles (λ1

n)n, . . . , λm
n )n. On peut récrire

la condition de Cauchy vis à vis de la norme 1 comme :

∀ ϵ > 0, ∃ N ∈ N tel que ∀ p, q ≥ N, |λ1
p − λ1

q | + |λ2
p − λ2

q | + . . . + |λm
p − λm

q | < ϵ

Cela veut dire que individuellement, chaque suite réelle (λk
n)n est une suite de Cauchy. Mais

dans R, toute suite de Cauchy est convergente ! Donc les m suites réelles (λ1
n)n, . . . , λm

n )n sont
convergentes. On en déduit par la Proposition 1.61, que la suite (un)n est convergente.

Proposition 1.80. L’espace des polynômes à coefficients réels R[X] muni de la norme infinie
n’est pas un espace de Banach.

Remarque 1.81. La norme infinie sur R[X] est définie comme suit : pour tout polynôme P ∈ R[X]
s’écrivant P = ∑n

k=0 akXk, on pose ||P ||∞ = max(|a0|, |a1|, . . . , |an|).

Démonstration. Pour montrer que R[X] n’est pas complet, il suffit d’un exemple de suite de
Cauchy qui ne converge pas dans R[X]. Définissons une suite de polynômes de terme général
Pn = ∑n

k=1
1
k Xk donc en particulier a0 = 0 pour tout polynôme Pn. Alors pour tout 1 ≤ p < q,

on a :
||Pq − Pp||∞ =

∣∣∣
∣∣∣

q∑

k=p+1

1
k

Xk
∣∣∣
∣∣∣
∞

= max
( 1

p + 1 , . . . ,
1
q

)
≤ 1

p + 1 −−−−!
p!+∞

0

Montrons que la suite (Pn)n satisfait le critère des suites de Cauchy. Soit ϵ > 0, et on pose
N = E

(
1
ϵ

)
. Comme la partie entière est telle que x < E(x) + 1, on a, pour x = 1

ϵ :

1
ϵ

< E

(1
ϵ

)
+ 1 ce qui donne 1

E
(

1
ϵ

)
+ 1

< ϵ donc 1
N + 1 < ϵ

Alors, pour tout N ≤ p < q, nous avons :

||Pq − Pp||∞ ≤ 1
p + 1 ≤ 1

N + 1 < ϵ

Même raisonnement pour tout N ≤ q < p. Cela nous dit que la suite (Pn)n satisfait la condition
de Cauchy :

∀ ϵ > 0, ∃ N ∈ N tel que ∀ p, q ≥ N, ||Pp − Pq||∞ < ϵ

La suite (Pn)n est donc une suite de Cauchy dans R[X]. Supposons que cette suite converge
vers un polynôme qui s’écrit P = ∑N

k=0 akXk pour un certain N ∈ N et certains coefficients
fixés a1, a2, . . . , aN ∈ R, et montrons une contradiction. Si la suite converge vers P alors la suite
réelle

(||Pn − P ||∞
)

n
tend vers 0 quand n tend vers l’infini. Alors on a pour tout n ≥ N :

Pn − P =
N∑

k=0

(1
k

− ak

)
Xk +

n∑

k=N+1

1
k

Xk
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Mais dans ce cas, pour tout n ≥ N :

||Pn − P ||∞ = max
(∣∣∣∣

1
1 − a1

∣∣∣∣ , . . . ,

∣∣∣∣
1
N

− aN

∣∣∣∣ ,
1

N + 1 , . . . ,
1
n

)
≥ 1

N + 1

En particulier le membre de droite st nécessairement supérieur ou égal à 1
N+1 . Nous voyons

donc que ||Pn − P ||∞ ≥ 1
N+1 donc la suite réelle

(||Pn − P ||∞
)

n
est minorée par un nombre

réel strictement positif donc ne peut pas converger vers 0, ce qui est une contradiction. L’espace
vectoriel normé (R[X], ∥.∥∞) n’est donc pas complet.

Exemple 1.82. Un autre espace non-complet est le suivant : on prend l’ensemble des polynômes
à coefficients complexes, noté C[X], avec comme norme l’application N : C[X] ! R+ définie
par :

∀ P ∈ C[X] N(P ) = sup
|z|=1

|P (z)|

Alors (C[X], N) n’est pas complet.

Proposition 1.83. Soit D une partie non-vide de R, alors l’espace vectoriel B(D) des fonctions
bornées sur D muni de la norme infinie est un espace de Banach.

Démonstration. L’idée de la preuve est la même que celle de la proposition 1.79, mais avec une
infinité de suites de Cauchy, chacune d’entre elles correspondant à un point x de D. Soit (fn)n

une suite de fonctions bornées sur D ⊂ R, qui satisfait le critère de Cauchy vis à vis de la norme
infinie. Montrons qu’elle est convergente. Nous devons d’abord définir sa limite f : D ! R,
puis montrer qu’elle converge vers cette limite avec la norme infinie, c’est à dire qu’elle converge
uniformément vers f .

Soit ϵ > 0. Il existe N ∈ N tel que pour tout p, q ≥ N , nous avons ||fq − fp||∞ < ϵ. Cela veut
dire que :

sup
x∈D

∣∣fq(x) − fp(x)
∣∣ < ϵ

En particulier, fixons x ∈ D, nous avons donc que pour tout p, q ≥ N ,
∣∣fq(x) − fp(x)

∣∣ < ϵ. La
suite réelle

(
fn(x)

)
n

est donc une suite de Cauchy (dans R !). Elle converge donc vers une limite
que l’on dénote f(x). On répète le raisonnement pour tout x dans D. A la fin, on a donc, pour
tout x dans D, une règle qui assigne au point x un nombre réel f(x). Cela définit une fonction
f : D ! R, telle que la suite de fonctions (fn)n converge simplement vers la fonction f .

Montrons que la suite converge uniformément, c’est à dire que la suite (fn)n converge vers
f dans B(D) vis à vis de la norme infinie. Tout d’abord il faut pour cela d’abord montrer que f
est bien bornée. Nous ne le montrerons pas mais cela s’appuie encore sur le critère de Cauchy.
On admet donc que f ∈ B(D). Montrons que (fn)n converge uniformément. Soit ϵ > 0, comme
la suite est de Cauchy, il existe donc N ∈ N tel que pour tout p, q ≥ N , ||fq − fp||∞ < ϵ. Cela
signifie que pour tout x ∈ D,

∣∣fq(x) − fp(x)
∣∣ < ϵ. Faisons tendre p vers l’infini, la suite réelle(

fp(x)
)

p
tend vers f(x). Nous obtenons donc que pour tout q ≥ N et tout x ∈ D, nous avons∣∣fq(x) − f(x)

∣∣ < ϵ, autrement dit, pour tout q ≥ N , ||fq − f ||∞ < ϵ. C’est la définition de la
convergence uniforme.

Exemple 1.84. Un autre exemple d’espace de Banach qui s’appuie sur une preuve similaire est
l’espace des suites réelles ou complexes bornées (un)n, muni de la norme infinie définie par

||un||∞ = sup
n≥0

|un|

Corollaire 1.85. Soit a < b deux réels, alors l’espace vectoriel C0([a, b]
)

des fonctions continues
sur [a, b] muni de la norme infinie est un espace de Banach.
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Démonstration. Si D est un segment [a, b], alors C0([a, b]
)

est un sous-espace vectoriel de B([a, b]
)

car toutes les fonctions continues sur un segment sont bornées. Soit (fn)n une suite de Cauchy
de fonctions continues sur [a, b]. Comme C0([a, b]

) ⊂ B([a, b]
)

et que ce dernier est complet, la
suite de fonctions (fn)n converge dans B([a, b]

)
(par rapport à la norme infinie) vers une fonction

bornée f . Comme la limite d’une suite de fonctions continues qui converge uniformément est elle
aussi continue (voir Théorème 1.20), on en déduit que la fonction limite f vit bien dans C0([a, b]

)
.

L’espace vectoriel de dimension infinie C0([a, b]
)

est donc complet avec la norme infinie.

Remarque 1.86. Attention ce n’est plus forcément le cas que C0([a, b]
)

est complet avec d’autres
normes car en dimension infinie, toutes les normes ne sont pas équivalentes ! Par exemple :
Exemple 1.87. L’espace vectoriel de dimension infinie C0([a, b]

)
n’est pas complet avec la norme 1.

En effet si on définit la suite de fonctions (fn)n suivante :
pour tout n ∈ N∗ on pose

fn : [0, 1] −−−−−−! R

x 7−−−−−−!





1 si x ∈
[
0, 1

2

]

1 − n
(
x − 1

2

)
si x ∈

[
1
2 , 1

2 + 1
n

]

0 si x ∈
[

1
2 + 1

n , 1
]
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To prove this statement, it suffices to exhibit a Cauchy sequence that does not have a 
limit in the space. We define the sequence Un) for n 2': 3 as follows (see Figure 1 1 .4. 1 ) :  

for 0 .::; x .::; 1 /2, 
for 1 /2 < x _::::; 1 /2 + 1 /n ,  
for 1 /2 + 1 /n < x _::::; 1 .  

Note that the sequence Un) converges pointwise to the discontinuous functionf(x) := 1 for 
0 _::::; x _::::; 1 /2 and f(x) := 0 for 1 /2 < x _::::; 1 .  Hence f � C[O , 1 ] ;  in fact, there is no 
function g E C[O, 1 ]  such that d, (fn , g) --+ 0. D 

Figure 11 .4.1 The sequence Un) 

Open Sets and Continuity ---------------------­
With the notion of neighborhood defined, the definitions of open set and closed set read the 
same as for sets in JR. 

11 .4.9 Definition Let (S, d) be a metric space. A subset G of S is said to be an open set in 
S if for every point x E S there is a neighborhood U of x such that U c:;: G. A subset F of S is 
said to be a closed set in S if the complement S\F is an open set in S. 

Theorems 1 1 . 1 .4 and 1 1 . 1 .5 concerning the unions and intersections of open sets and 
closed sets can be extended to metric spaces without difficulty. In fact, the proofs of those 
theorems carry over to metric spaces with very little change: simply replace the 
e-neighborhoods (x - e, x + t:) in lR by e-neighborhoods V8 (x) in S. 

We now can examine the concept of continuity for functions that map one metric space 
(S1, d1 ) into another metric space (S2, d2) .  Note that we modify the property in 5 . 1 .2 of 
continuity for functions on lR by replacing neighborhoods in lR by neighborhoods in the 
metric spaces. 

11 .4.10 Definition Let (S1 , d1 ) and (S2, d2) be metric spaces, and let f :  S1 --+ S2 be a 
function from S1 to S2• The function / is said to be continuous at the point c in S1 if for 
every e-neighborhood V0 (f( c)) off( c) there exists a a-neighborhood V8 ( c) of c such that if 
x E Va (c) ,  then f(x) E Vs (f(c) ) . 

The e-o formulation of continuity can be stated as follows : / : S1 --+ S2 is continuous at 
c if and only if for each e > 0 there exists 8 > 0 such that d1 (x, c) < 8 implies that 
dz (f(x) , f(c) ) < e. 

Pour tout p ≤ q ∈ N∗ nous avons que fp ≥ fq (il faut dessiner les fonctions pour voir
comment l’intégrale se comporte). On a donc :

∥fp − fq∥1 =
∫ 1

0
|fp − fq| =

∫ 1

0
fp − fq =

∫ 1
2 + 1

p

1
2

fp −
∫ 1

2 + 1
q

1
2

fq = 1
2p

− 1
2q

= 1
2

(1
p

− 1
q

)

Comme la suite
(

1
n

)
n

converge (vers 0), c’est une suite de Cauchy, donc le membre de droite
ci-dessus peut devenir aussi petit que l’on veut, donc le membre de gauche aussi. On en déduit
que la suite de fonctions (fn)n est une suite de Cauchy. Par contre elle ne converge pas dans
C0([a, b]

)
car la limite simple de la fonction est la fonction

f : [0, 1] −−−−−−! R

x 7−−−−−−!





1 si x ∈
[
0, 1

2

]

0 si x ∈
]

1
2 , 1
]

qui est discontinue, donc en dehors de C0([a, b]
)
.

Exemple 1.88. Un autre exemple d’espace vectoriel non complet avec une norme mais complet
avec une autre est le suivant E = C1([a, b]

)
, pour un choix de réels a < b fixés. Avec la norme

infinie, l’espace n’est pas complet car une suite de fonctions C1 peut converger uniformément
vers une fonction f , mais celle-ci n’est pas forcément C1. En effet, il faut des hypothèses supplé-
mentaires, voir Théorème 1.27. Par contre, avec la norme suivante :

∀ f ∈ E, ||f || = ||f ||∞ + ||f ′||∞,

l’espace E = C1([a, b]
)

est un espace complet (dit de Banach donc).

Les exemples précédents nous montrent plusieurs cas assez inattendus. En dimension finie,
tous les espaces vectoriels normés sont complets. En dimension infinie indénombrable, ça dépend
de la norme. Nous verrons dans le chapitre suivant comment caractériser les espaces complets.
Pour l’instant, nous avons juste le joli résultat suivant que nous ne prouverons pas :
Proposition 1.89. Tout espace de Banach est de dimension finie ou infinie non-dénombrable.
Corollaire 1.90. Tout espace de dimension infinie dénombrable n’est jamais complet, quelle
que soit la norme.
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2 Séries de vecteurs, séries numériques et séries de fonctions

Assez tôt dans l’histoire des mathématiques on a observé que la somme des termes d’une
suite pouvait converger. Par exemple, on savait au début du XVIIIème siècle que la somme des
1
n divergeait mais que la somme des 1

n

2 :

1 + 1
22 + 1

32 + 1
42 + 1

52 + 1
62 + . . .

convergeait, c’est à dire que l’on savait que la somme était majorée.
Malheureusement, c’était plus compliqué pour
trouver la limite car la somme converge lente-
ment. Le problème de trouver la limite de cette
somme a été posée en premier en 1644 par Pie-
tro Mengoli puis étudiée par Jacques Bernoulli
à Bâle – d’où le surnom du problème – et enfin
étudiée par Stirling dans les années 1730 puis
démontrée par Euler en 1735 et plus rigoureuse-
ment encore en 1744, et on a :

+∞∑

n=1

1
n2 = π2

6

A droite, document d’Euler attribuant diverses
valeurs à des séries divergentes par méthode de
différences finies.

La compréhension des sommes des termes d’une suite numérique, qu’on appelle "séries numé-
riques", s’est faite du XVIIème au XIXème siècle. Par la suite, très naturellement, dès le XIXème
siècle les mathématicien·nes en sont venues à sommer des fonctions. Cela permet de définir des
fonctions aux propriétés étranges (par exemple continue mais nulle part dérivable), mais aussi
d’approximer une fonction quelconque par des polynômes (son développement de Taylor), qui
généralisent les développement limité à tout ordre. Nous voulons aussi faire sens de l’expression
suivante, très utilisée en science :

exp(f) =
+∞∑

n=0

fn

n!

où f : E ! E est une fonction continue (il faut donc définir ce que cela veut dire) d’un espace
E dans lui même (en particulier, on peut prendre une matrice). Comme les suites vectorielles
nous pouvons sommer un nombre fini de fois des vecteurs dans un espace vectoriel normé. La
somme peut converger ou non. Comprendre cela va nous occuper le reste du semestre. Pour
bien comprendre comment les sommes de vecteurs (et de fonctions donc) convergent, on va
commencer avec les sommes de suites réelles, c’est à dire les séries numériques. Comme les séries
numériques à terme positif vont resurgir dans le cas général on va commencer par cela.

2.1 Généralités sur les séries

Définition 2.1. Soit (E, N) un espace vectoriel normé et u : N ! E une suite de vecteurs de
E. Pour tout n ∈ N, posons :

Sn =
n∑

k=0
uk
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On l’appelle la somme partielle de rang n de la suite (un)n ; c’est un vecteur de E. La suite de
sommes partielles (Sn)n est une application de N dans E, qui s’appelle la série de terme général
un, notée habituellement

∑
un.

On dit que la série
∑

un est convergente si la suite (Sn)n est convergente dans E par rapport
à la norme N choisie. Dans ce cas, on définit la notation suivante :

S =
+∞∑

k=0
uk = lim

n!+∞
Sn ∈ E

C’est un vecteur de E qu’on appelle la somme de la série des un.

Remarque 2.2. ATTENTION la notation ∑un est un symbole pour désigner la suite de sommes
partielles (Sn)n. Cette suite est donc appelée "série des un" et est notée ∑un, mais ne doit PAS
être confondu avec la notation ∑+∞

k=0 uk, qui symbolise la limite de la suite des sommes partielles
(Sn)n, et qu’on peut penser comme la somme totale. Autrement dit :

∑
un est la suite (Sn)n (existe toujours) ̸=

+∞∑

k=0
uk n’existe que quand (Sn)n converge, c’est un vecteur de E

Faites attention aux notations, vous allez faire des erreurs longtemps.
Exemple 2.3. L’exemple fondamental est celui de la série géométrique. Soit E = R le corps
des réels et soit q ∈ R. On connait la suite géométrique de terme général qn. On sait qu’elle est
convergente si et seulement si |q| < 1 ou q = 1, et elle est divergente si |q| > 1 ou q = −1. Si q = 1
alors la somme partielle de rang n de la suite (qn)n vaut Sn = ∑n

k=0 = 10 + 11 + 12 + . . . + 1n
︸ ︷︷ ︸

n+1 fois

=

n + 1. La suite des sommes partielles tend vers +∞ quand n tend vers +∞. La série ∑ qn est
dans ce cas divergente. Maintenant supposons que q ̸= 1. Dans ce cas la somme partielle de rang
n vaut :

Sn =
n∑

k=0
qk = q0 + q1 + q2 + q3 + q4 + . . . + qn = 1 − qn+1

1 − q

1. Si |q| < 1, on a que la suite (qn)n converge vers 0. Dans ce cas, la suite des sommes
partielles converge vers 1

1−q . Ce qui veut dire que la série géométrique ∑ qn converge et :

+∞∑

k=0
qk = lim

n!+∞
Sn = 1

1 − q

2. Si par contre |q| > 1, la suite géométrique des valeurs absolue
(|q|n)

n
tend vers +∞. Dans

ce cas la suite des somme partielles satisfait :

|Sn| ∼
n!+∞

|q|n+1

|1 − q| −−−−!
n!+∞

+∞

Ainsi dans le cas |q| > 1 la série ∑ qn diverge.
3. Si finalement q = −1, on observe que S0 = (−1)0 = 1, S1 = S0 + (−1)1 = 1 − 1 = 0,

S2 = S1 + (−1)2 = 1, S3 = S2 + (−1)3 = 1 − 1 = 0, etc. On obtient que S2p = 1 et
S2p+1 = 0. Ainsi la série ∑ qn diverge aussi (ne converge pas).

La nature d’une série – convergente ou divergente – ne dépend pas de ses premiers termes.
En effet, si deux suites (un)n et (vn)n sont identiques à partir du rang N ∈ N, alors pour tout
n ≥ N , Sn − SN = S′

n − S′
N , où Sn est la somme partielle de la suite u et S′

n est la somme
partielle de la suite v. Les termes de rang inférieurs à N n’interviennent pas pour savoir si les
séries convergent ou non. Par contre, bien entendu, si les deux séries sont convergentes, alors on
n’a pas ∑+∞

n=0 un = ∑+∞
n=0 vn si les premiers termes sont différents.
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Définition 2.4. Soit (E, N) un espace vectoriel normé et soit (un)n une suite de vecteurs de
E. Supposons que la série

∑
un est convergente, de limite S = lim

n!+∞
Sn = ∑+∞

k=0 uk. Pour tout
n ≥ 0, définissons :

Rn = S − Sn =
+∞∑

k=n+1
uk

C’est un vecteur de E qu’on appelle le reste de de la série ∑un de rang n.

Remarque 2.5. En théorie, cela n’a pas de sens d’écrire ∑+∞
k=n+1 uk car ∑+∞

k=0 uk est juste une
notation abstraite pour désigner la limite de la suite des sommes partielles. Mais il se trouve
que cette notation est très pertinente et très pratique, car on peut l’utiliser pour symboliser
comment écrire le reste d’une série convergente :

Rn = S − Sn =
+∞∑

k=0
uk −

n∑

k=0
uk =

+∞∑

k=n+1
uk

Exemple 2.6. Retour sur la série géométrique, pour |q| < 1 on sait que la série converge donc le
reste est définissable et on a :

Rn =
+∞∑

k=n+1
qk = S − Sn = 1

1 − q
− 1 − qn+1

1 − q
= qn+1

1 − q

Le reste de rang n est la différence entre la somme partielle de rang n et la limite de la suite
des sommes partielles. On peut le voir comme l’erreur commise en prenant Sn comme valeur
approchée de la limite S. Comme la suite (Sn)n tend vers sa limite S, nous déduisons que la
suite des reste (Rn)n tend vers 0. Par convention, on pose parfois S−1 = 0, et d’autre part
R−1 = S − S−1 = S. Dans l’exemple de la série géométrique on voit bien que R−1 = S = 1

1−q et
que la suite (Rn)n converge vers 0. Faits simples mais importants :

— On peut récupérer la suite à partir de la série, puisqu’on a un = Sn − Sn−1 (avec la
convention S−1 = 0).

— Si la série converge, alors on peut récupérer la suite à partir de la suite des restes puisque
un = Rn−1 − Rn, avec la convention que R−1 = S = ∑+∞

k=0 uk.
— La convergence d’une suite peut toujours se traduire par celle d’une série : la série téles-

copique. Soit (un)n une suite, alors on a que un = ∑n
k=0 uk − uk−1 avec la convention que

u−1 = 0. Donc la suite (un)n converge si et seulement si la série ∑un+1 − un converge.

Proposition 2.7. Soit (un)n une suite de vecteurs de E, espace vectoriel normé. Si la série∑
un converge, alors la suite (un)n converge vers 0 (le vecteur nul).

Démonstration. Si la série ∑un converge, cela veut dire que la suite des sommes partielles
(Sn)n converge, vers une limite donnée S (vecteur de E). Or nous avons que pour tout n ∈ N,
un = Sn − Sn−1. Le membre de droite tend vers 0 car à la limite il vaut S − S. Le membre de
gauche tend donc vers l’origine.

Cette proposition est extrêmement importante car elle nous donne une condition néces-
saire à la convergence, et que sa contraposée nous donne une condition suffisante pour la non-
convergence d’une série. Rappelons que si P =⇒ Q alors la contraposée de cette phrase logique
est non − Q =⇒ non − P . La contraposée est équivalente à la phrase logique P =⇒ Q.

Proposition 2.8. Contraposée de la Proposition 2.7. Soit (un)n une suite de vecteurs de
E, espace vectoriel normé. Si la suite (un)n ne converge pas vers 0 (le vecteur nul), alors la
série est divergente.
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Définition 2.9. Soit (un)n une suite de vecteurs de E, espace vectoriel normé. On dit que la
série est grossièrement – ou essentiellement – divergente si la suite (un)n ne converge pas vers
0 (le vecteur nul).

On a trois donc cas principaux de suite grossièrement divergentes dans R ou C :
— toute suite qui tend vers +∞, par exemple un = n2 ;
— toute suite qui converge vers une limite non-nulle, comme un = 1 + 1

n ;
— toute suite périodique, comme un = ei nπ

3 ;
— toute suite dense dans un compact, comme un = cos(n).

Attention, la Proposition 2.7 n’est pas une équivalence. Nous rappelons que P =⇒ Q ne nous
donne une information sur Q, que si P est vraie. Si P est fausse, Q peut être soit vraie soit
fausse, sans contrainte. En particulier, il est possible d’avoir Q vraie (la suite (un)n tend vers
0), et P fausse (la série ∑un diverge), comme l’exemple suivant le montre.

Proposition 2.10. La série harmonique
∑ 1

n est divergente.

Démonstration. La divergence a été prouvée pour la première fois le mathématicien français
Nicolas Oresme au XIVème siècle. Par l’absurde : supposons que la suite des sommes partielles
(Sn)n converge. Dans ce cas ce serait une suite de Cauchy. Or nous avons, pour tout n ∈ N∗ :

S2n − Sn =
2n∑

k=n+1

1
k︸︷︷︸

≥ 1
2n

≥
2n∑

k=n+1

1
2n

= n

2n
= 1

2

Donc la condition de Cauchy ne peut pas être satisfaite, ce qui est une contradiction.

Démonstration. Deuxième preuve ! On raisonne encore une fois par l’absurde. Tout d’abord
observons que pour tout n ∈ N∗, on a :

1
2n − 1 + 1

2n
= 1

n
+ 1

2n(2n − 1)

On peut réarranger la somme partielle S2n en paquets de deux fractions, dans lesquels on utilise
la relation ci-dessus :

S2n = 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 . . . + 1

2n − 1 + 1
2n

=
(

1 + 1
2

)
+
(1

3 + 1
4

)
+
(1

5 + 1
6

)
+
(1

7 + 1
8

)
. . . +

( 1
2n − 1 + 1

2n

)

=
(

1 + 1
2

)
+
(1

2 + 1
12

)
+
(1

3 + 1
30

)
+
(1

4 + 1
56

)
+ . . . +

( 1
n

+ 1
2n(2n − 1)

)

= Sn +
(1

2 + 1
12 + 1

30 + 1
56 + . . . + 1

2n(2n − 1)

)
= Sn +

n∑

k=1

1
2k(2k − 1)

Si la série harmonique converge, alors les sommes partielles convergent vers la même limite S et
la somme sur la droite converge aussi, et on obtient :

S = S +
+∞∑

k=1

1
2k(2k − 1) c’est à dire

+∞∑

k=1

1
2k(2k − 1) = 0

Ceci est absurde.

33



Remarque 2.11. Autrement dit, même si la suite
(

1
n

)
n

converge vers 0, elle converge trop len-
tement pour que la série harmonique converge ! ! Par contre, la série ∑ 1

n2 converge vers sa
limite π2

6 . Ainsi, il faut qu’une suite (un)n tende suffisamment vite vers 0 pour que la série∑
un converge. On voit que tout se passe à l’infini. On verra plus tard que l’exposant limite de

convergence est s = 1. C’est à dire que la série ∑ 1
n converge si et seulement si s > 1.

Définition 2.12. Soit E un espace vectoriel normé, de norme ∥.∥ : E ! R+, et soit u : N ! E
une suite. On dit que la série

∑
un est convergente en norme (par rapport à la norme ∥.∥) si la

série numérique positive
∑ ||un|| est convergente. On dit que la série

∑
un est inconditionnelle-

ment convergente si l’ordre de sommation n’a pas d’influence sur la nature (convergente) de la
série et sa limite.

Bien sûr, et c’est tout l’intérêt de la définition. Toutes les séries convergentes ne sont pas
convergentes en norme ou inconditionnellement convergentes. Le résultat suivant est central
dans le cours et explore le lien entre convergence en norme et convergence classique :

Proposition 2.13. Soit (E, ∥.∥) est un espace de Banach. Si une série de vecteurs est conver-
gente en norme alors elle est (inconditionnellement) convergente.

Démonstration. Nous allons montrer que la convergence en norme de la série implique la conver-
gence de la série. Nous n’adresserons pas la question de la convergence inconditionnelle qui est
beaucoup plus compliquée. Soit (un)n une suite de vecteurs de E. Supposons que la série ∑un

est convergente en norme. Notons Tn = ∑+∞
k=n+1 ||uk|| le reste de rang n de la série ∑ ∥un∥ et

notons Sn = ∑n
k=0 uk la somme partielle de la suite de vecteurs (un)n .

On veut montrer que la suite des sommes partielles (Sn)n est une suite de Cauchy. La
complétude de E nous permet de conclure sur sa convergence. Soit donc p, q ∈ N tels qu’on peut
supposer p ≤ q (la preuve est la même si c’est l’autre cas), nous avons alors :

∥Sp − Sq∥ =

∥∥∥∥∥∥

q∑

k=p+1
uk

∥∥∥∥∥∥
≤

q∑

k=p+1
∥uk∥ = Tq − Tp

En faisant le même raisonnement avec q ≤ p, on a que ∥Sp − Sq∥ ≤ Tp − Tq. En comparant les
deux résultats, on voit donc que :

∀ p, q ∈ N ∥Sp − Sq∥ ≤ |Tp − Tq|

Mais comme la série ∑ ∥un∥ converge, la suite des restes (Tn)n converge vers 0, donc est une
suite de Cauchy. Soit ϵ > 0, il existe donc N ∈ N tel que pour tous p, q ≥ N , on a |Tp − Tq| < ϵ.
Mais dans ce cas on a aussi que ∥Sp − Sq∥ ≤ ϵ. Ce résultat étant vrai pour tout choix d’epsilon,
nous voyons que la suite (Sn)n est une suite de Cauchy. Comme l’espace E est complet, elle
converge. Donc la série ∑un converge.

Nous voyons que la complétude de l’espace E est cruciale dans la preuve. Dans les espaces vec-
toriels non-complets, il existe donc des séries convergentes en normes qui ne sont pas convergente,
par exemple prenons l’exemple suivant : l’espace vectoriel normé est C0([0, 1]

)
muni de la norme

1. Ce n’est pas un espace complet pour cette norme, comme on l’avait vu dans l’Exemple 1.87.
Prenons la suite de fonctions (fn)n définie dans cet exemple. La série télescopique ∑ fn − fn−1
converge en norme 1 car pour tout n ≥ 1 :

∥fn+1 − fn∥1 =
∫ 1

0
|fn+1 − fn| =

∫ 1

0
fn − fn+1 = 1

2n
− 1

2(n + 1) = 1
2n(n + 1) ≤ 1

2n2
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Or nous savons que la série∑ 1
n2 converge (vers π2

6 ). Donc la série numérique positive∑ ∥fn − fn−1∥1
converge aussi car majorée par la série ∑ 1

n2 . Par contre la série télescopique ∑ fn − fn−1 ne
converge pas car la suite (fn)n est divergente : la fonction limite simple vit en dehors de C0([0, 1]

)
.

En réalité, la Proposition 2.13 est d’ailleurs une caractérisation des espaces de Banach, car
on peut montrer qu’un espace vectoriel normé (E, ∥.∥) est de Banach si et seulement si, dans
cet espace, toute série convergente en norme est (inconditionnellement) convergente. En ce qui
concerne la réciproque de la Proposition 2.13, nous avons le résultat suivant qui précise ce qu’il
se passe :

Theorème de Dvoretzky–Rogers. Soit E un espace de Banach. La dimension de E est finie
si et seulement si toute série inconditionnellement convergente est convergente en norme.

Avec ce théorème nous voyons donc que le paradis des séries ce sont les espaces vectoriels
normés de dimension finie. En effet, ils sont automatiquement complets par la proposition 1.79,
et avec le théorème ci dessus nous voyons que la convergence en norme est une convergence
robuste pour les séries de vecteurs en dimension finie. Nous étudierons donc d’abord les séries
dans les espaces de Banach de dimension finie, puis dans les espaces de Banach de dimension
infinie indénombrable – et notamment les séries de fonctions.

2.2 Séries numériques

Soit E un espace vectoriel normé de dimension finie, disons dim(E) = m. Soit (e1, . . . , em)
une base de E. Soit (un)n une suite de vecteurs de E. Pour tout n entier, on peut décomposer
le vecteur un ∈ E sur la base, en termes de ses composantes λ1

n, . . . , λm
n :

un = λ1
ne1 + λ2

ne2 + . . . + λm
n em

Rappel : les exposants ne sont pas des puissances mais des notations ! Pour chaque 1 ≤ k ≤ m,
la suite des k-èmes composantes (λk

n)n est une suite réelle. Nous avons le résultat suivant qui
explique pourquoi nous pouvons passer à l’étude des séries numériques à la place des séries de
vecteurs en dimension finie :

Proposition 2.14. La série
∑

un converge si et seulement si les m séries numériques
∑

λk
n

convergent, pour 1 ≤ k ≤ m. De plus, si tel est le cas :

+∞∑

n=0
un =

m∑

k=1

(+∞∑

n=0
λk

n

)
ek

Ainsi, la convergence d’une série de vecteurs d’un espace vectoriel normé de dimension finie
revient à la convergence des séries de ses composantes. On peut donc se ramener à l’étude des
séries numériques réelles pour comprendre beaucoup de choses factuelles sur la convergence des
séries de vecteurs dans le cas de la dimension finie. En dimension infinie – par exemple dans
les espaces de fonctions – nous ne pouvons pas faire l’économie de l’étude directe des séries de
vecteurs/fonctions. Nous adresserons ce cas plus tard.

Commençons par l’étude des séries numériques à termes positifs car leur connaissance nous
aidera pour toutes les séries numériques réelles. Soit (un)n une suite réelle positive. Dans ce cas,
la suite des sommes partielles (Sn)n est une suite réelle positive croissante. Nous avons donc les
quelques résultats immédiats obtenus directement à partir des mêmes résultats sur les suites :

Proposition 2.15. Soit (un)n et (vn)n deux suites réelles positives, alors :
— La série

∑
un converge si et seulement si la suite (Sn)n est majorée.
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— Si jamais un ≤ vn à partir d’un certain rang, nous avons que si
∑

vn converge, alors
∑

un

aussi, et si
∑

un diverge, alors
∑

vn aussi.
— Si jamais un ∼

n!+∞
vn, alors les séries

∑
un et

∑
vn sont de même nature (simultanément

convergente ou simultanément divergente).

Exemple 2.16. Un example fondamental : les séries de Riemann. Soit s ∈ R, étudions la série∑ 1
ns (où n ≥ 1).
— Si s ≤ 0, la suite

(
1

ns

)
n

ne tend pas vers 0 donc la série est grossièrement divergente.
— Si s ∈ ]0, 1], pour tout n ≥ 1, on a 1

n ≤ 1
ns , or la série harmonique ∑ 1

n diverge par la
Proposition 2.10, donc la série ∑ 1

ns diverge aussi.
— Si s > 1, on va chercher une série télescopique ∑un+1 − un d’une suite convergente (un)n,

telle que un+1−un ∼ 1
ns . Essayons la "primitive discrète" de 1

ns , c’est à dire qu’en s’inspirant
de l’intégration

∫ x t−sdt = x1−s

1−s , on pose, pour tout n ≥ 1, un = n1−s

1−s . En connaissant le
développement limité de (1 + x)1−s = 1 + (1 − s)x + o(x), nous avons :

un+1−un = 1
1 − s

(
(n + 1)1−s − n1−s

)
= n1−s

1 − s

((
1 + 1

n

)1−s

− 1
)

∼
n!+∞

n1−s

1 − s

1 − s

n
= 1

ns

Donc la série∑ 1
ns est de la même nature que la série télescopique∑un+1−un, qui converge

si et seulement si la suite (un)n converge. Comme 1 − s < 0, la suite (un)n converge vers
0, donc la série ∑ 1

ns converge quand s > 1.

Théorème 2.17. Séries de Riemann. La série
∑ 1

ns est convergente si et seulement si s > 1.

Démonstration. Une autre preuve de la convergence de la série ∑ 1
ns pour s > 1 est donnée

par Cauchy dans son cours d’Analyse à l’Ecole Polytechnique de 1821. Soit p ≥ 1, la somme
partielle S2p+1−1 de la série ∑ 1

ns au rang 2p+1 − 1 peut se couper en sommes de 2k termes pour
k = 1, . . . , p :

S2p+1−1 =
2p+1−1∑

n=1

1
ns

= 1
1s

+
( 1

2s
+ 1

3s

)
+
( 1

4s
+ 1

5s
+ 1

6s
+ 1

7s

)
. . .+

2p−1∑

i=0

1
(2p + i)s

=
p∑

k=0

2k−1∑

i=0

1
(2k + i)s

On observe que chaque paquet peut être majoré de façon intelligente :

1
1s

= 1,
1
2s

+ 1
3s

≤ 2
2s

= 1
2s−1 ,

1
4s

+ 1
5s

+ 1
6s

+ 1
7s

≤ 4
4s

= 1
4s−1 = 1

22(s−1) =
( 1

2(s−1)

)2
,

et plus généralement, nous avons la majoration suivante de chaque paquet :

0 ≤
2k−1∑

i=0

1
(2k + i)s

= 1
(2k)s

+ 1
(2k + 1)s

+ 1
(2k + 2)s

+. . .+ 1
(2k + 2k − 1︸ ︷︷ ︸

2k+1−1

)s
≤ 2k

(2k)s
= 1

(2k)s−1 =
( 1

2s−1

)k

Et donc la somme partielle S2p+1−1 peut être majorée :

0 ≤ S2p+1−1 ≤
p∑

k=0

( 1
2s−1

)k

On reconnait à droite la somme partielle de la série géométrique, de coefficient 1
2s−1 . Cemme

s − 1 > 0, on a que 1
2s−1 < 1 et donc la série géométrique ∑ 1

2s−1 est convergente, et admet pour
limite 1

1− 1
2s−1

. Du fait que la série numérique positive de terme général 1
ns est majorée par la

série géométrique de terme général 1
2s−1 , la série de Riemann converge.
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Proposition 2.18. Soit (un)n et (vn)n deux suite réelles positives telles que un ∼
n!+∞

vn. Nous
avons les résultats suivants :

— Si la série
∑

vn est divergente, alors
∑

un aussi et Sn(u) ∼
n!+∞

Sn(v).

— Si la série
∑

vn est convergente, alors
∑

un aussi et Rn(u) ∼
n!+∞

Rn(v).

Remarque 2.19. Résultats similaires avec grand O : un = O
n!+∞

(vn) (c’est à dire que
(

un
vn

)
n

est

une suite bornée), et petit o : un = o
n!+∞

(vn) (c’est à dire que
(

un
vn

)
n

est une suite qui converge
vers 0).

Avec ce résultat revenons sur les séries de Riemann. Pour tout s ̸= 1, nous savons que :

1
ns

∼
n!+∞

un+1 − un, où un = n1−s

1 − s
pour tout n ≥ 1.

— Si s < 1, la série ∑ 1
ns est divergente, donc nous avons équivalence des sommes partielles :

n∑

k=1

1
ns

∼
n!+∞

n∑

k=1
uk+1 − uk = un+1 − u1 = (n + 1)1−s

1 − s
− 1

1 − s

Or u1 est constante et un+1− = (n+1)1−s

1−s ∼ n1−s

1−s , donc on obtient l’équivalent suivant de
la somme partielle :

n∑

k=1

1
ns

∼
n!+∞

n1−s

1 − s

— Si s > 1, la série ∑ 1
ns est convergente, donc nous avons équivalence des restes :

∞∑

k=n+1

1
ns

∼
n!+∞

∞∑

k=n+1
uk+1 − uk = −un+1 ∼

n!+∞

n1−s

1 − s

On obtient donc cette fois ci un équivalent du reste :
∞∑

k=n+1

1
ns

∼
n!+∞

− n1−s

1 − s
= n1−s

s − 1

— Pour s = 1, la série harmonique ∑ 1
n est divergente. Inspirons nous de l’intégration

∫ x
1

dt
t

et prenons ln(n) comme primitive discrète de 1
n . Rappelons alors que

ln(n + 1) − ln(n) = ln
(

1 + 1
n

)
∼

n!+∞

1
n

Dans ce cas d’après la proposition, nous avons que
n∑

k=1

1
k

∼
n!+∞

n∑

k=1
ln(k + 1) − ln(k) = ln(n + 1) ∼

n!+∞
ln(n)

Autrement dit nous avons l’équivalent des sommes partielles de la série harmonique, très
important :

n∑

k=1

1
k

∼
n!+∞

ln(n)

37



Souvent, il est plus facile de manipuler une intégrale qu’une somme. Faisons un petit rappel.
Soit a ≥ 0, f : [a, +∞[! R une fonction continue (par morceaux) sur [a, +∞[. On dit que
l’intégrale impropre de f sur [a, +∞[ converge si la limite suivante existe et est finie :

lim
x!+∞

∫ x

a
f(t) dt

et dans ce cas on note cette limite
∫+∞

a f(t)dt ou plus simplement
∫+∞

a f . Si la limite n’est pas
finie ou n’existe pas on dit que l’intégrale de f diverge. Par la suite nous allons principalement
prendre des fonctions positives.
Exemple 2.20. La fonction x 7!

∫ x
1

dt
t = lnx tend vers l’infini quand x tend vers l’infini donc

l’intégrale de la fonction f : [1, +∞[! R, t 7! 1
t diverge : on ne peut pas intégrer la fonction

t 7! 1
t sur [1, +∞[. Par contre l’intégrale de la fonction t 7! 1/t2 converge, avec pour limite

∫+∞
1

dt
t2 =

[
− 1

x

]+∞

1
= 1.

L’analogie qui existe entre les propriétés des intégrales impropres de la forme
∫∞

0 f(t)dt et
celles des séries ∑+∞

n=0 un sont évidentes. Pour toute suite u : N ! R, n 7! un, on définit la
fonction suivante :

f : [0, +∞[ −−−−−−! R
x 7−−−−−−! uE(x)

Donc en particulier, sur l’intervalle semi-ouvert [k, k + 1[, on a f(x) = uk. Et si on intègre sur
cet intervalle on a :

∫ k+1

k
f(t) dt =

∫ k+1

k
uk dt = uk · [(k + 1) − k] = uk

C’est une fonction continue par morceaux donc
intégrable sur tout segment [0, n]. Dans ce cas
nous avons le résultat immédiat :

Sn =
n∑

k=0
uk

=
n∑

k=0

∫ k+1

k
uk

=
n∑

k=0

∫ k+1

k
f(t) dt

=
∫ n+1

0
f(t) dt

Comme l’intégrale impropre
∫+∞

0 f est la limite quand n tend vers +∞ du membre de droite,
nous avons donc que la suite de sommes partielles (Sn)n converge si et seulement si l’intégrale
impropre de f sur [0, +∞[ converge. C’est à dire que l’une converge (resp. diverge) si et seulement
si l’autre converge (resp. diverge). Autrement dit la série

∑
un converge si et seulement si la

fonction f est intégrable sur [0, +∞[ : la série ∑un est de la même nature que l’intégrale
impropre de f sur [0, +∞[.

Nous avons commencé par prendre une suite à partir de laquelle nous avons construit une
fonction continue par morceaux, puis nous avons comparé la série et l’intégrale impropre de
la fonction. Maintenant, prenons l’autre sens : on prend une fonction à partir de laquelle on
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définit une suite, puis on comparera la série de la suite et l’intégrale impropre de la fonction.
Soit a ∈ N et soit f : [a, +∞[! R une fonction continue (par morceaux), qu’on suppose positive
décroissante. Dans la discussion qui suit on prend a = 0 mais les arguments restent les mêmes
pour a = 1, a = 2, a = 3, ... Comme f est décroissante, nous avons l’observation évidente
suivante :

∀ k ∈ N, ∀ t ∈ [k, k + 1] f(k + 1) ≤ f(t) ≤ f(k)

et donc en intégrant sur le segment [k, k + 1] de
longueur 1, on obtient :

∀ k ∈ N, f(k + 1) ≤
∫ k+1

k
f(t) dt ≤ f(k)

puis en sommant de k = 0 à k = n − 1, pour un
entier naturel n − 1 fixé, nous obtenons :

n−1∑

k=0
f(k + 1) ≤

∫ n

0
f(t) dt ≤

n−1∑

k=0
f(k)

C’est à dire, en notant Sn(f) = ∑n
k=0 f(k) la somme partielle de la suite k 7! f(k), qu’on a :

Sn(f) − f(0) ≤
∫ n

0
f(t) dt ≤ Sn−1(f) = Sn(f) − f(n) (2.1)

De façon équivalente, cette inégalité peut se récrire :

f(n) +
∫ n

0
f(t) dt ≤ Sn(f) ≤ f(0) +

∫ n

0
f(t) dt (2.2)

Le raisonnement pour obtenir ces deux inégalités sont à apprendre par coeur, pour les fonctions
réelles continues par morceaux positives décroissantes. Des deux inégalités précédentes, nous
avons le résultat suivant :
Proposition 2.21. Soit a ∈ N, et f : [a, +∞[! R une fonction continue par morceaux positive
décroissante. Alors :

— la série
∑

f(n) est convergente si et seulement si f est intégrable sur [a, +∞[ ;
— si la série

∑
f(n) est divergente, alors Sn(f) ∼

n!+∞

∫ n
a f(t)dt ;

— si la série
∑

f(n) est convergente, alors Rn(f) ∼
n!+∞

∫+∞
n f(t)dt ;

— la série
∑

un de terme général un =
∫ n

n−1 f(t)dt − f(n) converge.

Démonstration. Pour la preuve on suppose que a = 0 mais tout s’adapte à n’importe que a
entier. Pour le premier, le deuxième et le troisième point, nous venons de voir la démonstration :
les encadrements (2.1) et (2.2) permettent de nous dire que la série∑ f(n) et l’intégrale impropre
de f sur [0, +∞[ sont de même nature (pour le point 1), et de trouver un équivalent (pour les
points 2 et 3). Pour le quatrième point, nous observons que pour tout n ≥ 1 :

un =
∫ n

n−1
(f(t) − f(n))︸ ︷︷ ︸

≥ 0

dt ≥ 0

car la fonction f est décroissante. On a donc bien une suite réelle positive. On peut majorer les
sommes partielles de la série ∑un pour montrer qu’elle converge. Soit n ≥ 1 :

n∑

k=1
uk =

n∑

k=1

(∫ k

k−1
f(t)dt − f(k)

)
=
∫ n

0
f(t)dt − Sn(f) + f(0)
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En utilisant l’inégalité de droite de (2.2), nous voyons que
∫ n

0 f(t)dt − Sn(f) ≤ −f(n). EN se
rappelant que la fonction f est positivie, nous obtenons que ∑n

k=1 uk ≤ f(0) − f(n) ≤ f(0), ce
qui majore les sommes partielles de la série ∑un.

Remarque 2.22. Nous pouvons interpréter la convergence de la série ∑un. Soit k ∈ N∗, la
quantité uk est l’aire du triangle curviligne sous la courbe de f , au dessus du rectangle de
hauteur f(k) et de base le segment [k − 1, k]. Comme la fonction f est décroissante, cette aire
est décroissante, c’est à dire que la suite réelle positive (un)n décroît. La somme partielle des
aires de tous ces rectangles entre k = 1 et k = n est la somme partielle ∑n

k=1 uk. Quand on fait
tendre n vers +∞, on voit que la série converge car elle ne peut pas être plus grande que f(0)
(le majorant qu’on a vu dans la preuve).
Exemple 2.23. Soit f = 1√

x
fonction positive décroissante sur ]0, +∞[, on utilise l’encadrement

f(n) ≤
∫ n

n−1
f(t)dt ≤ f(n − 1)

pour déduire un équivalent de la somme partielle∑n
k=1

1√
k
. On déduit l’encadrement pour n ≥ 2 :

∫ n+1

1

dt√
t

≤
n∑

k=1

1√
k

≤ 1 +
∫ n

1

dt√
t

En intégrant on a :

2
√

n + 1 − 2 ≤
n∑

k=1

1√
k

≤ 2
√

n − 1

On en déduit que ∑n
k=1

1√
k

∼ 2
√

n.
Grace au deuxième point de la Proposition 2.21, on peut arriver à ce résultat plus rapide-

ment : on sait que Sn(f) − ∫ n
1 f(t)dt converge vers une limite finie ℓ. On a alors :

n∑

k=1

1√
k

=
∫ n

1

dt√
t

+ ℓ + o(1)

Et donc comme on connait l’intégrale, qui vaut 2
√

n − 2 on a :
n∑

k=1

1√
k

= 2
√

n + ℓ − 2 + o(1)

on obtient donc bien ∑n
k=1

1√
k

∼ 2
√

n.

Exemple 2.24. Soit 0 < q < 1. La fonction f : [0, +∞[! R, x 7! qx = exln(q) est une fonction
décroissante car ln(q) < 0. Or nous savons que la série géométrique ∑ qn = ∑

f(n) converge
(vers 1

1−q ). D’après le point 3 de la Proposition 2.21, nous avons donc que :

Rn(f) ∼
n!+∞

∫ +∞

n
etln(q)dt = − qn

ln(q)

Trouver l’équivalent du reste d’une série convergente peut être utile un jour.

Nous pouvons revisiter les séries de Riemann avec cette proposition. Soit s ̸= 1, et soit
n ∈ N∗, alors nous avons alors que

∫ n

1

dt

ts
=
[

t1−s

1 − s

]n

1
= n1−s

1 − s
− 1

1 − s
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Si s > 1, alors nous avons que 0 > 1 − s et donc lorsque n tend vers l’infini, n1−s

1−s tend vers
0 et l’intégrale

∫ n
1

dt
ts converge (vers

∫+∞
1

dt
ts = − 1

1−s > 0). Cela nous dit que la série ∑ 1
ns pour

s > 1 converge (vers une limite différente de 1
s−1). D’après le point 3 de la Proposition 2.21 :

Rn(f) ∼
n!+∞

∫ +∞

n

dt

ts
∼

n!+∞
− n1−s

1 − s

Si s < 1, alors nous avons que 0 < 1 − s donc lorsque n tend vers l’infini, n1−s

1−s tend vers
l’infini et l’intégrale

∫ n
1

dt
ts explose (diverge vers + infini). La série ∑ 1

ns pour s < 1 tend vers
l’infini, et on a d’après le point 2 de la Proposition 2.21 :

Sn(f) ∼
n!+∞

∫ n

0

dt

ts
∼

n!+∞

n1−s

1 − s

Si s = 1, la série harmonique∑ 1
n diverge. Elle est de la même nature que l’intégrale impropre∫ n

1
1
t dt = ln(x) qui tend vers +∞ quand n tend vers +∞. D’après le point 2 de la Proposition

2.21, on retrouve l’équivalent des sommes partielles qu’on avait déjà obtenu :
n∑

k=1

1
k

∼
n!+∞

ln(n)

Dans la suite, pour tout n ≥ 2, posons un =
∫ n

n−1
dt
t − 1

n = ln(n) − ln(n − 1) − 1
n . Le point 4 de

la Proposition 2.21 nous dit que la série ∑un converge. Ecrivons les sommes partielles :
n∑

k=2
uk =

n∑

k=2
ln(k) − ln(k − 1) − 1

k
= ln(n) −

n∑

k=2

1
k

= ln(n) + 1 −
n∑

k=1

1
k

Cela veut dire que pour tout n ≥ 2 :
n∑

k=1

1
k

− ln(n) = 1 −
n∑

k=2
uk

La série de droite converge d’après le point 4 de la Proposition 2.21. Donc le membre de droite
converge vers une limite, qu’on note γ. Cela veut dire que la différence ∑n

k=1
1
k − ln(n) tend

vers cette limite finie. On appelle γ la constante d’Euler. C’est un nombre qui vaut environ
0,5772156, et on ne sait pas encore s’il est irrationnel mais si il était rationnel, le dénominateur
possèderait au moins 242000 chiffres.

Pour les séries numériques positives, nous ajoutons deux autres critères pour déterminer si
une série est convergente ou divergente. Le premier revient à se comparer à une série géomé-
trique :

Proposition 2.25. Critère de d’Alembert. Soit (un)n une suite réelle strictement positive,
telle que la suite

(
un+1

un

)
n

converge vers une limite L ∈ R+ ∪ {+∞}. Alors :
— si L>1, la série

∑
un est grossièrement divergente ;

— si L < 1, la série
∑

un est convergente ;
— si L = 1, tout peut arriver.

Exemple 2.26. Soit α > 0. On pose, pour tout n ∈ N∗, un = α(α+1)...(α+n)
nn > 0. Et donc on

utilise le critère de d’Alembert :
un+1
un

= (α + n + 1) nn

(n + 1)n+1 = (α + n + 1) 1
n + 1

(
1 + 1

n

)−n

=
(

1 + α

n + 1

)
·
(

1 + 1
n

)−n

Le membre de droite converge vers 1
e quand n tend vers l’infini, qui est une limite strictement

inférieure à 1. On en déduit avec d’Alembert que la série ∑un converge.
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Exemple 2.27. Par exemple pour les séries de Riemann on tombe dans la zone d’indécidabilité.
En effet, pour tout s ∈ R, nous avons :

1
(n+1)s

1
ns

=
(

n

n + 1

)s

= 1(
1 + 1

n

)s −−−−−−−−!
n!+∞

1

On voit que quel que soit s, la limite L c’est 1, mais on a vu dans le Théorème 2.17 que la série∑ 1
ns ne converge que pour s > 1. Ainsi tout peut arriver, tout dépend du terme général de la

série.

Proposition 2.28. Critère de Cauchy. Soit (un)n une suite réelle positive, telle que la suite(
n
√

un
)

n converge vers une limite L ∈ R+ ∪ {+∞}. Alors :
— si L>1, la série

∑
un est grossièrement divergente ;

— si L < 1, la série
∑

un est convergente ;
— si L = 1, tout peut arriver.

Exemple 2.29. Soit α > 0, on pose pour tout n ∈ N∗, un = αn

nn . Appliquons le critère de Cauchy :
la suite de terme général (un) 1

n = α
n converge vers 0 donc la série ∑un converge.

Remarque 2.30. Le critère de Cauchy est plus général que celui de d’Alembert, car il peut
s’utiliser sur des suites qui ont des termes nuls, et permet parfois de donner des solutions que
d’Alembert ne peut pas donner. Par contre il est plus difficile à mettre en place.

Nous avons étudié les séries numériques positives. Maintenant nous allons nous tourner vers
le cas plus général des séries numériques dont le terme général n’est pas forcément positif, mais
réel.

Définition 2.31. Soit (un)n une suite réelle (ou complexe). On dit que la série
∑

un est abso-
lument convergente si la série des valeurs absolues (ou modules)

∑ |un| converge.

Proposition 2.32. Si la série numérique
∑

un est absolument convergente, alors elle est conver-
gente.

Démonstration. R et C sont des espaces de Banach (les suites de Cauchy réelles ou complexes
convergent). La norme sur R (resp. C) est la valeur absolue (resp. le module). La proposition ci
dessus est donc la Proposition 2.13 appliqué à R et C.

Définition 2.33. Soit (un)n une suite réelle (ou complexe). Si la série
∑

un converge mais pas
la série des valeurs absolues (ou modules)

∑ |un|, on dit que la série
∑

un est semi-convergente.

Exemple 2.34. Soit s ≤ 1, nous verrons dans la proposition suivante que la série ∑ (−1)n

ns est
convergente mais pas la série positive de terme général

∣∣∣ (−1)n

ns

∣∣∣ = 1
ns (voir Theorème 2.17). C’est

donc une série réelle semi-convergente

Pour la culture générale nous avons ce résultat fondamental et impressionnant de Riemann,
qui explique la notion de convergence conditionnelle et inconditionnelle (la somme dépend de
l’ordre de sommation ou non) :

Theorème de réarrangement de Riemann. Soit
∑

un une série réelle.
— si

∑
un est semi-convergente, alors pour tout L ∈ R ∪ {±∞}, il existe une bijection σ :

N ! N (appelée réarrangement) tel que la série
∑

uσ(n) tend vers L quand n tend vers
l’infini. Autrement dit la série est conditionnellement convergente.
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— si
∑

un est absolument convergente, vers une limite ℓ ∈ R disons, alors quelle que soit le
choix de bijection σ : N ! N, la série

∑
uσ(n) converge vers ℓ. Autrement dit la série

∑
un

est inconditionnellement convergente.

Ainsi pour les séries réelles à terme général positif, la convergence absolue est équivalente à
la convergence, tandis que pour les séries réelles non nécessairement positives, ce n’est plus la
même chose : la convergence absolue implique la convergence, mais pas l’inverse. D’autre part, si
la série des |un| est divergente, cela ne veut pas forcément dire tout le temps que la série des un

diverge ! En effet, les termes successifs peuvent se compenser et donner une somme finie. C’est
le cas en particulier des séries alternées que nous allons étudier maintenant. Elles ne forment
qu’un cas particulier des séries numériques réelles, mais on les rencontre suffisamment souvent
pour avoir développé un traitement à part. On se base sur le résultat suivant :

Proposition 2.35. Soit (un)n une suite réelle positive décroissante convergeant vers 0. Alors
la série

∑(−1)nun est convergente.

Démonstration. On pose Sn = ∑n
k=0 (−1)kuk la somme partielle de la suite ((−1)nun)n. Pour

tout p ∈ N, on pose xp = S2p et yp = S2p+1. On va montrer que les suites (xp)p et (yp)p sont
adjacentes. Soit p ∈ N, alors on a :

xp+1 − xp = S2(p+1) − S2p = (−1)2(p+1)u2(p+1) + (−1)2p+1u2p+1 = u2p+2 − u2p+1 ≤ 0

car la suite (un)n est décroissante. Donc la suite (xp)p est décroissante. Pour la même raison,
on peut montrer que la suite (yp)p est croissante.

D’autre part on a xp −yp = S2p −S2p+1 = −(−1)2p+1u2p+1 = u2p+1 ≥ 0 car la suite (un)n est
positive, donc xp ≥ yp. Et comme xp − yp = u2p+1 −! 0 quand p tend vers l’infini, le théorème
des suites adjacentes nous dit que les suites (xp)p et (yp)p sont adjacentes donc convergent vers
la même limite ℓ. Autrement, dit les suites des sommes partielles paires et impaires convergent
vers la même limite ℓ, ∑un converge et ∑+∞

n=0 un = ℓ.

Définition 2.36. Une série
∑

un de terme général un est dite alternée si un × un+1 ≤ 0 pour
tout n, autrement dit si la suite réelle de terme général (−1)nun est de signe constant, autrement
dit si un et un+1 sont de signe différent pour tout n.

Exemple 2.37. Pour tout n ≥ 1, on pose un = ln
(
1 + (−1)n

n

)
. On peut vérifier que pour tout

p ∈ N, on a u2p = ln
(
1 + (−1)2p

2p

)
= ln

(
1 + 1

2p

)
> 0 tandis que u2p+1 = ln

(
1 + (−1)2p+1

2p+1

)
=

ln
(
1 − 1

2p+1

)
< 0. ∑un est donc bien une série alternée.

En particulier, le signe du terme u2p est le même que celui de u0 tandis que le signe de u2p+1
est le même que celui de u1 pour tout entier p. Et donc si u0 est positif alors un = (−1)n|un|
tandis que si u0 est négatif, on a un = −(−1)n|un|, pour tout n ∈ N. La Proposition 2.35 peut
se récrire de façon équivalente comme un critère de convergence des séries alternées :

Théorème 2.38. Critère de Leibniz (en 1714 dans une lettre à Bernoulli) : On considère
la série alternée de terme général un. On suppose réalisées les conditions suivantes :

— la suite réelle positive (|un|)n est décroissante ;
— la limite de la suite (|un|)n est zéro.

Alors la série alternée
∑

un converge.

Exemple 2.39. La série ∑ (−1)n

n est manifestement une série alternée qui satisfait aux critères
de Leibniz. Elle converge donc. On peut montrer par comparaison série-intégrale que sa limite
est −ln(2), c’est à dire que ∑+∞

n=1
(−1)n

n = −ln(2).
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Remarque 2.40. Attention ce résultat ne dit rien sur la série des valeurs absolues |un| qui peut
totalement diverger ! ! ! Par exemple prenons 0 < s ≤ 1 et posons un = (−1)n

ns . Alors |un| = 1
ns ,

ce qui fait que la suite (|un|)n est positive, décroissante et tend vers 0. Donc le critère des séries
alternées s’applique et la série ∑un = ∑ (−1)n

ns converge, même si la série ∑ |un| = ∑ 1
ns diverge

(série de Riemann). Pour s = 1, la limite de la série ∑ (−1)n

n est −ln(2) mais la série harmonique∑ 1
n diverge.

Ainsi, des séries qui ne sont pas absolument convergentes peuvent être convergentes. L’hy-
pothèse sur la décroissance de la suite vn est cruciale pour la preuve du théorème, et d’ailleurs
on a un contre exemple. Pour tout n ∈ N, posons un = (−1)n

√
n+(−1)n ; on peut vérifier que c’est

bien une suite qui vérifie un × un+1 ≤ 0, donc la série ∑un est alternée. Cependant la suite de
terme général |un| = 1√

n+(−1)n n’est pas décroissante : elle varie à cause du terme en (−1) au
dénominateur. Donc la première hypothèse du théorème de Leibniz n’est pas satisfaite. On a
l’équivalent suivant : un ∼

n!+∞
(−1)n

√
n

. Or la série ∑ (−1)n
√

n
est alternée et satisfait le Théorème

2.38, donc elle est convergente.CEPENDANT on ne peut pas utiliser la proposition de com-
paraison 2.18 des séries positives, précisément car (un)n n’est pas une suite positive. En effet
posons, pour tout n ∈ N :

wn = (−1)n

√
n

− un = 1
n + (−1)n

√
n

C’est un nombre réel positif équivalent à 1
n quand n tend vers l’infini car nwn −! 1 quand

n tend vers l’infini. Par la proposition de comparaison 2.18 – cette fois-ci la suite (wn)n est
positive – la série des wn diverge puisque la série harmonique diverge ! ! La série des un est donc
la différence d’une série alternée convergente ∑ (−1)n

√
n

et d’une série positive divergente ∑wn,
elle est donc divergente. Cet exemple présente aussi l’intérêt de mettre en évidence deux séries,
l’une convergente, l’autre divergente, dont les termes généraux sont équivalents. Il montre que
le théorème de comparaison ne s’applique qu’à des séries à termes tous de même signe.

Proposition 2.41. Soit
∑

un une série alternée convergente. Alors le reste Rn = ∑+∞
k=n+1 uk

est tel que : 1. Rn est du signe de un+1, et 2. |Rn| ≤ |un+1|.

Pour finir et résumer cette section, on peut donc procéder comme suit pour analyser une
série réelle quelconque ∑un. On regarde d’abord si la suite (un)n ne tend pas vers 0 : c’est un
critère de divergence grossière. On regarde ensuite l’absolue convergence de la série, c’est à dire
qu’on étudie si la série ∑ |un| converge, et pour cela on peut utiliser les critères de convergence
pour les séries à termes positifs. On peut alors utiliser les théorèmes de comparaison (inégalité et
équivalence) par rapport aux séries de Riemann par exemple, ou bien les critères de Cauchy et de
d’Alembert. A la fin (toujours pour la série positives ∑ |un|), on peut utiliser une comparaison
série intégrale pour les séries les plus compliquées. Si la série n’est pas absolument convergente,
c’est à dire si ∑ |un| diverge, alors cela ne veut a priori rien dire sur ∑un. On peut se demander
si la série ∑un est une série alternée, et on regarde si la suite (un)n satisfait les critères de
Leibniz. Si enfin on n’est toujours pas dans ce dernier cas, il faut se débrouiller pour montrer
que la série converge ou diverge.

Nous finissons la section sur ce résultat bonus. On dénote ℓ1 l’espace vectoriel des suites
réelles ou complexes dont la série associée est absolument convergentes, c’est à dire :

ℓ1 =
{

u : N ! K telle que
∑

|un| est convergente
}

C’est un espace de dimension infinie indénombrable. On définit une norme sur cet espace – la
norme 1 – par :

∀ u ∈ ℓ1, ∥u∥1 =
+∞∑

n=0
|un|
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Alors nous avons le résultat suivant :

Proposition 2.42. (ℓ1, ∥.∥1) est un espace de Banach.

2.3 Séries de fonctions

Nous avons étudié les séries numériques réelles, qui permettent de coder les composantes des
séries de vecteurs dans les espaces vectoriels normés de dimension finie (qui sont nécessairement
de Banach). Maintenant nous allons étudier les séries dans les espaces de fonctions, qui sont
des archétypes d’espaces de Banach de dimension infinie (indénombrable). On va étendre la
machinerie des séries numériques réelles aux séries de fonctions. Nous avons vu que pour les
suites de fonctions, il y a deux types de convergence : la convergence simple, et la convergence
uniforme – plus robuste – qui correspond à la convergence par rapport à la norme infinie dans
un espace de fonctions.

Nous allons utiliser ces deux types de convergence, ainsi que la convergence absolue, dans
l’étude des séries de fonctions. Dans ce qui suit, (fn)n est une suite de fonctions définies sur un
sous-ensemble D ⊂ R. La suite des sommes partielles de rang n ∈ N forme une suite de fonctions
définies pour tout n ∈ N par :

Sn : D −−−−−−! R

x 7−−−−−−!
n∑

k=0
fk(x)

La suite des sommes partielles (Sn)n est dénotée ∑ fn et on l’appelle la série de fonctions des
fn (ou de terme général fn). C’est une suite de fonctions, donc nous pouvons appliquer tous les
résultats vus dans la Section 1.1 à ce contexte.

Définition 2.43. On dit que la série de fonctions
∑

fn de terme général fn converge simplement
sur D si la suite de fonctions (Sn)n converge simplement sur D, et on note S la fonction limite.
On dit que la série de fonctions

∑
fn converge uniformément vers S sur D si la suite de fonctions

(Sn)n converge uniformément vers S sur D.

Ainsi, si la série ∑ fn converge simplement, la fonction limite S satisfait :

∀ x ∈ D S(x) = lim
n!+∞

Sn(x) =
+∞∑

k=0
fk(x)

C’est une fonction (pas forcément continue), appelée la somme de la série ∑ fn. Pour chaque
n ∈ N, on appelle le reste d’ordre n la somme infinie :

∀ x ∈ D Rn(x) =
+∞∑

k=n+1
fk(x)

On aura donc, pour tout n ∈ N, Sn +Rn = S. Dans ce cas, la condition de convergence uniforme
de ∑ fn peut s’écrire comme dans la Définition 1.2 :

lim
n!+∞

sup
x∈D

∣∣Sn(x) − S(x)
∣∣ = lim

n!+∞
sup
x∈D

∣∣Rn(x)
∣∣ = 0

Ainsi, pour montrer la convergence uniforme d’une série de fonctions, il faut montrer que
sup
x∈D

∣∣Rn(x)
∣∣ converge vers 0 quand n tend vers l’infini.
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Remarque 2.44. La plupart des résultats qu’on va voir dans cette section sont identiques à ceux
vus dans la section 1.1 puisque les suites des sommes partielles de fonctions sont des suites de
fonctions. En particulier, nous avons que si une série de fonctions converge uniformément alors
elle converge simplement (c’est la Proposition 1.17).
Exemple 2.45. En posant fn : ] − 1, 1[! R, x 7! xn, la série ∑ fn admet comme terme général la
somme partielle :

Sn(x) =
n∑

k=0
xk = 1 − xn+1

1 − x

Comme |x| < 1, la suite des sommes partielles converge simplement sur ] − 1, 1[. De plus, pour
tout x ∈ ] − 1, 1[, la somme de la série est la fonction f : x 7! 1

1−x (voir l’exemple 2.3 pour une
explication).

La proposition suivante est l’adaptation de la Proposition 2.7 appliquée aux espaces de
fonctions, ainsi que l’adaptation de la Contraposée 2.7 :

Proposition 2.46. Si la série de fonctions
∑

fn converge simplement (resp. uniformément),
alors la suite de fonctions (fn)n converge simplement (resp. uniformément) vers la fonction
constante nulle.

Proposition 2.47. Contraposée de la Proposition 2.46. Soit (fn)n une suite de fonctions.
Si la série de fonctions

∑
fn ne converge pas simplement vers la fonction constante nulle,

alors
∑

fn ne converge pas simplement (et donc la fonction somme n’existe pas). Si la suite de
fonctions (fn)n ne converge pas uniformément vers la fonction constante nulle, alors la série de
fonctions

∑
fn ne converge pas uniformément.

Remarque 2.48. On peut reformuler la première contraposée par l’énoncé suivant : si il existe
x ∈ D tel que la suite numérique (fn(x))n ne converge pas vers 0 ∈ R, alors la série numérique
réelle ∑ fn(x) est divergente. Ceci implique que la fonction limite simple de la série de fonctions∑

fn ne peut pas être définie en x.
Exemple 2.49. Revenons à l’exemple 1.2, où fn : [0, 1] ! R, x 7! xn pour tout n ∈ N. On sait
que la suite de fonctions (fn)n converge simplement vers la fonction f de l’exemple 1.2, mais
pas uniformément. Pour tout x ∈ [0, 1[, la série de fonctions ∑ fn converge simplement vers la
fonction S : x 7! 1

1−x (c’est l’exemple 2.45). Pour x = 1, fn = 1n = 1 donc la série numérique∑
fn ne peut pas converger simplement en x = 1. Et en effet, Sn(1) = ∑n

k=0 1k = n + 1, donc
cette suite tend vers +∞ donc la série ∑ fn ne converge pas simplement en x = 1. Et comme la
suite de fonctions (fn)n ne converge pas uniformément sur [0, 1], alors la série de fonctions ∑ fn

ne converge pas uniformément.

Pour étudier la convergence simple d’une série de fonctions, nous poussons un peu plus loin
les analogies avec les séries de nombres réels : séries à termes positif lorsque les fn sont positives
ou nulles (la comparaison série intégrale se fait désormais avec des intégrales à paramètres),
séries alternées lorsque (−1)nfn a signe constant.
Exemple 2.50. Pour tout n ∈ N∗ on définit la fonction fn : R ! R, x 7! (−1)n

√
x2+n2 . Soit x ∈ R fixé,

alors (−1)nfn(x) = 1√
x2+n2 > 0 est de signe constant, et la suite numérique

(
1√

x2+n2

)
n

décroit
et tend vers 0. Les conditions du théorème des séries alternées 2.38 sont satisfaites, alors la série∑

fn(x) converge à ce x donné. Comme cela est vrai pour tout x ∈ R, la série de fonctions ∑ fn

converge simplement, et sa somme est une fonction bien définie sur R (attention pas forcément
continue !).

Si une série de fonctions (fn)n converge simplement, alors la fonction somme S = ∑∞
n=0 fn

préserve les propriétés basiques communes à toutes les fonctions fn :

46



1. si toutes les fn sont croissantes sur un intervalle I, alors S est croissante sur I

2. si toutes les fn sont périodiques de période T , alors S est périodique de période T

3. si toutes les fn sont (im)paires, alors S est (im)paire
Mais ATTENTION ! les propriétés de régularité telles que continuité et dérivation ne sont pas
nécessairement préservées par la convergence simple, comme on l’a vu pour les suites de fonctions.
Exemple 2.51. Soit (fn)n la suite de fonctions définies sur R par fn : x 7! x(1 − x)n. Ce sont
des fonctions continues et infiniment dérivables. Si x = 0 alors fn(x) = 0 pour tout n ∈ N donc
la série numérique ∑ fn(0) converge. Si x ̸= 0, on peut utiliser la série géométrique pour écrire
les sommes partielles de rang n :

Sn(x) =
n∑

k=0
x(1 − x)n = x

n∑

k=0
(1 − x)nx

1 − (1 − x)n+1

1 − (1 − x) = 1 − (1 − x)n+1

Si x = 2, alors Sn(2) = 1 − (−1)n+1 donc la série numérique ∑ fn(2) diverge grossièrement.
D’autre part, connaissant la série géométrique de l’exemple 2.3, on déduit que la suite numérique
((1−x)n)n converge vers 0 si et seulement si |1−x| < 1 c’est dire si et seulement si −1 < x−1 < 1
c’est à dire si et seulement si 0 < x < 2. Dans ce cas, si x ∈]0, 2[, la suite des sommes partielles
(Sn)n converge vers la fonction constante 1. Ainsi, on peut conclure que la série de fonctions∑

fn converge simplement sur [0, 2[ vers la fonction :

S(x) =
{

1 si 0 < x < 2
0 si x = 0

La série de fonctions ∑ fn diverge en dehors de [0, 2[ , c’est à dire sur ] − ∞, 0[ ∪ [2, +∞[.
La fonction limite simple n’est pas continue donc nous savons que la suite des sommes

partielles ne converge pas uniformément vers S. Nous pouvons le montrer de façon différente en
définissant une suite de points xn ∈ ]0, 2[ telle que 1. (xn)n tend vers 0 et 2. (|Sn(xn) − S(xn)|)n

ne tend pas vers 0. Dans ce cas, on aura que ||Sn − S||∞ est nécessairement plus grand que zéro
donc pas de convergence uniforme. Sur l’idée d’Aslı on pose xn = 1

n+1 alors on obtient :

|Sn(xn) − S(xn)| =
∣∣∣1 − (1 − xn)n+1 − 1

∣∣∣ =
∣∣∣∣1 − 1

n + 1

∣∣∣∣
n+1

−−−−!
n!+∞

1
e

̸= 0

Dans ce cas, la série ∑ fn ne converge pas uniformément vers la fonction discontinue S.

La convergence uniforme par contre préserve tous les résultats de régularité obtenus sur
les suites de fonctions car on les applique aux suites des sommes partielles. Donc nous avons le
résultat suivant pour les séries de fonctions qui convergent uniformément, qui est une application
du Théorème 1.18 aux suites des sommes partielles des suites de fonctions :

Proposition 2.52. Soit (fn)n une suite de fonctions de D dans R (ou C). On suppose :
1. chaque fonction fn est continue ;
2. la série de fonctions

∑
fn converge uniformément sur D.

Alors la somme de la série S = ∑+∞
k=0 fk est continue.

Exemple 2.53. La série de fonctions de terme général fn : R ! R, x 7! x
(1+x2)n converge simple-

ment mais pas uniformément.
Exemple 2.54. La série de fonctions de terme général fn : ]0, +∞[! R, x 7! (−1)n

x+n converge
uniformément donc la fonction somme est continue.
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Exemple 2.55. Pour tout x ∈ ]1, +∞[, on pose fn(x) = 1
nx . La série de fonctions ∑ fn converge

simplement sur ]1, +∞[ (Theorème 2.17), et sa somme est la fameuse fonction ζ (zêta) de
Riemann :

ζ : ]1, +∞[ −−−−−−! R

x 7−−−−−−!
+∞∑

n=1

1
nx

Elle ne converge pas uniformément sur ]1, +∞[ pour la raison suivante : prenons la suite de terme
général xn = 1+ 1

n > 1 ; elle tend vers 1 par la droite, et ontrons que la différence ζ(xn)−Sn(xn)
ne tend pas vers 0 quand n tend vers l’infini, ce qui prouve que la convergence n’est pas uniforme
sur l’intervalle ouvert ]1, +∞[. Nous avons l’équivalent suivant grâce à la proposition 2.21 :

ζ(xn) − Sn(xn) = Rn(xn) =
+∞∑

k=n+1

1
k1+ 1

n

∼
n!+∞

∫ +∞

n

dx

x1+ 1
n

=
[
− n

x
1
n

]+∞

n

= n1− 1
n

Nous voyons que ζ(xn) − Sn(xn) ∼
n!+∞

n1− 1
n c’est à dire que lorsqu’on fait tendre n vers +∞,

la différence ζ(xn) − Sn(xn) tend aussi vers l’infini donc il n’y a pas de borne supérieure à la
différence ζ(x)−Sn(x) : la série ∑ 1

nx ne peut pas converger uniformément vers la fonction ζ sur
l’intervalle ouvert ]1, +∞[. Par contre la série est uniformément convergente sur tout intervalle
semi-ouvert [a, +∞[. On peut le montrer par comparaison série-intégrale car :

0 ≤ sup
x∈[a,+∞[

∣∣ζ(x) − Sn(x)
∣∣ ≤

∫ +∞

n

dt

ta
= 1

a − 1
1

na−1

Le terme de droite tend vers 0 car a > 1 donc par le théorème des gendarmes on la norme infinie
∥ζ − Sn∥∞ converge vers 0. La convergence uniforme d’une série de fonctions continues sur tout
segment de ] − 1, +∞[ nous dit que la fonction ζ est continue.

Et maintenant étudions la permutation somme-intégrale et somme-dérivation qu’on retrou-
vait déjà dans le Mémoire sur les fonctions discontinues de Darboux (1875), et qui sont juste
des applications des Propositions 1.24 et 1.27 aux suites des sommes partielles des suites de
fonctions :

Proposition 2.56. Soit a < b deux réels, et (fn)n une suite de fonctions continues (par mor-
ceaux) de [a, b] dans R. On suppose que la série de fonctions

∑
fn converge uniformément, vers

une fonction continue (par morceaux) S : [a, b] ! R. Alors la série numérique de terme général∫ b
a fn(t)dt converge et sa limite est l’intégrale de S :

lim
n!+∞

∫ b

a
Sn(t) dt =

∫ b

a
S(t) dt

c’est à dire qu’on peut permuter le signe somme et le signe intégrale :

+∞∑

n=0

∫ b

a
fn(t) dt =

∫ b

a

+∞∑

n=0
fn(t) dt

Proposition 2.57. Soit I un intervalle non réduit à un point de R, et (fn)n une suite de
fonctions C1 sur I. On suppose que :

1. la série de fonctions
∑

fn converge simplement sur I, vers la fonction somme S = ∑+∞
n=0 fn ;

2. la série de fonctions
∑

f ′
n converge uniformément sur (tout segment de) I, vers une fonc-

tion (nécessairement continue) T : I ! R.
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Alors :
1. la série de fonctions

∑
fn converge uniformément sur (tout segment de) I vers S, et

2. la fonction S est de classe C1 sur I et S′ = T , c’est à dire :

lim
n!+∞

dSn

dx
= dS

dx

Autrement dit, on peut permuter le signe somme et la dérivation :

+∞∑

n=0
f ′

n =
(+∞∑

n=0
fn

)′

Remarque 2.58. Bien entendu, la Proposition 2.57 se généralise immédiatement aux ordres de
dérivation supérieurs en remplaçant les dérivées simples par des dérivées k-ièmes.
Exemple 2.59. Pour tout n ≥ 1, la fonction fn : ]1, +∞[! R, x ! 1

nx est infiniment dérivable et
f

(k)
n (x) = (−ln(n))k

nx pour tout k ∈ N. A l’aide de la Proposition 2.57 (généralisée aux fonctions
C∞), on montre que la fonction ζ de Riemann est infiniment dérivable, et :

∀ k ∈ N, ∀ x ∈ ]1, +∞[ ζ(k)(x) =
+∞∑

n=1

(−ln(n))k

nx

Remarque 2.60. Il y a une différence entre une propriété locale et globale : on peut satisfaire
une propriété au voisinage de tout point mais pas sur tout l’ensemble de définition. Par exemple
la fonction f : x 7! 1

x est intégrable sur tout segment [a, b] inclus dans ]0, +∞[, mais pas
sur l’intervalle ouvert ]0, +∞[ entier. De même, continuité uniforme en tout point n’implique
pas continuité uniforme sur tout l’intervalle de définition (même fonction). Et on a vu plein
d’exemples de suites de fonctions qui convergent uniformément sur tout segment de l’ensemble
de définition mais pas sur l’ensemble entier. Par contre, la continuité et la dérivabilité sont des
propriétés qui, si elles sont satisfaites localement partout sur l’ensemble, alors elles sont satisfaites
globalement (c’est même la définition d’être continue/dérivable). e passage du local au global est
un grand problème en mathématique et on a des technique pour savoir si certains objets ayant
une propriété locale, préservent cette propriété au global. Par exemple la Cohomologie de de
Rham en géométrie différentielle : toute forme fermée est localement exacte, mais pas forcément
globalement exacte, et la cohomologie mesure cela.

Comme pour les séries numériques, il existe des conditions de convergences plus strictes,
propres aux séries dans les espaces vectoriels normés (voir Definitions 2.12 et 2.31) :

Définition 2.61. Soit (fn)n une suite de fonctions définies sur une partie D de R. On dit que
la série de fonctions

∑
fn de terme général fn converge :

1. absolument si la série de fonctions
∑ |fn| converge simplement ;

2. normalement si la série numérique
∑ ||f ||∞ converge, c’est à dire si la série de fonctions∑

fn converge en norme.

Remarque 2.62. Pour la convergence normale, toutes les fonctions fn doivent nécessairement
être bornées pour que leur norme infinie soit bien définie. La convergence normale correspond
donc à la convergence en norme dans l’espace de Banach B(D).
Remarque 2.63. La notion de convergence absolue est une forme de convergence simple pour la
série de fonctions positives |fn|. La convergence normale est une condition très forte, parfois peut
être trop forte, mais très utile car on se ramène à une série numérique. Par contre, comme c’est
une série numérique, connaitre la convergence de cette série ne nous dit RIEN sur la fonction
limite de ∑ fn. il faut donc toujours calculer la limite simple.
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Exemple 2.64. La série de fonctions fn : x 7! 1
n2+x2 est normalement convergente (par majora-

tion).

Proposition 2.65. Soit (fn)n une suite de fonctions définies sur une partie D ⊂ R. Nous avons
le losange d’implications suivantes :

∑
fn CVA

∑
fn CVN

∑
fn CVS

∑
fn CVU

Démonstration. L’implication CV U =⇒ CV S est la Proposition 1.17 appliquée à la suite des
sommes partielles de la suite de fonctions (fn)n.

L’implication CV A =⇒ CV S se montre très simplement. Soit x ∈ D. Comme la série de
fonctions∑ fn converge absolument dans le sens de la Définition 2.61, la série numérique∑ fn(x)
est absolument convergente dans le sens de la Definition 2.31, et donc elle est convergente. Ceci
étant vrai pour tout x ∈ D, la suite de fonctions ∑ fn est simplement convergente.

L’implication CV N =⇒ CV A est aussi très simple. Tout d’abord, le fait que la série de
fonctions ∑ fn est normalement convergente veut dire que la série numérique ∑ ||fn||∞ converge
sur D. Or, pour tout x ∈ D, on a |fn(x)| ≤ ||fn||∞. Comme le membre de droite est le terme
général d’une série convergente, on déduit que la série numérique positive ∑ |fn(x)| converge.
Cela veut dire que la série numérique ∑ fn(x) est absolument convergente dans le sens de la
Definition 2.31, et donc que la série de fonctions ∑ fn est absolument convergente dans le sens
de la Definition 2.61.

Passons à la convergence CV N =⇒ CV U . Tout d’abord on pose Rn = ∑+∞
k=n+1 ∥fn∥∞ le

reste au rang n de la série numérique positive convergente ∑ ∥fn∥∞. Comme ∑ ∥fn∥∞ converge,
la suite (Rn) converge vers 0. D’après le point précédent on sait que la série de functions ∑ fn

converge absolument donc simplement. Soit x ∈ D, et notons Sn(x) = ∑n
k=0 fn(x). Soit p ≥

n ≥ 0 et évaluons la norme infinie de la différence de la somme partielle Sp(x) et de Sn(x) :

∣∣Sp(x) − Sn(x)
∣∣ =

∣∣∣∣∣∣

p∑

k=n+1
fn(x)

∣∣∣∣∣∣
≤

p∑

k=n+1
|fn(x)| ≤

p∑

k=n+1
∥fn∥∞ ≤

+∞∑

k=n+1
∥fn∥∞ = Rn

Comme on sait que ∑ fn converge simplement vers la fonction somme S(x) = ∑+∞
k=0 fn(x), on

peut faire tendre p vers l’infini dans le membre de gauche pour avoir :

|S(x) − Sn(x)| ≤ Rn

Comme l’inégalité est vraie pour tout x ∈ D et pour tout n ∈ N, c’est vrai en particulier pour
la borne supérieure :

∀ n ∈ N ∥S − Sn∥∞ ≤ Rn

Comme le membre de droite tend vers 0, le membre de gauche est aussi petit que l’on veut, donc
la série de fonction ∑ fn est uniformément convergente.
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Exemple 2.66. Une série de fonctions simplement convergente mais pas absolument convergente.
Pour tout x ∈ R et n ∈ N∗, on pose fn(x) = (−1)n

n+x2 . D’après le critère des séries alternées, la
série de fonctions est simplement convergente. Par contre elle n’est pas absolument convergente
car |fn(x)| ∼ 1

n quand n tend vers l’infini, or 1
n est le terme principal de la série harmonique

qui diverge. Par la Proposition 2.15 nous en déduisons que la série ∑ |fn(x)| diverge pour tout
x ∈ R. La série de fonctions ∑ fn ne peut donc pas être normalement convergente et cela se voit
car

∥fn∥∞ = sup
x∈R

|fn(x)| = 1
n

Donc la série ∑ ∥fn∥∞ est la série harmonique, qui diverge.
Exemple 2.67. Une série de fonctions absolument et uniformément convergente mais pas nor-
malement convergente. Soit fn(x) = (−1)n

n(1+nx) définie sur ]0, +∞[. Pour tout x > 0, on a que
|fn(x)| ≤ 1

n2x
donc la série est absolument convergente sur ]0, +∞[ (théorème de comparaison)

vers la somme S(x) = ∑+∞
k=1 fn(x). Montrons que la série est uniformément convergente. Soit

x > 0, on a alors |Sn(x) − S(x)| = |Rn(x)| =
∣∣∣
∑+∞

k=n+1
(−1)k

k(1+kx)

∣∣∣. La propriété des restes des séries
alternées nous dit que le reste est majoré par le premier terme :

|Rn(x)| ≤
∣∣∣∣∣

(−1)n+1

(n + 1)(1 + (n + 1)x)

∣∣∣∣∣ ≤ 1
n + 1

On peut donc majorer ||Rn||∞ par une suite convergeant vers 0 donc la série de fonction est
uniformément convergente.

Montrons que la série n’est pas normalement convergente sur les intervalles de type ]0, +∞[.
Si jamais il existait une suite de nombres positifs un tels que |fn(x)| ≤ un pour tout x ∈]0, +∞],
alors en passant à la limite x ! 0 dans l’inégalité, on a que |fn(x)| tend vers 1/n donc 1/n ≥ un

donc la série ∑un diverge. Il n’existe pas de série convergente ∑un telle que |fn(x)| ≤ un pour
x > 0. Plus simplement, la norme infinie de fn est 1/n donc ne converge pas. Par contre, la
convergence est normale sur tout intervalle semi-ouvert [a, +∞]. Si x ≥ a, alors 1 + nx ≥ na
donc |fn(x)| ≤ 1

n2a
sur l’intervalle [a, +∞[. Comme la série 1/n2a est convergente, la série de

fonctions fn est normalement convergente sur [a, +∞[.
Exemple 2.68. Une série de fonctions uniformément convergente mais pas normalement conver-
gente. Soit fn(x) = (−x)n

n+x définie sur [0, 1]. Alors la série de fonctions ∑ fn est uniformément
convergente mais pas normalement convergente (car ||fn||∞ = 1 pour tout n). Soit x ∈ [0, 1], alors∑

fn(x) est une série alternée satisfaisant le critère de Leibniz donc elle converge. La limite simple
de la série de fonction est notée S. Le reste de la série Rn(x) = S(x) − Sn(x) = ∑∞

k=n+1 fk(x)
converge vers zero. La majoration du reste d’une série alternée satisfaisant le critère de Leibniz
est donnée par : ∣∣∣∣∣∣

∞∑

k=n+1

(−x)k

k + x

∣∣∣∣∣∣
≤
∣∣∣∣∣

(−x)n+1

n + 1 + x

∣∣∣∣∣ ≤ 1
n + 1

Ceci étant vrai pour tout x, on a une majoration :

||S − Sn||∞ ≤ 1
n + 1

qui converge donc vers 0.
Remarque 2.69. Concrètement, pour montrer une convergence normale, 1. soit on calcule direc-
tement la suite (∥fn∥∞)n et on regarde si la série numérique ∑ ∥fn∥∞ converge, mais ça peut
être compliqué, 2. soit on majore chaque ∥fn∥∞ par un nombre positif an, qui est tel que la
série numérique positive ∑ an est convergente, et ça on sait facilement le vérifier avec toutes les
techniques qu’on possède.
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Exemple 2.70. Application de la convergence normale. Pour tout n ∈ N, soit fn : R ! R, x 7! xn

n! .
La série de fonctions des fn converge simplement vers la fonction suivante :

exp : R −−−−−−! R

x 7−−−−−−!
+∞∑

n=0

xn

n!

Il se trouve que cette fonction est la fonction exponentielle e : x 7! ex (il faudrait le montrer) !
La série de fonctions ∑ fn ne converge pas uniformément sur la droite réelle R car la suite de
fonctions (fn)n ne converge pas uniformément vers 0 sur R (puisqu’aucune fonction fn n’est
bornée dès que n ≥ 1). Par contre sur tout segment de centre 0 et de rayon R > 0, la série de
fonctions ∑ fn converge normalement donc uniformément. En effet, nous avons :

∀ x ∈ [−R, R] |fn(x)| ≤ Rn

n!

De cela, nous déduisons que ||fn||∞ ≤ Rn

n! sur le segment [−R, R]. Le membre de droite de l’inéga-
lité est le terme général d’une série numérique positive convergente : la série ∑ Rn

n! convergeant
vers eR. Par les résultats de comparaison des séries numériques positives de la Proposition 2.15,
nous déduisons que la série numérique positive ∑ ||fn||∞ converge, c’est à dire que la série∑

fn converge normalement sur le segment [−R, R]. Par la proposition 2.65, elle converge donc
uniformément sur ce segment vers la fonction somme qui est la fonction exponentielle. Plus
généralement le raisonnement se vérifie sur tout segment de R, pas seulement sur ceux centrés
en l’origine.

Maintenant, soit k ∈ N. La dérivée complexe k-ième de chaque fonction fn est la fonction
définie par f

(k)
n (x) = xn−k

n! pour tout n ≥ k et 0 si 0 ≤ n < k. Alors nous voyons que

∀ x ∈ [−R, R] |f (k)
n (x)| ≤ Rn−k

(n − k)!

De cela, nous déduisons que ||f (k)
n ||∞ ≤ Rn−k

(n−k)! sur le segment [−R, R]. Le membre de droite
de l’inégalité est le terme général d’une série numérique positive convergente : la série ∑ Rn−k

(n−k)!

convergeant vers eR. Par le même raisonnement que ci dessus, nous déduisons que la série ∑ f
(k)
n

converge uniformément sur le segment [−R, R]. Alors par la Proposition 2.57, nous avons que
la fonction exponentielle est de classe Ck sur R et :

∀ x ∈ R exp(k)(x) =
+∞∑

n=k

xn−k

(n − k)! = exp(x)

Comme ceci est vrai pour tout k ∈ N, nous déduisons que la fonction exponentielle complexe
est infiniment dérivable et exp(k) = exp.

Historiquement les séries de fonctions ont servi à fabriquer des fonctions continues et (presque)
nulle part dérivables (et donc non dessinables) :

— La fonction de Weierstrass (1872). On se donne a ∈ ]0, 1[ et b ≥ 1
a . Pour tout x ∈ R, on

pose :

W (x) =
+∞∑

n=0
ancos (bnx)

La série de fonctions ∑ ancos (bn−) converge normalement sur R donc ça nous assure que
la fonction somme W est continue. Hardy (1916) a montré que cette fonction W n’est
dérivable nulle part sur R.
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— L’autre fonction de Riemann (1860). Pour tout x ∈ R, on pose :

R(x) =
+∞∑

n=1

sin
(
n2x

)

n2

Riemann n’a jamais écrit cette fonction, elle vient d’élèves et de collaborateurs qui lui
attribuent. Riemann pensait que la fonction est nulle part dérivable. En 1969 Gerver – un
élève de Lang à Columbia – a prouvé que la fonction R n’est dérivable qu’aux points du
type x = π p

q , avec p ∈ Z, q ∈ N∗, p ∧ q = 1 et p, q impairs ! Par exemple R est dérivable en
π (dur à montrer) mais n’est pas dérivable en 0 (facile à montrer).

Il se trouve que les fonctions continues nulle part dérivables forment l’immense majorité des
fonctions qui existent. Si nous avons des difficultés à exhiber certaines de ces fonctions c’est que
la plupart de ces fonctions ne sont pas écrivables. Nous comprenons que ce que nous étudions
en analyse à travers les fonctions usuelles continues dérivables, c’est une infime partie – et
l’exception – dans le monde général des fonctions.

2.4 Convergence et somme d’une série entière

Les résultats donnés sur les suites et les séries de fonctions réelles sont aussi valables sur
les complexes (excepté les comparaisons d’ordre). En général dans R on note x la variable des
fonctions réelles, dans C on note z la variables des fonctions complexes. Les fonctions complexes
sont plus compliquées à étudier que les fonctions réelles, et seront étudiées plus tard. Par contre
un cas particulier de fonctions sur le plan complexe qui sont plus simples à analyser sont les
polynomes en z. Un monôme complexe est une fonction de type anzn, où an ∈ C, pour un
certain n ∈ N. Un polynôme de la variable complexe est une somme finie de monômes. C’est
toujours une fonction complexe bien définie sur tout le plan complexe. Maintenant, avec le savoir
accumulé sur les séries de fonctions on aimerait étendre la notion de polynômes – sommes finies
de monômes – à des sommes infinies de monômes – des séries de fonctions monomiales. On va
donc étudier dans la droite réelle et le plan complexe les suites de fonctions (fn)n du type (ici
D est un domaine – c’est à dire sous-ensemble – du plan complexe) :

fn : D ⊂ C −−−−−−! C
z 7−−−−−−! anzn

et leurs séries de fonctions associées, c’est à dire de la forme

S(z) =
+∞∑

n=0
fn(z) =

+∞∑

n=0
anzn

où la variable z est un nombre complexe, et où (an)n est une suite de nombres complexes qu’on
appelle "coefficients". Pour le cas réel, D est un sous-ensemble de R, (an)n est une suite de
nombres réels, et le monôme est du type anxn. Ces séries de fonctions sont particulièrement
adaptées à la notion de convergence normale.

Définition 2.71. On appelle série entière toute série de fonctions du type
∑

anzn (resp.
∑

anxn),
où (an)n est une suite complexe (resp. réelle).

Remarque 2.72. Une série entière ne converge simplement pas nécessairement partout. Du fait
que les séries entières sont des suites de fonctions polynomiales, nous verrons plus bas que la
convergence se fait sur un disque de convergence centré en l’origine du plan complexe.
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Les fonctions fn : z 7! anzn sont des cas particuliers de fonctions, ce sont des monômes.
Une question évidente qui vient à l’esprit est donc à quelle condition (sur la suite (an)n) la
série de fonctions

∑
anzn converge-t-elle ? (absolument, uniformément, normalement ?) vers

une fonction somme ∑+∞
n=0 anzn ? Inversement, on peut se poser la question quelles sont les

fonctions sur C "développables en série entière", c’est à dire qui peuvent s’écrire comme une
somme

∑+∞
n=0 anzn pour une suite (an)n à déterminer ? Une reformulation de ces questions se

trouve en observant les sommes partielles des séries entières :

S0(z) = a0, S1(z) = a0 + a1z, S2(z) = a0 + a1z + a2z2, etc.

Sn(z) = a0 + a1z + a2z2 + . . . + an−1zn−1 + anzn

Ce sont des polynômes. Cela pose donc la question suivante : quelles sont les fonctions continues
qu’on peut approcher (uniformément) avec des polynômes ?
Exemple 2.73. La série géométrique ∑ zn est une série entière, où tous les coefficients an valent
1. On suppose que z ̸= 1 car pour z = 1 la série diverge grossièrement vers l’infini. Pour z ̸= 1,
la fonction somme partielle de rang n de cette série est :

Sn(z) =
n∑

k=0
zn = 1 + z + z2 + z3 + . . . + zn = 1 − zn+1

1 − z

La suite des sommes partielles (Sn(z))n ne convergent que si la suite (zn)n converge vers 0. Cela
n’est possible que si |z| < 1, c’est à dire si z est sur le disque ouvert de rayon 1. Si tel est le
cas, la limite de la suite (Sn(z))n est 1

1−z . Autrement dit on approche la fonction 1
1−z par des

polynômes de degré de plus en plus élevé. Si |z| > 1, la suite des sommes partielles tend vers
l’infini, tandis que si |z| = 1, elle diverge (oscille) mais nous verrons plus tard (dans l’exemple
2.82) ce qu’il se passe en détail.
Exemple 2.74. Un autre exemple de série entière qui est égale à une fonction dans un domaine
donné est la fonction exponentielle complexe. Pour tout n ∈ N posons an = 1

n! , alors la série
entière ∑ zn

n! converge vers la fonction exponentielle complexe :

exp : C −−−−−−! C

z 7−−−−−−!
+∞∑

n=0

zn

n!

Elle coincide avec la fonction exponentielle traditionnelle lorsqu’on se restreint à l’axe des réels.
La définition avec la série entière est une façon d’étendre la fonction exponentielle traditionnelle
au plan complexe. Sans cela, c’est compliqué de trouver une définition.

Soit (an)n une suite complexe et soit ∑ anzn la série entière associée. Rappelons que la série
entière ∑ anzn est absolument convergente sur un domaine D ⊂ C donné si et seulement si la
série numérique positive ∑ |an||z|n converge pour tout z ∈ D. Pour déterminer ce domaine de
convergence D, nous nous reposons sur le résultat suivant :

Proposition 2.75. Lemme d’Abel. S’il existe r > 0 tel que la suite réelle positive
(|an|rn

)
n

est bornée, alors la série entière
∑

anzn est absolument convergente sur le disque ouvert de
centre l’origine et de rayon r, c’est à dire si |z| < r.

Démonstration. Soit r > 0 satisfaisant la condition du Lemme d’Abel. Soit donc M > 0 tel que
0 ≤ |an|rn ≤ M pour tout n ∈ N. Si z ∈ B(0, r), c’est à dire tel que |z| < r. Alors on a :

|anzn| = |an|rn |z|n
rn

≤ M

( |z|
r

)n
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Le terme |z|
r est strictement inférieur à 1, donc la série géométrique positive ∑

(
|z|
r

)n
converge.

Par le théorème de comparaison 2.15, la série numérique positive ∑ |anzn| converge.

Définition 2.76. Soit I l’ensemble des nombres réels r ≥ 0 (positifs ou nuls) tels que la suite
réelle positive

(|an|rn
)

n
est bornée. Si l’ensemble I est majoré, il admet une borne supérieure,

appelée rayon de convergence de la série
∑

anzn et notée R, autrement dit :

R = sup
{
r ≥ 0 tel que la suite

(|an|rn)
n

est bornée
}

Si l’ensemble I n’est pas majoré, alors on dit que le rayon de convergence de la série est infini,
et on note R = +∞.

Remarque 2.77. Notons tout d’abord que l’ensemble I contient 0 ∈ R. D’autre part, s’il n’est
pas réduit à 0, cet ensemble est en réalité un intervalle (il est convexe). En effet : soit r ∈ I
strictement positif, alors pour tout t tel que 0 ≤ t ≤ r, on a 0 ≤ |an|tn ≤ |an|rn. Comme la suite(|an|rn

)
n

est bornée, de même en est-il pour la suite
(|an|tn

)
n
. Donc t ∈ I. Ceci étant vrai pour

tout 0 ≤ t ≤ r, nous en déduisons que [0, r] ⊂ I.
Exemple 2.78. — La série de fonctions ∑ zn

n , est une série entière. Elle ne converge absolu-
ment que si |z| < 1 car la convergence de la suite géométrique (|z|n)n vers 0 est plus rapide
que la divergence de la suite

(
1
n

)
n

vers +∞. Le rayon de convergence est donc R = 1.
— La série ∑ zn

n! est une série entière absolument convergente partout, et sa limite est exp(z).
Le rayon de convergence est donc R = +∞.

— Un example qui lui est opposé est la série entière ∑n!zn. Elle ne converge que pour z = 0,
car si z ̸= 0, ln

(
n!zn

)
= nln(z) + ln(n!) qui tend vers +∞ quel que soit z donc la série

entière diverge grossièrement. Dans ce cas le rayon de convergence est R = 0.
Exemple 2.79. Caractérisons un peu plus les séries entières qui ont rayon de convergence infini.
Soit ∑ anzn une série entière ayant pour rayon de convergence R = +∞. Alors, pour tout r > 0,
on que la suite

(|an|rn
)

n∈N est bornée c’est à dire qu’il existe Mr tel que |an| ≤ Mr
rn pour tout

n ∈ N. En particulier, les coefficient |an| tendent vers 0 très rapidement (plus vite que n’importe
quelle exponentielle).

Proposition 2.80. Soit (an)n une suite complexe, soit
∑

anzn la série entière associée et soit
R son rayon de convergence qu’on suppose non-nul.Alors :

1. la série de fonctions
∑

anzn est absolument convergente sur la boule ouverte B(0, R) ;
2. la série complexe

∑
anzn est grossièrement divergente pour tout z ∈ C tel que |z| > R.

Démonstration. Pour le premier point, soit z ∈ B(0, R) (la boule ouverte de rayon R). Comme
la boule est ouverte, il existe r > 0 tel que |z| < r < R. Comme

(|an|rn
)

n
est bornée, le Lemme

d’Abel nous dit que la série numérique positive ∑ |anzn| converge. Pour le deuxième point, si
jamais z ∈ C est tel que |z| > R, alors il existe r > 0 tel que R < r < |z|. On a donc :

|anzn| = |an|rn |z|n
rn

≥ |an|rn

Par définition du rayon de convergence, la suite
(|an|rn

)
n

n’est pas bornée, donc la suite( |anzn| )
n

ne tend pas vers 0 donc la série complexe ∑ anzn diverge grossièrement.

On a donc un moyen de calculer un rayon de convergence : si on a trouvé un nombre réel
strictement positif R > 0 tel que la suite

(|an|rn
)

n
est bornée pour tout 0 ≤ r < R, et diverge

pour tout r > R, alors R est le rayon de convergence de la série entière ∑ anzn. Les deux cas
extrêmes R = 0 et R = +∞ sont atteint lorsque :
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— pour R = 0 : si la suite
(|an|rn

)
n

n’est jamais bornée dès que r > 0, et
— pour R = +∞ : si la suite

(|an|rn
)

n
est toujours bornée quel que soit r > 0.

Le choix du nom "rayon de convergence" n’est pas anodin, comme le justifie la Définition sui-
vante :

Définition 2.81. Soit
∑

anzn une série entière et R son rayon de convergence qu’on suppose
non-nul. La boule ouverte B(0, R) de centre 0 et de rayon R est appelée disque de convergence
de la série. Le cercle frontière ∂B(0, R) (qui n’existe que lorsque R est fini) est appelé cercle
d’incertitude.

Nous ne le préciserons pas à chaque fois, mais tous les résultats sur le disque de convergence
d’un rayon de convergence fini non-nul s’appliquent aussi au cas du rayon de convergence infini
(qui est aussi non-nul) car la boule ouverte de centre 0 et de rayon infini est le plan complexe
tout entier. Pour un rayon de convergence fini, la série entière converge absolument sur le disque
de convergence et diverge grossièrement à l’extérieur. Sur le cercle d’incertitude, c’est au cas par
cas : selon la série entière, on peut avoir convergence absolue, convergence simple ou divergence.
Exemple 2.82. Dans l’exemple 2.73 nous avons vu que la série entière ∑ zn ne converge absolu-
ment que pour |z| < 1. Elle admet donc comme rayon de convergence R = 1. Sur le cercle unité,
la série ∑ zn diverge grossièrement en z = 1, et est une série alternée qui diverge en z = −1. En
tout autre point z = eiα2π pour α ∈ ]0, 1[ on a pour somme partielle :

Sn =
n∑

k=0
eikα2π = 1 − ei(n+1)α2π

1 − eiα2π
= (1 − r)qn + r

C’est une suite arithmético-géométrique, de paramètres r = 1
1−eiα2π et q = eiα2π. Donc on voit

que lorsque n augmente, l’exponentielle complexe n 7! einα2π tourne, donc la somme partielle
n’a pas de limite.

On peut même être plus précis : si α ∈ Q alors l’exponentielle complexe est périodique eikα2π

et la suite des sommes partielles est une suite périodique (et ne peut pas converger). Par contre
si α ∈ R\Q est irrationnel, alors la suite des sommes partielles n’es pas périodique mais oscille,
au point d’être dense dans le cercle de centre r = 1

1−eiα2π et de rayon |1 − r| = |r|.
Pour cet exemple le rayon de convergence est R = 1, mais plus généralement, soit a ∈ C∗,

alors la série entière ∑ anzn admet pour rayon de convergence R = 1
|a| .

Les critères de convergence de Cauchy et de d’Alembert s’appliquent aux séries entières et
de grande utilité :

Proposition 2.83. Soit
∑

anzn une série entière. Nous avons deux résultats :
1. d’Alembert Si pour tout n assez grand, on a an ∈ C∗, et si :

∣∣∣∣
an+1
an

∣∣∣∣ −−−−!n!+∞
L ∈ R+ ∪ {+∞}

alors le rayon de convergence de la série entière
∑

anzn est R = 1
L (où, par convention,

1
0 = +∞ et 1

+∞ = 0).

2. Cauchy Si la suite
(

n
√

|an|
)

n
admet une limite L ∈ R+ ∪{+∞}, alors le rayon de conver-

gence de la série
∑

anzn est R = 1
L .

Remarque 2.84. Si le critère de d’Alembert fonctionne, alors celui de Cauchy aussi, avec la même
limite, donc le même rayon de convergence (ce qui est rassurant). Le critère de Cauchy est donc
plus général mais celui de d’Alembert souvent plus utile.
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Exemple 2.85. La série entière ∑ zn

n! converge vers la fonction exponentielle complexe sur tout le
plan complexe. On peut voir facilement que son rayon de convergence est infini car an+1

an
= 1

n+1 ,
qui tend vers 0 quand n tend vers l’infini.
Exemple 2.86. Calculons le rayon de convergence de la série entière∑ n!

nn zn. Appliquons le critère
de d’Alembert, avec la suite positive (an)n de terme général an = n!

nn . On a donc :

an+1
an

= (n + 1)!
(n + 1)n+1

nn

n! = nn

(n + 1)n
=
(

1 − 1
n + 1

)n

−−−−!
n!+∞

1
e

Par d’Alembert, comme la limite de la suite
(

an+1
an

)
n

est L = 1
e , le rayon de convergence de

la série entière ∑ n!
nn zn est R = e. Attention, la série entière ne converge pas sur tout le cercle

d’incertitude. En z = e par exemple, nous avons que anen = n!
nn en = eln(n!)+n−nln(n). Or on

connait l’équivalent de ln(n!) en +∞ :

ln(n!) = nln(n) − n + 1
2ln(n) + O(1)

Donc anen = e
1
2 ln(n)+O(1) ∼ √

n donc la suite (anen)n n’est pas bornée, donc la série ∑ n!
nn en

diverge grossièrement.
Exemple 2.87. La série entière ∑

(2n
n

)
zn admet comme rayon de convergence 1

4 .
Remarque 2.88. Attention, on peut bien entendu admettre un rayon de convergence tout en
ne satisfaisant pas le critère de d’Alembert ou Cauchy. Par exemple la série entière ∑ sin(n)zn

admet pour rayon de convergence 1 mais
∣∣∣ sin(n+1)

sin(n)

∣∣∣ n’admet pas de limite.

Proposition 2.89. Soit
∑

anzn et
∑

bnzn deux séries entières de rayons de convergence Ra et
Rb, respectivement.

— Si pour tout n assez grand, on a |an| ≤ |bn|, alors on a Rb ≤ Ra ;
— Si |an| ∼

n!+∞
|bn|, alors Ra = Rb.

Démonstration. C’est un corollaire de la Proposition 2.15. Soit 0 ≤ r < Rb, alors on a que la
suite

(
bnrn

)
n∈N est bornée. Par la majoration |an| ≤ |bn|, la suite

(
anrn

)
n∈N est aussi bornée,

et donc r ≤ Ra. On a donc la phrase logique suivante : ∀ 0 ≤ r < Rb, r ≤ Ra. On en déduit que
Rb ≤ Ra. Pour le deuxième point, c’est une application directe du dernier point de la Proposition
2.15.

Exemple 2.90. Soit la série entière ∑ zn

n . Le critère de d’Alembert nous donne L = 1 donc le
rayon de convergence est R = 1. En effet, pour tout z de module |z| < 1, la puissance l’emporte
sur le dénominateur et la série converge absolument. Pour tout z de module |z| > 1, la série
diverge grossièrement donc le rayon de convergence est 1. Etudions ce qu’il se passe sur le cercle
d’incertitude. Pour z = 1 la série entière est la série harmonique ∑ 1

n qui diverge. Pour z = −1,
la série entière est la série alternée ∑ (−1)n

n qui satisfait le critère de Leibniz 2.38 donc converge.

Aussi pour z = ei π
2 = i car on peut scinder la série en deux séries alternées :

4n∑

k=1

ik

k
= i

1 + −1
2 + −i

3 + 1
4 + i

5 + −1
6 + −i

7 + 1
8 + i

9 + . . . + 1
4n

=
2n∑

p=1

(−1)p

2p
+ i

2n−1∑

p=0

(−1)p

2p + 1
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Les deux séries sur la droite sont alternées qui satisfont le critère de Leibniz 2.38 donc convergent,
ce qui fait que la série entière ∑ zn

n converge en z = i.

Pour z = j = ei 2π
3 , nous avons j2 = e−i 2π

3 et j3 = 1 ; on dit que j est une racine troisième
de l’unité. Dans ce cas la somme partielle au rang 3n vaut :

3n∑

k=1

jk

k
= j

1 + j2

2 + 1
3 + j

4 + j2

5 + 1
6 + j

7 + j2

8 + 1
9 + . . . + 1

3n

= j
n∑

p=1

1
3p − 2 + j2

n∑

p=1

1
3p − 1 +

n∑

p=1

1
3p

Or nous savons que ∑n
p=1

1
3p = 1

3
∑n

p=1
1
p ∼

n!+∞
1
3 ln(n). Cet équivalent s’applique aussi aux

autres sommes ci-dessus (par comparaison série intégrale). Donc on a l’intuition que la somme
partielle de rang 3n se comporte comme un produit j+j2+1

3 ln(n). Le numérateur de la fraction
est nul (propriété des racines 3-èmes de l’unité, qu’on peut voir sur un dessin du plan complexe)
mais le logarithme tend vers +∞ donc nous avons une forme indéterminée. D’autre part les
sommes partielles de rang 3n + 1 et 3n + 2 valent 1

3n+1 +∑3n
k=1

jk

k et 1
3n+1 + 1

3n+2 +∑3n
k=1

jk

k ,
respectivement. Donc si la somme partielle de rang 3n converge quand n tend vers l’infini, les
autres sommes partielles convergent. La proposition suivante nous dit que c’est le cas.
Theorème de Picard. Soit

∑
anzn une série entière de rayon de convergence R > 0 fini.

Si la suite (an)n est positive, décroissante et converge vers 0, alors la série entière converge
simplement sur tout le cercle d’incertitude, à l’exception éventuellement du point z = R.

Démonstration. Nous pouvons prendre le cas où R = 1 car le cas général se ramène à ce cas
particulier. Nous ne donnerons pas de preuve formelle du résultat mais l’idée intuitive de la
preuve c’est que dès que z est sur le cercle d’incertitude, mais différent du point z = 1, on
a que z = eiθ pour un certain θ ∈ ]0, 2π[. Les puissances successives sont donc zn = einθ et
elles tournent sur le cercle d’incertitude. Pour cette raison la série entière ∑ zn ne converge pas
(oscille) dès que z ̸= 1, tandis qu’elle tend vers +∞ si z = 1. Maintenant, si on a une suite réelle
(an)n positive décroissante convergeant vers 0, on peut comprendre que la série ∑ anzn oscille
mais avec de moins en moins d’amplitude contrairement à la suite ∑ zn qui oscille sans perdre
en amplitude.

Remarque 2.91. Soit ∑ anzn une série entière (dont les coefficients ne satisfont pas forcément les
hypothèses du Théorème de Picard). Notons C l’ensemble des points z du cercle d’incertitude
tels que la série entière ∑ anzn converge simplement. On peut montrer que C est nécessairement
une intersection dénombrable d’unions dénombrables de fermés, ce qu’on appelle un ensemble
de type Fσδ. Inversement, étant donné un sous-ensemble C de type Fσδ du cercle d’incertitude,
peut-on trouver une série entière qui converge simplement exactement sur C ? On a pu le montrer
si C est un nombre fini mais dans toute sa généralité cette question reste encore ouverte.

Les séries entières sont avant tout des séries de fonctions. Nous nous intéressons donc à si
leur fonction somme est continue, dérivable ou intégrable. Ces propriétés sont induites par la
convergence uniforme de séries de fonctions. Il faut donc s’intéresser à ce genre de convergence
pour les séries entières. Etant donnée une série entière ∑ anzn de rayon de convergence R, nous
savons qu’elle converge absolument sur son disque de convergence, et diverge grossièrement en
dehors. La fonction somme n’est donc définie a priori que sur le disque de convergence :

S : B(0, R) −−−−−−! C

z 7−−−−−−!
+∞∑

n=0
anzn
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La question est donc de savoir si la fonction somme S est-elle continue, dérivable, intégrable ? ?
Nous avons un problème, car si jamais la série entière ∑ anzn convergeait uniformément sur

la boule ouverte de rayon R, alors elle convergerait sur la boule fermée de rayon R (cela se
montre en étudiant la suite des sommes partielles). Mais cela voudrait dire qu’elle convergerait
simplement en tout point du cercle d’incertitude. Or ce n’est certainement pas toujours le cas,
puisque la convergence de la série entière sur le cercle d’incertitude se fait en les points de
l’ensemble C , qui est très souvent un sous-ensemble strict du cercle d’incertitude. De ce fait,
nous voyons donc qu’en général la série entière ne peut pas converger uniformément sur le disque
de convergence en entier. Par contre, comme pour les suites de fonctions réelles qui peuvent ne
pas converger uniformément sur des intervalles ouverts, mais peuvent le faire sur tout segment
inclus, nous allons voir que les séries entières peuvent converger uniformément sur certains
domaines du disque de convergence qui généralisent la notion de segment dans le plan complexe
(et plus généralement les ensembles finis en topologie).

Définition 2.92. Un sous-ensemble D de R ou C est dit :
— fermé si tout suite convergente d’éléments de D converge dans D, i.e. sa limite est dans D,
— ouvert si son complémentaire Dc est fermé,
— borné s’il existe M > 0 tel que ∀ z ∈ D, on a |z| < M ,
— compact si D est fermé borné.

Remarque 2.93. Attention, la définition des compacts comme les ensembles fermés bornés n’est
valable que dans les espaces vectoriels de dimension finie. La définition générale d’un ensemble
compact est une définition topologique plus compliquée qu’on verra en troisième année. On peut
montrer qu’un ensemble compact (dans le sens topologique) est fermé borné, et en dimension
finie, tout ensemble fermé borné est compact, mais ce dernier résultat n’est pas forcément vrai
en dimension infinie.
Exemple 2.94. Dans R, les points, les unions finies de points, les segments et les unions finies
de segments sont des fermés, et donc des compacts car tous ces ensembles sont bornés (car les
unions sont finies). Une union infinie (dénombrable) de points ou de segments n’est pas forcément
fermée : par exemple Q ou ⋃n∈N∗ [0, 1 − 1

n ] = [0, 1[. L’ensemble A =
{

1
n , n ∈ N∗

}
n’est pas fermé

mais si on rajoute l’origine 0, l’adhérence A = A ∪ {0} est fermée.
Exemple 2.95. Dans C, la boule ouverte B(0, R) = {z ∈ C | |z| < R} est ouverte et la boule
fermée B(0, R) = {z ∈ C | |z| ≤ R} est fermée. Les segments du plan complexe sont aussi fermé,
car ils sont caractérisés par leur convexité et fermés aux extrémités comme dans R :

[z0, z1] = {z ∈ C | ∃ t ∈ [0, 1] tel que z = tz1 + (1 − t)z0}

Exemple 2.96. Soit f : R ! R une fonction. Son graphe est le sous-ensemble de R2 ≃ C défini
par :

Gr(f) = {z = x + if(x), x ∈ R}
Alors on a la résultat suivant : f est continue sur R si et seulement si Gr(f) est fermé.
Remarque 2.97. La notion de compacité est en réalité sous-jacente à beaucoup de résultats
profonds qu’on a déjà vus. On dit qu’un sous-ensemble A d’un espace vectoriel normé est sé-
quentiellement compact si il possède la propriété que toute suite d’éléments de A possède une
valeur (en fait vecteur) d’adhérence. Grâce à cela on peut reformuler de façon concise le théorème
de Bolzano-Weierstrass en le généralisant aux espaces vectoriels normés de dimension finie :
Théorème de Bolzano-Weierstrass dans Rn. Dans un espace vectoriel de dimension finie,
tout compact est séquentiellement compact.
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De là nous déroulons les résultats sur la convergence uniforme en commençant avec le résultat
suivant qui traduit l’idée qu’une suite de fonctions peut ne pas converger uniformément sur un
intervalle ouvert I ⊂ R, tout en convergeant uniformément sur tout segment I :

Proposition 2.98. Soit
∑

anzn une série entière et R son rayon de convergence qu’on suppose
non-nul. La série entière

∑
anzn converge normalement sur tout compact inclus dans le disque

de convergence, c’est à dire (de façon équivalente) dans tout disque fermé B(0, r), où 0 ≤ r < R.

Démonstration. Pour tout n ∈ N, on pose fn(z) = anzn. La série entière ∑ anzn est donc vue
comme une série de fonctions ∑ fn. Converger normalement ici veut dire que la série numérique∑ ||fn||∞ des normes infinies des fonctions fn converge. Montrons que cela est vrai sur toute
boule fermée B(0, r) de centre 0 et de rayon 0 ≤ r < R, car tout compact du disque de
convergence – étant fermé – est inclus dans une boule fermée. Soit donc 0 ≤ r < R, alors par
définition la série ∑ |an|rn converge. Donc pour tout z ∈ B(0, r), on a |anzn| ≤ |an|rn, donc c’est
encore vrai pour la borne supérieure, c’est à dire qu’on a ||fn||∞ ≤ |an|rn. Comme le membre de
droite est celui d’une série convergente, celui de gauche est aussi celui d’une série convergente,
par le théorème de comparaison 2.15..

La proposition ci-dessus nous permet d’appliquer directement les résultats de continuité,
dérivation et intégration vus sur les séries de fonctions qui convergent uniformément. Pour la
dérivation et l’intégration des séries entières, on ne connait pas la dérivation et l’intégration sur
la variable complexe en toute généralité, mais la dérivation et l’intégration des polynômes se fait
de la même façon que dans le cas réel, c’est à dire en diminuant l’exposant ou en l’augmentant.
On a donc les résultats suivants qui sont immédiats :

Corollaire 2.99. Soit
∑

anzn une série entière et R son rayon de convergence qu’on suppose
non-nul. On note S(z) = ∑+∞

n=0 anzn la fonction somme. Alors nous avons les trois résultats
suivants sur le disque de convergence :

— S est continue ;
— S est dérivable et S′(z) = ∑+∞

n=0(n + 1)an+1zn ;
— S est intégrable et la primitive de S s’annulant en zéro est T (z) = ∑+∞

n=0
an

n+1zn+1.

Démonstration. La série entière ∑ anzn converge normalement sur tout disque fermé B(0, r)
pour tout 0 ≤ r < R, donc elle converge uniformément sur ce compact. De là, étant donné
que toutes les fonctions fn : z 7! anzn sont continues et de dérivées continues, nous pouvons
appliquer tous les théorèmes vus pour les séries de fonctions, comme les Propositions 2.52, 2.56
et 2.57, ce qui conclut la preuve.

Définition 2.100. On appelle
∑(n + 1)an+1zn la série dérivée et

∑ an
n+1zn+1 la série primitive

de la série entière
∑

anzn.

Proposition 2.101. Les séries dérivées et séries primitives ont même rayon de convergence
que la série entière

∑
anzn.

Démonstration. Soit R le rayon de convergence de la série entière∑ anzn, qu’on suppose non-nul
(c’est à dire fini supérieur à zéro ou infini). Soit Rd le rayon de convergence de la série dérivée et
Rp le rayon de convergence de la série primitive. Soit z ∈ B(0, R), c’est à dire |z| < R. Soit donc
r > 0 tel que |z| < r < R. La série numérique de terme général anrn est absolument convergente
et on a : ∣∣∣nanzn−1

∣∣∣ = n

r

|z|n−1

rn−1 |an|rn
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Mais comme 0 ≤ |z|
r < 1 on a que la suite

(
n
r

|z|n−1

rn−1

)
converge vers 0, c’est à dire qu’elle est

inférieure à 1, à partir d’un certain rang. Il existe donc N ∈ N tel que pour tout n ≥ N , on a
l’encadrement :

0 ≤
∣∣∣nanzn−1

∣∣∣ ≤ |an|rn

Par le théorème de comparaison des séries de termes positifs, on en déduit que la série en-
tière ∑nanzn−1 converge absolument, c’est à dire la série entière ∑(n + 1)an+1zn+1 converge
absolument. Comme ce raisonnement est valide pour tout z ∈ B(0, R), on déduit que R ≤ Rd.

Inversement, soit z ∈ B(0, Rd), alors on a pour tout n ∈ N :

|anzn| ≤ n
∣∣∣anzn−1

∣∣∣ |z|

La série numérique de terme général nanzn−1 étant absolument convergente sur B(0, Rd), alors
on déduit que la série numérique de terme général anzn est absolument convergente. Comme ce
raisonnement est valide pour tout z ∈ B(0, Rd), on déduit que Rd ≤ R. Donc R = Rd.

Pour finir, la série ∑ anzn étant la série dérivée de ∑ an−1
n zn, on déduit que Rp = R.

Remarque 2.102. Grâce au Corollaire 2.99 et à la Proposition 2.101 nous avons que toute série
entière ∑ anzn est dérivable à tout ordre sur le disque de convergence. Le coefficient an au rang
n peut être obtenu en dérivant n fois la fonction somme S : z 7!

∑+∞
k=0 akzk et en évaluant S(n)

en zéro. Plus précisément, pour tout n ∈ N, nous avons :

S(n)(z) =
+∞∑

k=n

k!
(k − n + 1)!akzk−n = n! an + (n + 1)! an+1z + (n + 2)!

2 an+2z2 + . . .

Nous voyons qu’en z = 0, nous avons S(n)(0) = n! an, autrement dit nous arrivons à la conclusion
que les coefficients de la série entière ∑ anzn sont reliés aux dérivées successives de la fonction
somme S comme :

∀ n ∈ N an = S(n)(0)
n!

Cette règle est à la base des séries de Taylor, et va être étudiée en profondeur dans la section
suivante.
Exemple 2.103. Dans l’Exemple 2.39 nous avons dit que la série alternée ∑ (−1)n

n converge vers
−ln(2) grâce à une comparaison série-intégrale. Nous pouvons arriver à ce résultat plus facilement
en voyant la série ∑ (−1)n

n comme la série primitive de la série entière ∑ zn, évaluée en z = −1.
La série entière ∑ zn admet pour rayon de convergence R = 1 et donc comme primitive sur le
disque de convergence :

T (z) =
+∞∑

n=0

zn+1

n + 1 =
+∞∑

n=1

zn

n

La série primitive de la série entière ∑ zn est donc la série entière ∑ zn

n . Mais nous savons
d’autre part par l’Exemple 2.73 que la série entière ∑ zn est la série géométrique, qui converge
normalement vers la fonction somme S(z) = 1

1−z sur le disque de convergence. Par la Proposition
2.56, nous nous attendons donc à avoir lune égalité du type :

T (z) =
∫ z

0
S (2.3)

Malheureusement nous ne savons pas intégrer sur le plan complexe encore. Pour être rigoureux,
restreignons nous à intégrer le long de segment du type [0, z], où z ∈ B(0, R) (voir la définition
d’un segment complexe dans l’Exemple 2.95). Nous utilisons le Lemme suivant :
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Lemme 2.104. Si une série entière
∑

anzn converge en un point z0 du cercle d’incertitude
alors la convergence est uniforme sur le segment [0, z0]. En particulier, la fonction :

σ : [0, 1] −−−−−−! C

t 7−−−−−−!
+∞∑

n=0
an(tz0)n

est une fonction continue, dérivable et intégrable sur le segment [0, 1].

Remarque 2.105. Une autre façon de le dire, c’est que la fonction somme S : z 7!
∑+∞

n=0 anzn,
qui est continue sur le disque de convergence, satisfait la limite suivante :

lim
t!1
t<1

S(tz0) =
+∞∑

n=0
an(z0)n

Autrement dit, la fonction somme est continue au point z0, mais uniquement selon le rayon.
Exemple 2.106. Reprenons les données de l’Exemple 2.103. La série primitive ∑ zn

n de la série
entière ∑ zn converge (par le Théorème de Picard) sur tous les points du cercle d’incertitude
sauf au point z = 1. Soit donc z ̸= 1 un point du cercle d’incertitude. Ce nombre complexe peut
s’écrire z = eiθ pour un certain θ ∈ ]0, 2π[. D’après le Lemme 2.104, nous avons que la fonction :

σθ : [0, 1] −−−−−−! C

t 7−−−−−−!
+∞∑

n=1

einθ

n
tn

est une fonction continue et dérivable sur le segment [0, 1]. Nous observons que pour tout t ∈
[0, 1[, σθ(t) = T (teiθ). Comme T est la primitive s’annulant en 0 de la fonction somme S : z 7!

1
1−z , la fonction σθ est donc la primitive de la fonction :

Sθ : [0, 1] −−−−−−! C

t 7−−−−−−!
1

1 − teiθ

Pour tout t ∈ [0, 1[, on pourrait intégrer la fonction Sθ et faire sens rigoureux de l’égalité (2.3) :

∀ t ∈ [0, 1[ σθ(t) =
∫ t

0
Sθ(s)ds = −ln(1 − teiθ) (2.4)

Malheureusement nous n’avons pas encore défini le logarithme complexe donc cette formule,
bien que juste, ne nous aide pas.

Dans la suite, on pose θ = π, c’est à dire z = eiπ = −1. Dans ce cas, la fonction primitive
est donnée par :

σπ(t) =
+∞∑

n=1

(−t)n

n

L’égalité (2.4) a maintenant un sens que l’on connait :

∀ t ∈ [0, 1[ σπ(t) =
∫ t

0
Sπ(s)ds = −ln(1 + t) (2.5)

D’après le Lemme 2.104, la fonction σπ est continue en t = 1. D’autre part la fonction t 7!
−ln(1+ t) est aussi continue en t = 1, l’égalité (2.5) est donc aussi valide en t = 1, et nous avons
donc :

σπ(1) =
+∞∑

n=1

(−1)n

n
= −ln(2)
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Ceci est le bon résultat. Pour résumer, nous avons :

∀ x ∈ [−1, 1[
+∞∑

n=1

xn

n
= −ln(1 − x)

C’est un exemple de développement en série entière que nous allons approfondir dans la section
suivante.

Nous finissons cette section avec quelques informations utiles basées sur le Lemme 2.104.

Définition 2.107. Soit (an)n∈N une suite réelle. On dit que la série numérique
∑

an est Abel-
convergente si la limite suivante existe et est finie :

lim
t!1
t<1

+∞∑

n=0
antn

Le Lemme 2.104 prouve qu’une série numérique convergente dans le sens usuel est Abel-
convergente. Par contre il existe des séries Abel-convergentes qui ne sont pas convergentes dans
le sens usuel. Par exemple la série ∑(−1)n est Abel-convergente mais pas convergente dans
le sens usuel. En effet, la série entière ∑(−1)ntn de rayon de convergence R = 1 est la série
géométrique de paramètre −t, qui admet donc comme fonction somme S(t) = 1

1+t , pour tout
t ∈ ] − 1, 1[. On a la limite suivante :

lim
t!1
t<1

+∞∑

n=0
(−1)ntn = lim

t!1
t<1

1
1 + t

= 1
2

La série ∑(−1)n est donc bien Abel-convergente, avec limite 1
2 , mais elle n’est pas convergente

au sens usuel. Le convergence usuelle est donc une condition plus forte que l’Abel-convergence.

2.5 Développement d’une fonction en séries entières

Dans cette section, nous allons étudier les séries entières réelles, c’est à dire les séries de
fonctions du type ∑ anxn où la suite (an)n∈N est une suite réelle. Ce qui suit s’applique aussi
aux séries complexes mais on étudie le cas réel car on sait dériver une fonction réelle mais pas
une fonction complexe. Dans le cas réel, les disques de convergence sont des intervalles ouvert
centrés en 0, et les compacts sont des ensembles fermés bornés, donc en particulier tout segment
est compact.

Prenons une série entière réelle centrée en zéro et de rayon de convergence R > 0. La fonction
somme est donc une fonction définie sur l’intervalle ouvert ] − R, R[ :

S : ] − R, R[ −−−−−−! R

x 7−−−−−−!
+∞∑

n=0
anxn

Cette fonction est continue car la série entière converge normalement (donc uniformément) sur
tout segment de l’intervalle de convergence. Le reste de série au rang n est donné par :

∀ x ∈ ] − R, R[, Rn+1(x) = S(x) − Sn(x) =
+∞∑

k=n+1
akxk
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C’est une fonction continue car elle est la différence de deux fonctions continues, et elle tend
vers 0 lorsque x tend vers 0. De ce fait, observons qu’on a pour tout n ∈ N :

S(x) = a0 + a1x + a2x2 + . . . + anxn + o
x!0

(xn)

où o
x!0

(xn) = Rn+1(x). Cela veut dire que la fonction S admet un développement limité à tout
ordre sur l’intervalle de convergence ] − R, R[. En particulier, en évaluant S en x = 0 on obtient
a0 = S(0), en dérivant une fois et en évaluant en 0 on a a1 = S′(0), et en dérivant k fois et en
évaluant en 0 on a k!ak = S(k)(0). En résumé :

a0 = S(0), a1 = S′(0) et pour tout k ∈ N, ak = S(k)(0)
k!

En particulier S est de classe C∞ sur ]−R, R[. La fonction S a une forme particulière, car c’est la
limite d’une suite de polynômes. La question mathématique qu’on se demande si réciproquement,
étant donnée une fonction f sur R, il existe une série entière ∑ anxn telle que sa somme coincide
avec la fonction f sur un intervalle autour de 0 ? Nous avons besoin de vocabulaire mathématique
pour rendre les choses plus précises.
Remarque 2.108. Soit a ∈ R. On rappelle que tout sous-ensemble A de R qui contient un
intervalle ouvert de la forme ]a − ϵ, a + ϵ[, pour au moins un certain ϵ > 0 petit, est appelé
voisinage de a.

Définition 2.109. Soit f : D ! R une fonction définie sur un voisinage de 0. On dit que f est
développable en série entière en zéro (ou analytique en zéro) s’il existe une série entière

∑
anxn

à coefficients réels de rayon de convergence positif R > 0 ou infini, et 0 < r ≤ R tel que :

∀ x ∈ ] − r, r[ ∩ D, f(x) =
+∞∑

n=0
anxn

Remarque 2.110. En général, on pourra prendre r = R.

Les développements en séries entières généralisent par des séries ce que les développements
limités procurent par des polynômes. Première observation : une fonction développable en sé-
rie entière en zéro est de classe C∞ sur l’intervalle ] − r, r[, et même mieux ! Elle admet un
développement limité à tout ordre, et le développement limité de f à l’ordre n en 0 est :

f(x) = a0 + a1x + a2x2 + . . . + anxn + o
x!0

(xn)

où on a comme précédemment o(xn) = Rn+1(x) = ∑+∞
k=n+1 akxk, et où an = f (n)(0)

n! pour tout
entier n ∈ N. Les coefficients an étant déterminés de façon unique, et donc le développement en
série entière de f est uniquement déterminé : la série entière ∑ anxn est unique. On verra en
réalité que si f est développable en série entière en zéro, alors la série qui est utilisée est la série
de Taylor de f (celle dont les coefficients sont précisément an = f (n)(0)

n! ).
Exemple 2.111. Regardons un exemple que l’on connait bien. Soit α ∈ R∗, et on pose :

f : R\{α} −−−−−−! R

x 7−−−−−−!
1

α − x

Pour tout x ∈ R\{α}, on a f(x) = 1
α

1
1− x

α
. On reconnait à droite la fonction somme de la série

géométrique ∑
(

x
α

)n, qui ne converge que pour −1 <
∣∣ x

α

∣∣ < 1, c’est à dire pour −|α| < |x| < |α|.
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Le rayon de convergence de la série géométrique ∑
(

x
α

)n est donc R = |α|. La fonction f est
donc développable en série entière sur l’intervalle ] − |α|, |α|[ et :

∀ x ∈ ] − |α|, |α|[, f(x) = 1
α

+∞∑

n=0

(
x

α

)n

Etre développable en série entière est une propriété locale car la fonction f est définie sur un
domaine bien plus grand que ]−|α|, |α|[. Nous verrons plus tard qu’elle est en réalité développable
en série entière au voisinage de tout point de son domaine de définition.

Notons que pour être développable en série entière en zéro, une condition nécessaire sur la
fonction f est d’être lisse (de classe C∞) sur un voisinage de zéro car si f(x) = ∑+∞

n=0 anxn alors
on peut obtenir le coefficient an en dérivant n fois la fonction f puisqu’on a an = f (n)(0)

n! . Par
contre cette condition n’est pas suffisante comme nous allons le voir plus bas. La série ∑ anxn

induite par la fonction f , de par son importance dans ce contexte, a un nom particulier.

Définition 2.112. Soit f : D ! R une fonction lisse (de classe C∞) dans un voisinage de zéro.
On pose an = f (n)(0)

n! , et on appelle série de Taylor de f en zéro la série entière
∑

anxn.

Comme toute série entière, la série de Taylor de f en 0 peut ou non converger, et si elle
converge, elle peut ou non converger vers f . Plus précisément, la série de Taylor de f en 0 existe
toujours dès que f est de classe C∞ dans un voisinage de 0. Si f est développable en une série
entière ∑ anzn au voisinage de 0, dans ce cas on a montré que les coefficients an de cette série
sont nécessairement ceux de la série de Taylor de f en 0. Et donc pour que f soit développable en
série entière, une condition nécessaire est que la série de Taylor de f en 0 converge simplement
vers la fonction f dans un voisinage de 0. Par contre, la condition suffisante demande un peu
plus d’explications. En effet, supposons qu’on ne sait pas si f (de classe C∞) est développable
en série entière en 0. Sa série de Taylor de f en 0 existe bien sûr, mais nous avons les trois cas
suivants :

— soit la série de Taylor de la fonction f converge simplement vers f dans un voisinage de
0. Dans ce cas f est développable en série entière en 0 et sa série entière est sa série de
Taylor (voir Proposition 2.113) ;

— soit la série de Taylor de f converge simplement, mais vers une fonction différente de f .
Dans ce cas f n’est pas développable en série entière en 0 (voir Example 2.114) ;

— soit la série de Taylor de f diverge pour tout x ̸= 0. Dans ce cas, f n’est pas développable
en série entière (voir Exemple 2.115).

Proposition 2.113. Soit f : D ! R une fonction de classe C∞ dans un voisinage de 0. Alors
f est développable en série entière en zéro si et seulement la série de Taylor de f converge
simplement vers f dans un voisinage de 0.

Exemple 2.114. Voici un exemple d’une fonction de classe C∞ qui n’est pas développable en série
entière en zéro (Cauchy 1823) :

f : R −−−−−−! R

x 7−−−−−−! f(x) =





0 si x = 0
e− 1

x2 si x ̸= 0
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La fonction est continue, et infiniment dérivable sur R∗. Calculons sa dérivée en 0 grâce à la
définition avec la limite du taux d’accroissement :

f ′(0) = lim
x!0
x ̸=0

f(x) − f(0)
x − 0 = lim

x!0
x ̸=0

e− 1
x2

x
= 0

La limite est une forme indéterminée 0
0 mais est en réalité nulle car l’exponentielle tend plus vite

vers 0 que x. Pour la dérivée second en zéro nous avons le même résultat pour la même raison
qu’au dessus :

f ′′(0) = lim
x!0
x ̸=0

f ′(x) − f(0)
x − 0 = lim

x!0
x ̸=0

2
x3 e− 1

x2

x
= 0

Plus généralement, on peut montrer que cette fonction est telle que f (n)(0) = 0 pour tout
n ∈ N. Et donc nous avons que an = f (n)(0)

n! = 0 pour tout n ∈ N. Donc la série de Taylor de la
fonction f est la série nulle ! La série de Taylor de la fonction f converge donc vers la fonction
constante nulle partout. Pourtant la fonction f n’est pas nulle en dehors de 0. Elle n’est donc
pas développable en série entière.
Exemple 2.115. Un exemple du type de fonctions dont la série de Taylor diverge en tout point
est la série de fonctions suivante :

∀ x ∈ R, f(x) =
+∞∑

n=0

cos(n2x)
2n

Cette série de fonctions converge normalement sur R et de classe C∞. Les coefficients an = f (n)(0)
n!

de sa série de Taylor sont donnés par :

∀ n ∈ N, an = (−1)E( n
2 ) nn

n!

(
n

2

)n

La série entière ∑ anxn est une série divergente dès que x ̸= 0. Donc la série de Taylor de f est
divergente donc f n’est pas développable en série entière au voisinage de 0.
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Liste des DSE(0) usuels
Rayon de la Ensemble

Formule série entière de validité

ex =
+Œÿ

n=0

xn

n! Œ R

ch x =
+Œÿ

n=0

x2n

(2n)! Œ R

sh x =
+Œÿ

n=0

x2n+1

(2n + 1)! Œ R

cosx =
+Œÿ

n=0

(≠1)nx2n

(2n)! Œ R

sin x =
+Œÿ

n=0

(≠1)nx2n+1

(2n + 1)! Œ R

(1 + x)– = 1 +
+Œÿ

n=1

–(– ≠ 1) . . . (– ≠ n + 1)
n! xn 1 ] ≠ 1, 1[

(Œ si – œ N) (R si – œ N)
1

1 + x
=

+Œÿ

n=0
(≠1)nxn 1 ] ≠ 1, 1[

1
1 ≠ x

=
+Œÿ

n=0
xn 1 ] ≠ 1, 1[

ln(1 + x) =
+Œÿ

n=1

(≠1)n+1

n
xn 1 ] ≠ 1, 1]

≠ ln(1 ≠ x) =
+Œÿ

n=1

xn

n
1 [≠1, 1[

arctan x =
+Œÿ

n=0

(≠1)n
2n + 1x

2n+1 1 [≠1, 1]

1
2 ln 1 + x

1 ≠ x
=

+Œÿ

n=0

x2n+1

2n + 1 1 ] ≠ 1, 1[

arcsin x = x +
+Œÿ

n=1

1 · 3 · . . . · (2n ≠ 1)
2 · 4 · . . . · (2n)

x2n+1

2n + 1 1 [≠1, 1]

ln(x +


1 + x2) = x +
+Œÿ

n=1
(≠1)n 1 · 3 · . . . · (2n ≠ 1)

2 · 4 · . . . · (2n)
x2n+1

2n + 1 1 [≠1, 1]

↵
⌦

�
 B Attention : Il faut connaître par cœur au moins les dix premiers DSE(0) de ce tableau ! Certains

sont très faciles à retrouver, comme par exemple arctan, par primitivation...

Les expressions de DSE(0) ci-dessus redonnent bien entendu les développements limités de fonctions usuels
à tout ordre vus dans le cours d’analyse de première année.

28

Remarque 2.116. Peano (1884) et Borel (1895) ont montré que si on prend une suite réelle (an)n

quelconque, il existe toujours une fonction lisse f : R ! R telle que an = f (n)(0)
n! , c’est à dire qu’il

existe toujours une fonction f : R ! R dont la série ∑ anxn est la série de Taylor de f en 0. Il
n’y a bien sûr aucune raison pour que la série de Taylor ∑ anxn converge, et en particulier, il
n’y a aucune raison pour que f soit développable en série entière, mais elle au moins le mérite
d’exister.

Ainsi, toutes les fonctions lisses (de classe C∞) ne sont pas forcément la somme de leur série
de Taylor en 0. Cependant nous pouvons approcher toute fonction f lisse dans un voisinage de

67



0 par la somme partielle de sa série de Taylor en 0 à tout ordre, plus un terme négligeable :

f(x) = f(0) + f ′(0)x + f ′′(0)
2 x2 + f (3)(0)

3! x3 + . . . + f (n)(0)
n! xn

︸ ︷︷ ︸
= Sn(x)

+ϵn(x)

où ϵn est une fonction négligeable devant xn définie dans un voisinage de 0. Laplace a donné
une formule explicite pour la fonction reste :

ϵn(x) =
∫ x

0

f (n+1)(t)
n! (x − t)ndt

Cet énoncé se démontre par récurrence, à l’aide d’une intégration par parties. On appelle la
formule suivante formule de Taylor avec reste intégral de Laplace :

f(x) = f(0) + f ′(0)x + f ′′(0)
2 x2 + f (3)(0)

3! x3 + . . . + f (n)(0)
n! xn +

∫ x

0
(x − t)n f (n+1)(t)

n! dt

qui conduit à l’inégalité de Taylor-Lagrange :
∣∣∣∣∣f(x) − f(0) + f ′(0)x + f ′′(0)

2 x2 + f (3)(0)
3! x3 + . . . + f (n)(0)

n! xn

∣∣∣∣∣ ≤ Mn+1|x|n+1

(n + 1)!

où Mn+1 = ||f (n+1)||∞ est la borne supérieure de |f (n+1)| sur le segment [0, x]. On prend la
limite lorsque n tend vers +∞. Si le majorant tend vers 0, alors la série de Taylor de f en 0
convergera vers f sur [0, x].
Exemple 2.117. Dans l’Exemple 2.114, la dérivée n+1-ème de f évaluée en x (fixé suffisamment
petit) vaut :

∀ x ̸= 0, f (n+1)(x) = (−1)n2(n!)e− 1
x2

xn+3

Donc le majorant Mn+1 = ||f (n+1)||∞ ne tend pas vers 0 quand n tend vers l’infini car d’une
part la factorielle tend vers l’infini, mais aussi le facteur 1

xn+3 pour x (fixé suffisamment petit).
Donc la série de Taylor de f en 0 ne converge pas vers f , comme on l’a déjà vu.
Remarque 2.118. Contrairement à la formule de Taylor-Lagrange, les théorèmes de Taylor-Young
et de Taylor-Laplace sont vrais pour des fonctions f à valeurs complexes ou dans un espace
vectoriel normé.

Définition 2.119. On dit qu’une fonction f : D ! R est développable en série entière en a ∈ D
si la fonction fa : x 7! f(x−a) est développable en série entière en 0. Si une fonction f : D ! R
est développable en série entière en tout point de son domaine de définition D, on dit qu’elle est
analytique.

Remarque 2.120. Nous pouvons en conclure que dans les fonctions lisses, il existe des fonctions
qui n’admettent pas de développement en série entière en certains des points de leur domaine de
définition et d’autres qui sont développables en série entière en tout point – les fonctions analy-
tiques. Les fonctions analytiques sont des fonctions beaucoup plus contraintes que les fonctions
lisses.
Exemple 2.121. Soit α ∈ R∗ et soit a ̸= α. On reprend la fonction de l’exemple 2.111, c’est à
dire f : x 7! 1

α−x . Soit x ∈ R\{α} et on pose h = x − a ⇐⇒ x = a + h. Dans ce cas on a
f(x) = 1

α−(a+h) = 1
(α−a)−h . Pour tout h ∈ R\{α − a}, on pose fa(h) = 1

(α−a)−h . Comme dans
l’exemple 2.111, la fonction fa est développable en série entière en 0 et :

∀ h ∈ ]− |α − a|, |α − a|[, fa(h) = 1
α − a

+∞∑

n=0

(
h

α − a

)n

68



ce qui se récrit par rapport à la variable x = a + h comme :

∀ x ∈ ]
a − |α − a|, a + |α − a|[, f(x) = 1

α − a

+∞∑

n=0

(
x − a

α − a

)n

Maintenant étudions plusieurs applications du développement en séries entières, comme l’ex-
ponentielle complexe et l’exponentielle de matrices. La série entière réelle ∑ xn

n! est absolument
convergente donc le rayon de convergence est infini. D’autre part la somme totale est la fonction
exponentielle réelle :

∀ x ∈ R, ex =
+∞∑

n=0

xn

n!

La série entière ∑ zn

n! est aussi absolument convergente pour tout z ∈ C.

Définition 2.122. La fonction suivante étend l’exponentielle réelle au plan complexe :

exp : C −−−−−−! C

z 7−−−−−−!
+∞∑

n=0

zn

n!

On l’appelle exponentielle complexe et on la note indifféremment exp ou e.

Proposition 2.123. Pour tout nombres complexes z, z′ ∈ C on a exp(z+z′) = exp(z)+exp(z′).
Autrement dit, l’exponentielle complexe est un morphisme surjectif du groupe abélien (C, +) sur
le groupe abélien (C∗, ×).

Remarque 2.124. Attention ce n’est pas un morphisme bijectif car il n’est pas injectif, puisque
par exemple ei2π = e0 = 1. Par conséquent, le logarithme n’a pas de définition évidente dans les
nombres complexes puisqu’il n’y a pas de fonction réciproque évidente.

Proposition 2.125. Pour tout nombre réel x ∈ R, on a exp(ix) = cos(x) + i sin(x).

Démonstration. On remplace z par ix dans la formule de l’exponentielle. On a donc :

+∞∑

n=0

(ix)n

n! =
+∞∑

p=0

i2px2p

(2p)! +
+∞∑

p=0

i2p+1x2p+1

(2p + 1)! =
+∞∑

p=0

(−1)px2p

(2p)! + i
+∞∑

p=0

(−1)px2p+1

(2p + 1)! = cos(x) + isin(x)

On en déduit que eiπ = −1, ei π
2 = i, etc... ainsi que la relation suivante :

∀ x, y ∈ R, expx+iy = ex(cos(y) + i sin(y))

Ceci nous permet de décomposer l’exponentielle de tout nombre complexe z = x + iy en parties
réelle et imaginaire :

Re(ez) = excos(y) et Im(ez) = exsin(y)

De ces discussions nous déduisons les relations suivante pour l’exponentielle complexe :

ez = ez et |ez| = eRe(z)
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Tout comme on a défini l’exponentielle complexe à partir des séries entières, on peut définir
un cosinus et un sinus complexes en étendant le développement en série entière du cosinus et du
sinus réels :

cos(z) =
+∞∑

p=0

(−1)pz2p

(2p)! et sin(z) =
+∞∑

p=0

(−1)pz2p+1

(2p + 1)!

Le rayon de convergence de ces deux séries est infini, comme l’exponentielle. On voit que ces
deux séries entières se récrivent :

cos(z) =
+∞∑

p=0

(iz)2p

(2p)! et i sin(z) =
+∞∑

p=0

(iz)2p+1

(2p + 1)!

Comme la somme de la séries entières de cos(z) et celle de i sin(z) donne la série entière de
exp(iz), on retrouve les identités bien connues :

cos(z) = eiz + e−iz

2 et sin(z) = eiz − e−iz

2
Ce qui fait que pour tout x ∈ R on a :

cos(ix) = e−x + ex

2 = ch(x) et sin(ix) = e−x − ex

2 = −sh(x)

Les cosinus et sinus hyperboliques d’un réel x sont donc les cosinus et sinus du nombre purement
imaginaire ix.

On peut aller un peu plus loin dans l’abstraction. Supposons qu’on ne connaisse pas le
nombre transcendant π, et essayons de lui donner une définition algébrique. Comme pour tout
x ∈ R,

∣∣eix
∣∣ = cos2(x) + sin2(x) = 1 on a le résultat suivant :

Proposition 2.126. L’application θ : x 7! eix est un morphisme continu surjectif du groupe
(R, +) sur le groupe (U, ×) (le cercle unité complexe muni du produit). Il existe un unique nombre
réel positif α > 0 tel que Ker(θ) = αZ = {αk, pour k ∈ Z}.

Démonstration. Tout noyau d’un morphisme de groupe est un sous-groupe du groupe de départ.
De ce fait, Ker(θ) est un sous-groupe de (R, +). Or les sous-groupes de (R, +) sont soit du type
αZ pour α ≥ 0 ou soit denses dans R. Le noyau de la fonction θ est nécessairement du premier
type car si il était dense, la fonction θ serait constant égale à 1 (par continuité).

Définition 2.127. Le nombre α
2 est noté π.

Tournons nous maintenant vers la définition de l’exponentielle de matrices. Soit (E, N) et
(E′, N ′) deux espaces vectoriels normés de dimension finie. Une application f : E ! E′ est
linéaire si pour tout λ ∈ R, f(λx + y) = λf(x) + f(y). On dénote L(E, E′) l’ensemble des
applications linéaires entre E et E′. Si E = E′, L(E) est l’ensemble des endomorphismes de E.
Si on note n = dim(E) et m = dim(E′), alors les éléments de L(E, E′) ≃ Mm×n(R), l’espace
vectoriel des matrices rectangulaires de taille m × n. Il est de dimension finie nm et nous avons
déjà défini des normes sur cet espaces, par exemple :

∀ A ∈ Mm×n(R), ∥A∥∞ = max
1≤j≤n
1≤i≤m

|Aij | et ∥A∥1 =
∑

1≤i≤m
1≤j≤n

|Aij |

Rappelons qu’en dimension finie, toutes les normes sont équivalentes. Certaines sont juste plus
pratiques que d’autres selon la situation. Nous allons définir une nouvelle norme sur L(E, E′) ≃
Mm×n(R).
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Proposition 2.128. Soit (E, N) et (E′, N ′) deux espaces vectoriels normés de dimension finie.
L’espace vectoriel L(E, E′) ≃ Mm×n(R) des applications linéaires (ou matrices) entre E et E′

admet la norme suivante, et définie par :

∀ A ∈ L(E, E′) |||A|||E,E′ = sup
x∈E
x ̸=0

N ′(A(x))
N(x) = sup

s∈SN (0,1)
N ′(A(s))

où SN (0, 1) est la sphère unité de E par rapport à la norme N . De plus, si (E′′, N ′′) est un
espace vectoriel normé de dimension finie, alors

∀ A ∈ L(E′, E′′), ∀ B ∈ L(E, E′), |||A ◦ B|||E,E′′ ≤ |||A|||E′,E′′ · |||B|||E,E′ (2.6)

Démonstration. Nous prouverons dans le cours du semestre prochain pourquoi le quotient N ′(A(x))
N(x)

est majoré, et donc admet une borne supérieure, pour tout A ∈ L(E, E′).

Soit A ∈ L(E, E′) ≃ Mm×n(R) et soit x ̸= 0E un élément de E. Alors on a que A(x)
N(x) =

A
(

x
N(x)

)
car A est une application linéaire. Or il est évident que x

N(x) est un élément de la
sphère unité de E (par rapport à la norme N). L’égalité des deux bornes supérieures est donc
établie. Maintenant, il est simple de montrer que l’application à valeurs positives A 7! |||A|||E,E′

définit une norme sur L(E, E′) (caractère défini, homogénéité et inégalité triangulaire).
Pour prouver, l’Equation (2.6), il suffit de remarquer que pour tout élément x ̸= 0E de E,

on a par définition de la borne supérieure N ′(B(x))
N(x) ≤ |||B|||E,E′ , et que pour tout x′ ̸= 0E′ de

E′, on a de même N ′′(A(x′))
N ′(x′) ≤ |||A|||E′,E′′ . En écrivant x′ = B(x), cela implique les inégalités

suivantes :

N ′′(A ◦ B(x)) ≤ |||A|||E′,E′′ · N ′(B(x)) ≤ |||A|||E′,E′′ · |||B|||E,E′ · N(x)

Ce qui implique directement que N ′′(A◦B(x))
N(x) ≤ |||A|||E′,E′′ · |||B|||E,E′ . L’inégalité étant vraie

pour tout x ̸= 0E , on obtient l’Equation (2.6).

Définition 2.129. Soit (E, N) et (E′, N ′) deux espaces vectoriels normés de dimension finie.
La norme |||.|||E,E′ sur L(E, E′) est appelée norme subordonnée à N et N ′.

Définition 2.130. Une algèbre de Banach est une K-algèbre (A, +, ×) munie d’une norme
∥.∥ : A × A ! R+ telle que ∥.∥ est une norme d’algèbre, c’est à dire que :

∀ a, b ∈ A, ∥a × b∥ ≤ ∥a∥ · ∥b∥

et telle que (A, ∥.∥) est un espace de Banach.

Exemple 2.131. Soit (E, N) un espace vectoriel normé de dimension finie. Alors l’espace des
endomorphismes L(E) muni de la norme subordonnée est un espace de Banach, et l’équation
(2.6) fait de (L(E), ◦, |||.|||E) ≃ (Mn(R), ·, |||.|||Rn) une algèbre de Banach.

Proposition 2.132. Soit Rm muni de la norme ∥.∥∞, et soit (Mm(R), |||.|||Rm) l’algèbre de
Banach des matrices carrées réelles de taille m × m. Alors la série entière

∑ Mn

n! converge en
norme et admet pour rayon de convergence R = +∞.

Démonstration. Soit A une telle matrice. La norme subordonnée à la norme infinie de Rm nous
donne que

|||A|||Rm = sup
s∈S∞(0,1)

∥A(s)∥∞
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Or rappelons nous que la sphère unité de la norme infinie dans Rm est (hyper)cubique ! C’est à
dire que s ∈ S∞(0, 1) si et seulement si il existe au moins une composante du vecteur s qui vaut
±1. Prenons une ligne de la matrice A, par exemple la ligne i. Les termes de cette ligne peuvent
être négatifs ou positifs. Mais on peut toujours prendre un vecteur si = (s1

i , . . . , sm
i ) ∈ S∞(0, 1)

tel que le signe de sj
i est le signe de Aij , pour tout 1 ≤ j ≤ m. Dans ce cas, la i-ème composante

du vecteur A(si) est exactement la somme |Ai1| + |Ai2| + . . . + |Aim|. La norme subordonnée à
la norme infinie de Rm nous donne ainsi le résultat suivant :

|||A|||Rm = max
1≤i≤m




m∑

j=1
|Aij|


 ≤ m ∥A∥∞

Par l’Equation (2.6), on montre par récurrence que |||An|||Rm ≤ (|||A|||Rm

)n. Avec l’inégalité
du dessus, et en notant M = m ∥A∥∞ (c’est une constante), cela nous donne que |||An|||Rm ≤(
m ∥A∥∞

)n. Et en divisant par n! nous avons l’encadrement suivant :

0 ≤ |||An|||Rm

n! ≤ Mn

n!
Le membre de droite est le terme général d’une série positive convergente partout (la série expo-
nentielle), donc par la Proposition (2.15), nous avons que la série positive ∑ |||An|||Rm

n! converge,
c’est à dire que la série ∑ An

n! converge en norme. Ceci étant vraie pour toute matrice A, nous
en déduisons que le rayon de convergence est infini.

Définition 2.133. On définit la fonction suivante sur les matrices réelles carrées m × m :

exp : Mm(R) −−−−−−! Mm(R)

A 7−−−−−−!
+∞∑

n=0

An

n!

On l’appelle exponentielle de matrices et on la note indifféremment exp ou e.
Remarque 2.134. Comme l’exponentielle complexe étend l’exponentielle réelle au plan complexe,
il existe une exponentielle de matrices carrées complexes
Proposition 2.135. Pour tout A ∈ Mm(R), on a det

(
eA
)

= etr(A).

A partir de cette formule, on apprend que la fonction exponentielle prend valeurs dans les
matrices inversibles (de déterminant non nul). C’est une propriété partagée avec la fonction
exponentielle sur R ou C, qui est aussi à valeurs dans les inversibles R∗ et C∗, respectivement.
D’autre part, on sait que dans ces deux derniers cas, l’exponentielle est un morphisme de groupe
car la multiplication est commutative : ez+z′ = ezez′ = ez′

ez. Or pour les matrices ce n’est pas le
cas, et de très simples exemples le montrent simplement. Par exemple considérons les matrices
A = ( 0 0

1 0 ) et B = ( 0 1
0 0 ). Alors on a que eA+B ̸= eAeB, eA+B ̸= eBeA et que eAeB ̸= eBeA.

C’est à dire que non seulement l’exponentielle de matrices n’est pas un morphisme d’algèbres,
mais que ce n’est même pas un morphisme de groupes entre (Mm(R), +) et (GLm(R), ×) (bien
qu’elle soit surjective sur ce dernier). Cela vient du fait que les matrices ne sont pas commuta-
tives par rapport à la mutiplication. Au contraire, l’écart à la commutativité est mesurée par
le commutateur (crochet de Lie) de deux matrices [A, B] = A × B − B × A. Ce commuta-
teur apparaitra très justement dans la formule qui relie eA+B et eAeB, à travers la formule de
Baker–Campbell–Hausdorff-Dynkin donnée par :

eA+B = eA eB e− 1
2 [A,B] e

1
6 (2[B,[A,B]]+[A,[A,B]]) e− 1

24 ([[[A,B],A],A]+3[[[A,B],A],B]+3[[[A,B],B],B]) . . .

Plus généralement, l’exponentielle est une forme d’intégration entre algèbres de Lie et groupes
de Lie, et souvent difficile à mener, tandis que l’opération inverse est la différentiation et est
plus simple.
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